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Abstract: The purpose of instance selection is to reduce the data size while preserving as much
useful information stored in the data as possible and detecting and removing the erroneous and
redundant information. In this work, we analyze instance selection in regression tasks and apply
the NSGA-II multi-objective evolutionary algorithm to direct the search for the optimal subset of the
training dataset and the k-NN algorithm for evaluating the solutions during the selection process.
A key advantage of the method is obtaining a pool of solutions situated on the Pareto front, where
each of them is the best for certain RMSE-compression balance. We discuss different parameters of
the process and their influence on the results and put special efforts to reducing the computational
complexity of our approach. The experimental evaluation proves that the proposed method achieves
good performance in terms of minimization of prediction error and minimization of dataset size.

Keywords: instance selection; information selection; multi-objective evolutionary algorithms;
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1. Introduction

Data preprocessing is a crucial step in data mining systems. It is frequently more important than
the selection of the best prediction model, as even the best model cannot obtain good results if it learns
using poor quality data [1]. A part of data preprocessing is data selection, which comprises feature
selection and instance selection.

The purpose of instance selection is to preserve useful information stored in the data and reject
the erroneous information, while reducing the data size by selecting an optimal set of instances. This
allows for accelerating the predictive model training and to obtain a lower prediction error [2].

Reducing the data size also makes it easier to analyze the properties of the data by humans,
as well as allowing the assessment of the expected performance of the prediction models [3]. In other
words, by instance selection, we want to “compress the information”. In this work, we consider
instance selection in regression problems, which is a more complex task than instance selection in
classification problems [4] an much less literature exists on this topic.

Instance selection finds practical application in a range of problems, where the data size can
be reduced. For example, it can be applied to the datasets considered in this study, describing
real-world problems from various domains. In addition, one of the authors took part in two practical
implementations in the industry. The first one was an artificial intelligence-based system for controlling
steel production in electric arc process, where there was a lot of data from the previous processes (such
as the amount of energy, of different chemical compounds, etc.). The other one was in the electronics
industry in a system for predicting the performance of the electronic appliances (power inverters and
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others) where the amount of data describing the parameters and behavior of the appliances was also
very large. In both cases, there were regression problems with many redundant and erroneous data
and instance selection was very useful to enable efficient further processing of the data.

The first difference between instance selection for classification and regression tasks that in
classification it is enough to determine the class boundaries (the black thick line in Figure 1a), and to
select only the instances needed to determine the boundaries [5]. The remaining instances (in the
grayed area) can be removed. However, before removing them, the noisy instances, which do not match
their neighbor class, must be removed first in order not to introduce the false classification boundaries.

In the case of instance selection for regression tasks, we also need to remove the noisy instances,
which do not match their neighbors (instances A and B in Figure 1b) and then we can remove the
instances that are very close to some other instances in terms of input and the output space (instances
C and D in Figure 1b). However, the reduction cannot be so strong as in classification problems, where
we need only the class boundaries because, in regression, each point in the data space is important.

In instance selection for classification tasks, we can obtain strong data reduction and we can also
obtain more balanced class distribution and thus higher entropy H calculated as [6]:

H=-) p(X;)logp(X;), 1

C
i=1
where ¢ is the number of classes in the initial dataset and p(X;) is the proportion of instances of i-th
class to all instance in the dataset.

In regression problems, we can estimate the dependent variable y as a deterministic continuous
function of the independent variables x and use differential entropy H; [7]:

Hy == [ f (0)1og (/) @)

where § is area covered by x. We discuss the connections between measures of information and loss
functions with instance selection performance in Section 3.4.
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Figure 1. Instance selection in classification (a) and in regression (b). The axes represent the attributes
x1 and x2. In classification, the red circle and blue cross represent points of two different classes.
In regression, the height of the vertical line represents the output value of an instance and the circle
shows its location in the input space.

However, in practice, instance selection is not so simple as in Figure 1, where there are only two
attributes and a few instances. We cannot say which instance needs to be rejected without taking
into account which other instances are also rejected. This is because the outcome depends on the set
on which the predictive models are trained and thus we must consider the set of selected instances
as a whole, which makes instance selection an NP-hard problem (see Section 3.1). For that reason,
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we decided to base the instance selection method on evolutionary algorithms, where the advantage
of this approach is that the evolutionary algorithm evaluates the prediction quality on the entire
subsets of selected instances and we do not have to explicitly define the relation of an instance to their
neighbors (which in regression tasks is not as simple as in classification) to decide upon its selection
or rejection.

Another advantage of evolutionary-based methods is the possibility of obtaining solutions with
low prediction error (which in case of regression problems is typically expressed by RMSE—root mean
square error) and strong data reduction (compression) at the same time.

As the discussed solution is based on multi-objective optimization, a key advantage of it is that
we obtain a pool of solutions situated on the Pareto front, where each of them is the best for certain
RMSE-compression balance and we can choose one of them, as will be discussed in Section 2.2.

In binary instance selection, each vector (instance) can be either selected or rejected. In instance
weighting, the instances can be assigned real value weights between 0 and 1, which reflect the instance
importance for building the predictive model. Then, the model includes the contribution of particular
instances in the learning process proportionally to the weights assigned to them [8]. Obviously,
we always want to select the most representative instances, so that the reduced set contains as much
useful information and as low noise as possible.

First, we review the problems and existing solutions in instance selection with non-evolutionary
(Section 1.1) and evolutionary approaches (Section 1.2). Then, we introduce our approach, which uses
the multi-objective evolutionary NSGA-II algorithm [9] with k-NN as the inner evaluation algorithm
and propose several modifications and improvements (Section 2). Finally, the discussion is supported
with experimental evaluations (Section 3).

1.1. Non-Evolutionary Instance Selection Algorithms

Non-evolutionary instance selection algorithms usually are based on some local properties of
the dataset, as the nearest neighbors or Voronoi cells, in order to assess which instances can be
removed as noisy or redundant.

The CNN (Condensed Nearest Neighbor) algorithm was the first instance selection algorithm
developed by Hart [10]. The purpose of CNN is to reject these instances that do not bring any additional
information into the classification process. A popular noise filter is ENN (Edited Nearest Neighbor)
proposed by Wilson [11] to increase classification accuracy by noise reduction. These two algorithms
are still among the most useful due to their simplicity. In later years, more instance selection algorithms
have been proposed for classification tasks [5,12-18].

In the literature, DROP-3 and DROP-5 are frequently considered the most effective of them [11].

There were also some works to directly use information theory for instance selection in
classification tasks. Son [19] proposed a method, where the data set was segmented into several
partitions. Then, each partition was divided continuously based on entropy, until all partitions are
pure or no further partitioning can be done. Then one can search for the representative instance in
each partition. Kajdanowicz [20] introduced a method for comparison and selection of the training set
using entropy-based distance.

Recently, adaptations of instance selection methods for multi-output classification problems were
proposed [21]. A taxonomy and comparative study of instance selection methods for classification can
be found in [2,22].

It is obvious that fewer papers addressed the problem of instance selection in regression tasks
and one of the first approaches was presented by Zhang [23]. Since there are no classes in regression,
several approaches to replace the “class” with another concept were used.

In [24,25], the class concept was replaced by some threshold distance. If the distance in the input
space between two instances is greater than the threshold, they can be treated by the instance selection
algorithm in the same way as different class instances in classification tasks. Another option is to
perform discretization and convert the regression task to a multiple class classification task and then
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use instance selection algorithms for classification problems [26]. In [27], a Class Conditional Instance
Selection for Regression (CCISR) was proposed, which was derived from the CCIS for classification [28].
CCIS created two graphs: one for the nearest neighbors of the same class as a given instance and
another one for other class instances. A scoring function based on the distances in graphs was applied
to evaluate the instances.

Guillen et al. [29] proposed the use of mutual information for instance selection in time series
prediction. In the first step, the nearest neighbors of a given point were determined and then the
mutual information between that point and each of its neighbors was calculated. If the loss of mutual
information with respect to its neighbors was similar to the instances near the examined instance,
this instance was included in the selected dataset. The authors of [30,31] extended this idea to instance
selection in time series prediction by calculating the mutual information between every instance from
the training set and the currently evaluated instance, then to order the training set in descending order
by the distances and selected the predefined number of points.

In [32], an instance selection method for regression was based on recursive data partitioning.
The algorithm started with partitioning the input space using the k-means clustering. If the ratio
of the standard deviation to the mean of the group was less than a threshold, the element closest
to the mean of each cluster was marked as a representative. Otherwise, the algorithm continued to
split the leaf recursively.

In [25], an adaptation of DROP2 and DROP3 to regression tasks was presented and two solutions
were proposed: to compare the accumulated error that occurs when an instance is selected and when it
is rejected, and to use the already mentioned concept of the distance threshold. Since both ideas were
used to adapt DROP2 and DROP3 to regression, four resultant algorithms were tested. DROP3-RT
(Regression-Threshold) definitely worked best of the four methods and thus we use it for comparison
in the experiments.

In [4], ensembles of instance selection methods for regression tasks were used. The ensembles
consisted of several members of the same instance selection algorithm and by implementing bagging
operated on different subsets of the original training set. A final decision was made by voting with
a threshold. If an instance obtained more votes than the threshold, it was finally selected. Using
a different threshold, a Pareto front of solutions could be obtained, i.e., no solution exists, which can
improve both of the objectives more than any solution on the front. Results of this work are also used
in the experimental comparison.

The problem with non-evolutionary instance selection algorithms is that in most cases they
are based on certain assumptions and observations made by their authors about how the data is
typically distributed. For example, the ENN algorithm removes the instances miss-classified by k-NN,
considering them noisy. This is not always true, as they may also be boundary instances and indeed
ENN has the tendency to smooth the class boundaries. There are also other assumptions in other
algorithms that are more frequently true than not, but in some cases they are wrong.

1.2. Evolutionary Instance Selection Algorithms

Evolutionary instance selection algorithms do not make any assumptions about the dataset
properties but verify iteratively large number of different subsets in an intelligent way to minimize the
search space. This can result in better solutions or better (lower) Pareto front in the case of multiple
solutions. On the other hand, this is usually achieved at the expense of much higher computational
cost. For that reason, in this work, we pay special attention to limit the computational cost as far as
possible, which is discussed in Section 2.3.

Tolvi [33] used genetic algorithms for outlier detection and variable selection in linear regression
models, performing both operations simultaneously. However, he evaluated the model on two very
small datasets (35 instances with two features and 21 instances with three features); nevertheless, in his
experiments, evolutionary instance selection algorithms outperformed the non-evolutionary ones.
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Shuning [34] concluded that genetic algorithm based instance selection for classification works
best for low entropy datasets and with higher entropy, there will be less benefit from instance selection.
In [35], an algorithm called Cooperative Coevolutionary Instance Selection (CCIS) was presented.
The method used two populations evaluated cooperatively. The training set was divided into n
approximately equal parts and each part was assigned to a sub-population. Each individual of
a sub-population encoded a subset of training instances. Every sub-population was evolved using
a standard genetic algorithm. The second population consisted of combinations of instance sets.

Tsaia [36] considered jointly instance and feature selection in an evolutionary approach.
In addition, in [37], an evolutionary algorithm was presented for instance and feature selection
and particular problems were assigned to several populations to handle each one separately and each
population was optimizing a part of the problem. Then, the authors tried to join the obtained solutions
in an attempt to obtain better results. Czarnowski [38,39] introduced an instance selection method that
incorporates several ideas. First clustering was performed on the data and then, within the clusters,
the selection was executed by the team of agents. The agents cooperated by sharing a population of
solutions and refined the solutions using local search.

We found only two works describing the application of multi-objective evolutionary algorithms
to instance selection, both to classification problems and both dated for 2017.

In [40], the MOEA /D algorithm was used in a coevolutionary approach integrating instance
selection and generating the hyper-parameters for training an SVM. The two criteria used in that
optimization were the reduction of the training set size and the performance with a given set of an
SVM'’s hyper-parameters. The average results over some classification datasets were provided.

In [41], the authors also considered the over-fitting problem. At each iteration of the genetic
algorithm, the training and validation partitions were updated in order to prevent the prototypes from
over-fitting a single validation data set. Each time the partitions were updated, all of the solutions in the
Pareto set were re-evaluated. However, only the results for 1-NN averaged over several classification
problems was reported, similarly, as in the previous work, so it is not possible to compare the results
with our method.

2. Multi-Objective Evolutionary Instance Selection for Regression (MEISR)

This section introduces our solution to instance selection in regression tasks called MEISR. MEISR
uses a multi-objective evolutionary algorithm, which in the current implementation is NSGA-II [9],
to direct the search for the optimal reduced training sets and the k-NN algorithm to determine the
error on the training sets. First, particular aspects are discussed and finally the pseudo-code of the
whole algorithm is presented.

2.1. Basic Concepts

As it was stated in the introduction, the two objectives of instance selection process are
minimization of the number of instances in the reduced training set S and minimization of the error
obtained on the test set by predictive models trained on the reduced training set S. The first objective
is known as minimization of retention or maximization of reduction or compression. The second
one in our case is expressed with root mean square error (RMSE) because RMSE is the standard and
commonly used measure of regressor performance. Because the words “RMSE”, “reduction” and
“retention” all begin with “r”, we will denote the various RMSE values on the test set with symbols

“_ 1 “_
T C

starting with
(0,1, c2, c3), which will stand for retention or 1-compression:

(r0,71,72,r3) and we will denote the first objective with symbols starting with

Nsel
N 7

c = retention = 1 — compression =1 =

®)
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where N is the number of all instances in the training set T, N, is the number of selected instances
from T, which create the selected set S. We use the standard definitions of root mean square error on
the training set (RMSE;) and on the test set (RMSEs;):

1
RMSEtrn = \/sz\il (ypredicted_i - yi)2/ (4)

1
RMSEjs: = \/ N 2t Wpredictedt = 1)’ (5)
S

where Ypegicted_i 1S the predicted and y; is the actual value of the output variable for the i-th instance
(of the training and test set respectively) and where N is the number of all instances in the training and
Nist in the test set. To prevent over-fitting, either validation set or the other stop criterion can be used,
as discussed in Section 2.6.

We use a multi-objective evolutionary instance selection method based on the
NSGA-II algorithm [9] to maximize compression and minimize RMSE and to obtain a set of
solutions on the Pareto front (these are such solutions in which no other solution exists, which can
improve both of the objectives more than any solution on the front—see Figure 2).

We chose NSGA-II because it is widely used and, despite the existence of newer algorithms,
NSGA-II still gives the best or one of the best results for two-objective problems and its modification
NSGA-III for problems with more than two objectives [42]. As the description of NSGA-II can be
easily found in the literature [9], we are not going do describe it in detail, but rather discuss the issues
specific to the proposed instance selection method, especially that the main focus of our work is on
instance selection and not on genetic or evolutionary algorithms.

The NSGA-II algorithm was adjusted to direct the search for solutions for the instance
selection task by setting the proper objectives, by using the proper encoding, and by implementing
the proposed initialization schemes and mutation and crossover operators, as will be discussed
in subsequent sections.

First, an initial population of P individuals is created, where each individual represents one
reduced training set S. The length of the chromosome equals the number of instances in the original
training set T. At each position of the chromosome, a value w represents the weight of a single instance.
If w = 0, then the instance is rejected. If w > 0, then the instance is included in the prediction model
(regressor) learning with the weight w. In the simplest binary case, we allow only for two different
values of w: 0 and 1. Initially, all weights w have random values generated by the initialization method
presented two subsections later.

Then, the evolutionary-based instance selection process starts and by adjusting the weights tries
to find a group of the best solutions (reduced training sets S), located on the Pareto front. The quality
of the solutions during the process is assessed by the two criteria already mentioned: retention (the
lower the better) and the prediction error of the learning model (also the lower the better). A detailed
discussion of the objective criteria is provided in the next subsection.

2.2. The Objectives

The first objective is a minimization of the number of instances of the training set
(i.e., minimization of retention or maximization of compression).

The second objective is a minimization of RMSE. It must be distinguished between the final
objective, which is a minimization of RMSE on the test set (RMSE;s) and the objective used by
the instance selection process, which is a minimization of RMSE on the training set (RMSE).
The final objective (RMSE;s;) cannot be minimized directly because the test set is not available while
selecting the instances.

During the instance selection process RMSE;,, is internally determined with the leave-one-out
procedure, always using the k-NN algorithm as the inner prediction model (the regressor inside the
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instance selection process). In the final evaluation, RMSE; can be determined using any prediction
model trained on the reduced training set S. In the experimental section, the final prediction models
we used were k-NN with different k parameters and MLP neural networks and the RMSE;s; obtained
on the test sets is reported in the experimental results.

Using a single objective genetic algorithm, a fitness function that incorporates all criteria must be
defined. The typical definition of the fitness function for instance selection is:

fitness = (a - retention + (1 — ) - RMSEtrn)il, (6)

where « is a coefficient indicating the expected balance between the objectives. However, multi-objective
solutions do not require the determination of the coefficient «; instead, they minimize two objectives:
retention and RMSE;,,. Moreover, the obtained results consist of a group of non-nominated individuals
situated on the Pareto front (i.e., the reduced training sets S) with different trade-offs between objectives.

In our study, the following encoding of individuals is used: each individual (each selected data
set S) is encoded as a vector w = {wy, ..., wy }, where N stands for the size of the vector (which equals
the number of instances in the original training set T). The vector w can only take specific values
assigned from set {0, o, 20,30, ..., 1}, where o depends on the algorithm parameter numLevels and it is
calculated as follows: o = 1/ (numLevels — 1). In case of the numLevels = 2 vector, w can have only
binary values, in case of numLevels = 5 vector, w can take five values ({0.00,0.25,0.50,0.75,1.00}), etc.
If numLevels = 0 a vector, w can have any real number values assigned. Such a process was aimed at
increasing the readability of weights and the ability to test different variants of simulations.

In the experimental section, we present the results for binary instance selection (numLevels = 2)
and real-value instance weighting (numLevels = 0) as these are two most characteristic encodings.
Moreover, implementing instance weighting in regression problems frequently allows for some
improvement in prediction quality for noisy data [8,43]. Thus, one of the aims of this work is to
examine in what conditions implementing real value weights w; is beneficial, in spite of this making
the algorithm more complex and interpretation of the results more difficult.

During the instance selection process, the following objectives are used by NSGA-II for binary

instance selection:
RMSE, (W) = knn(S(w), T)

N 7
ret (w) = & ¥ nred (w;), @
i=1
while for real-value instance weighting the following objectives are directly used by NSGA-II:
RMSEy, (W) = knn(S(w), T)
Y 1 ®)
ret(W) =B & -21 wi+(1—-B) 5 '21 nred (w;),
1= 1=

where RMSEy,,(w) is obtained with the k&-NN algorithm while predicting output of all instances from
the original training set T, using the reduced (selected) training set S given by the weight vector w
(each time without the instance currently being predicted). ret(w) in binary instance selection is the
sum of instance weights (which equals in this case the number of selected instances), while, in instance
weighting, it is a weighted sum of the instance weights w; and the number of instances with non-zero
weights nred(w;). nred(w;) returns 1 if the instance is selected and 0 if it is rejected. p is a parameter
that balances the sum of the instance weights and the sum of the not rejected instances. The first term,
summing the instance weights, is needed to allow crossover and mutation operations to gradually
reduce some of the instance weights w;. In case of instance weighting nred(w) is calculated as follows:

1, for x>7,
nred(w):{ 0, for x<1 ©
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where 7 is a parameter that defines a weight, below which an instance is rejected (which is
experimentally set as 0.01; however, the exact value is not so crucial, as the algorithm adjusts its
behavior to that value by modifying the weights proportionally to 7). Such an approach allows
the optimization algorithm to minimize the instance weights and, consequently, for a reduction of
instances. Instances with weights lower than v get rejected and are not taken into account by the k-NN
algorithm, while instances with weights greater than -y are taken into account proportionally to their
weights (as well by the inner evaluation as by the final prediction model), as will be discussed in the
next section. However, when we report the retention in the experimental results, we take into account
the only the number of all instances with non-zero weights.

0.00

0.00 c2 retention cl c3 1.00

Figure 2. Sample results of the MEISR algorithm run. Each pair of points (orange and green) represent
one solution (one training set) with the percentage of selected instances on the horizontal axis and
the corresponding RMSE;, on training set (orange) and RMSE; on test set (green) on vertical axis.
Only the points that formed the Pareto front are shown. Horizontal orange and green lines show the
RMSE};; and RMSE;s; respectively without instance selection. The additional are points shown in
blue (c3, r3 and others close to them) are described in the text.

An example of the obtained Pareto front and the four points of interest are shown in Figure 2.
In orange: results on the training set, in green: the corresponding results on the test set. All the
points obtained on the Pareto fronts for each dataset are presented numerically and graphically in the
supplementary resources. Due to limited space in the paper, we present only four most characteristic
points of interest (r0, c0), (11, c1), (r2, c2) and also (r3, c3) the in cases where r3 < r1. Figure 2 is used
to explain the results obtained in one fold of the 10-fold cross-validation. The corresponding values
reported in the table are the average values over the whole 10-fold cross-validation:

e r0—baseline RMSE;, obtained without instance selection.

e  c0—c0is always 1, which means there is no compression on the whole dataset, for that reason the
value does not occur in any table.

o 1r1—RMSE; obtained with instance selection for the point (c1,#1) in Figure 2; this is the RMSEjs;
obtained on the test set, while training the model on this reduced training set S, which is the point
on the Pareto front with the lowest RMSE};,, on the training set and the weakest compression.

e cl—retention rate (1-compression) of the point (c1,r1).

e r2—RMSE;; obtained with instance selection for the point (c2, 72) in Figure 2; this is the RMSE
obtained on the test set, while training the model on this reduced training set, which was
represented by the closest obtained point to the point (10, retention = 0); the brown diagonal
line shows this distance d. This point was selected as a representative point because further



Entropy 2018, 20, 746 9 of 34

increasing compression usually leads to sudden increase of RMSE, and RMSE;s;, making the
area to the left of this point practically unusable.

e c2—retention rate of the point (c2,r2).

e 13, .3—RMSE;; and retention rate obtained with and additional run of the instance selection
process with the alternative initialization (90% probability of each instance being included in the
initial population). It was aimed to obtain RMSE;; lower than r1 and r0. However, this was useful
only in a few cases; in other cases, r3 was equal 70 or to r1, which meant that no further decrease of
RMSE below 10 or r1 (whichever was lower) was possible to obtain. One of the important reasons
that it was not always possible to obtain the lowest RMSE with the main instance selection process
at the point (c1, r1) was that the Pareto front was extending gradually during the optimization
and in some cases. Before it would reach the point corresponding to (c3, r3), the test error for the
same compression can already start to increase (we minimize RMSE;;, and report the RMSE;;),
so we must stop the process earlier (see Section 2.6).

Although the target users of our method are scientists and engineers, who should understand
their process and be able to select the appropriate solution from the Pareto front, we can suggest
the solution with the lowest RMSE;,; for predictive model learning and the solution marked by the
point (c2,r2) in Figure 2 for analyzing the properties of the data. To enable a better choice, it may
also be a good idea to display the front graphically (as can be done in the software available in the
supplementary resources) so the user can quickly assess all the solutions.

2.3. k-NN as the Inner Evaluation Algorithm

The rationale behind choosing k-NN as the inner evaluation algorithm is the speed of this
approach. This is because the full ~-NN algorithm has to be performed only once before the
optimization starts. In the case of other prediction algorithms, this would be either impossible
or much more complex and thus less efficient. Let us assume that there are 96 individuals in the
population and that the optimization requires 30 epochs. In this case, the value of the fitness function
must be calculated 2880 times. Training any prediction model 2880 times would be computationally
very costly.

Although, our previous experiments [24] showed that the best results in terms of
RMSE-compression balance can usually be obtained if the inner evaluation model is the same
algorithm as the final predictor, in this work, we sacrifice that small improvement in order to shorten
the optimization process usually from two to three orders of magnitude. However, as we will show,
when the final predictor is an MLP neural network, for the inner evaluation, we use k-NN with
parameters, which makes its prediction as close to the prediction of the neural network as possible.
In this way, we obtain better results, while still keeping the process time short.

In the case of the k-NN algorithm, we calculate the distance matrix between each pair of instances
in the training set. Then, we create one two-dimensional array D; for each instance X;. The first
dimension is N—the number of instances in the training set and the second dimension is three.
The three values stored in the array are: dist(X;, X;), j and y;. dist(X;, X;) is the distances between
the current instance X; and each other instance X;, which in the simplest case is a simple Euclidean
distance and in a general case can be expressed by Equation (11). The second value j is the ordinal
number of each instance in the dataset T. The third value is the output value y; of the j-th instance.

Then, we sort the arrays D; increasingly by dist(X;, X;). At the prediction step, we only go
through the beginning of the array, read the instance number j and check if this instance is selected,
if not, then we go to the next instance, as long as we find k selected instances. Then, for the k nearest
selected instances, we read their weights w; from the chromosome, their output value y; and predict
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this instance output value yyegicreqd i as the weighted average of the k outputs (which is a simple
average in case of binary instance selection):

Ypredicted_i = (10)

where y; is the output value of the j-th neighbor of an instance X; and w; is the weight expressing
the j-th neighbor importance (it should not be confused with the weight wd; related to the distance
between the instances X; and X; as in the standard weighted k-NN algorithm). Only the neighbors
with w; > vy are considered. In binary instance selection, w; = 1 always. To prevent an instance from
being considered by the algorithm a neighbor of itself, we set the distance to the instance itself to
a very large number as the maximum value of the Double type (1.79 x 103%). The prediction step is
extremely fast and only these steps are performed each time the RMSE;,, is calculated.
The distance between two instances X; and X; is calculated as:

(11)

2221 wam(xim _ x],m)v ) 1/v

dist(X;, X]) = < ZA wa
m= m

where A is the number of features (attributes), way, is the weight of the m-th attribute and x;,, and xj;,
are the values of the m-th attribute of i-th and j-th instance respectively. In the simplest case, all the
attribute weights equal 1. However, there are cases where it is useful to use attribute weighting and
assign different weights to different attributes, e.g., as the absolute values of the correlation coefficient
between each attribute and the output. For example, attribute weighting is useful in improving
instance selection results if the final predictor is also k-NN using the attribute weights or when the
final predictor is some other algorithm, which internally performs attribute weighting, e.g., an MLP
neural network [44]. v is the exponent in Minkovsky distance measure; for v = 2, the measure becomes
the Euclidean distance. There is usually no need to raise the expression in the bracket to the power
1/v (calculate a square root for v = 2) because we need only to find the nearest neighbors and not the
distance to them (unless we use weighted k-NN, where the closest neighbors have a greater influence
on the prediction).

If the final prediction model is i.e., a neural network, then, during the learning, an error the
network makes as a response to presenting a given instance is multiplied by the instance weight:

Error = Zf(wl : f(ypredicted_i - yi))f (12)
i=1

where Error is the total error, used in the network learning algorithms to adjust the network weights
and f(.) is an error measure, which, for the frequently used mean square error measure, gives:

n
Error = Z w;j - (ypredicted_i - yi)2‘ (13)
i=1

2.4. Population Initialization

The main goal of population initialization methods is to provide optimal coverage of the search
space. This can shorten the evolutionary optimization and enable search for the solutions either more
uniformly spread in the solution space or focused in some areas, depending on the needs.

Typical initialization assigns randomly generated values (weights) w; to each position i at the
chromosome (to each instance) of the individuals (training datasets). For this purpose, different
methods can be used (e.g., Pseudo-Random Generators [45], Quasi-Random Generators [46],
population dependent methods [47]). In addition, methods based on value transformations [48],
a priori knowledge about the problem or clustering can be used [49]. According to some authors,
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initialization should be adjusted to a specified problem [50] and it is also the case in instance
selection tasks.

One of the best initialization methods that relies on population is Adaptive Randomness [47].
In this method, for each individual in population several candidates are created. Only the candidate
for which that smallest distance to the rest of the population is the larger than for all other candidates
is added to the population. The advantage of this method is that the created candidates do not have to
be evaluated, only the distance to the already assigned individuals is calculated. Population-based
methods do not depend on random number generators and number transformation methods. Due
to this, they can be combined with other types of initialization methods [51]. In this work, such
combinations have been tested with an idea to produce different initial values (e.g., initialize smaller
values and examine the effect of such initialization on the obtained results).

Additionally, several methods that aim at the differentiation of initialized values (to achieve
different degrees of instance selection reduction) are introduced:

e Power transformation. In this method, the randomly generated number real number rnd
(0 < rnd < 1) is raised to a certain power v as follows:

w; = rnd®, (14)

where higher v results in lower values (because 0 > rnd < 1) obtained after transformation.
e  Fill transformation. This binary transformation method uses a predefined probability f1 that
determines balance between 0 and 1 as a result of initialization:

) 0, for rnd < f1,
Wi = { 1, for rnd > f1. (15)

e  Spread initialization. The idea behind this method is to differentiate the individuals in population
in terms of the different probabilities of occurrence of small and large values:
0, for rnd < f2,
= 16
wi { rnd, for rnd > f2, (16)

where f2 = 0.1+ h*n/N is a value dependent on particular individual in the population, n stands
for index of the individual in the population, & is a parameter.

In case of binary values, the numbers generated by initialization methods are rounded to
the closest acceptable value. Based on the preliminary experiments, which are available in the
supplementary resources, we decided to use the adaptive randomness combined with power and
fill transformations.

2.5. Genetic Operators: Crossover and Mutation

We used the multi-point multi-parent crossover. The number of instances in the original training
set T (which equals the chromosome length) was N. The M split points of the chromosome were
randomly selected for each child. Then, a parent providing the genetic material for each segment
was randomly chosen with the probability proportional to its fitness (thus the same parent could be
chosen for more than one segment). The number M influences the speed of the algorithm conversion
and the experiments showed that the optimal number M for the fastest conversion can be roughly
expressed as:

(17)

B round(n/10) for n <1000,
] 100+ round((n —1000) /100) for n > 1000.

However, smaller numbers M than given by Equation (17) also provide similar results in the
instance selection, but the optimization takes longer. P children were generated in this way. Then, the P
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children and P parents were merged together into one group and P individuals with the highest fitness
value from the merged group were promoted into the next iteration. (It can be said that the probability
of crossover was 100% and because of this way of promoting individuals to the next iteration, it was
the only optimal probability).

A broad range of mutation probabilities could be used without significantly influencing the
results. We used the probability of mutation of 0.1% per each chromosome position and the following
mutation operation:

o — { w; + (rnd — 0.5) - Myange  for numLevels = 0, (18)
! RND(0,numLevels — 1) for numLevels >0,

where rnd stands for randomly generated real number from range (0,1), RND(0, numLevels — 1)
stands for random generated integer number from set {0, ..., numLevels — 1}, Myange stands for mutation
range parameter (set experimentally as 0.2).

2.6. Training Time Minimization

In genetic algorithms, larger populations require fewer epochs of the algorithm to converge.
However, some optimal population size exists from the viewpoint of the computational cost of the
whole process. The cost can be approximated by the number of fitness function evaluations. According
to our tests, this optimal population size was between 60 and 120 individuals. We decided to use 96
individuals because 96 was a multiple of the number of CPU cores in our server, so it scaled well in
parallel computation. Larger populations increase computational costs but do not have any other
negative impact on the process. However, if the population would be too small, it may limit the
diversity of the individuals and prevent the algorithm from finding the best solutions.

Longer chromosomes, which represent lager datasets, require more epochs of the evolutionary
algorithm to find the desired solutions. If too few epochs are used, under-fitting can occur and the
solutions can be of poor quality, where the model fits neither the training data nor the test data enough
well. On the other hand, using too many epochs can cause over-fitting—the model fits the training data
too well and thus fails to fit the test data enough well (does not have generalization capabilities), which
prevents good performance on the test data [52,53]. When over-fitting occurs, the error on the training
set continuously decreases with further model learning, and the error on the test set starts increasing.

The biggest role in creating over-fitting can be attributed to the model getting fitted to the
outstanding, noisy instances, when the model learning runs too long and thus the model gets too
complex [52]. In our previous works [44,54], we studied various methods of preventing over-fitting
in neural network learning. Noise removal by the ENN instance selection algorithm [11] and its
extensions proved to be among the best methods. In the experimental section we compare the MEISR
method to the extensions of ENN.

To prevent over-fitting in the MEISR algorithm, we used a standard early stopping approach [53].
By watching the error on a validation test (which is a part of the training set not used for model
training but for online evaluation), the process can be stopped before the error starts increasing. In the
thousands of experiments, we determined that, for the MEISR algorithm with 96 individuals in the
population, the safe number of epochs, which always prevented over-fitting and which was high
enough to train the model properly can be expressed as:

E = ¢ - log(N), (19)

where N is the number of instances in the training set T, ¢y = 8 for binary instance selection and ey = 24
for real value instance weighting. For example, this gives 20 epochs for 300 instances and 34 epochs for
30,000 instances for binary instance selection. Thus, this can be also used as an early stopping criterion,
especially that the process proved highly repeatable. This criterion has an additional advantage that it
allows using all available instances for the original training set and thus achieving the best possible



Entropy 2018, 20, 746 13 of 34

selected subsets. On the other hand, controlling the error on a validation set can allow for more
training epochs and thus better model adjustment. Based on the experiments, we can conclude that
the stopping criterion given by Equation (19) more frequently allowed for better results, especially
for smaller datasets (where the difference between the validation and test set was high) and also the
process was frequently faster.

2.7. Pseudo-Code of the MEISR Algorithm

The pseudo-code in Algorithm 1 shows the instance selection process. NSGA-II uses the basic
operations of the standard genetic algorithm: crossover and mutation, but, additionally, it utilizes
a mechanism to generate a wide Pareto front (the solutions situated on the Pareto front are called
non-dominated solutions) by calculating the so called crowding distance [9] between the solutions on
the fronts (line 19) and uses it to favor the solutions that are far apart from other ones (line 20).

Algorithm 1 Multi-objective evolutionary instance selection

Input: The original data set T

Output: F - F reduced non-dominated training sets S;

1: calculate and sort the distance matrices for T

2. P := initialization(N) {population P contains P randomly reduced data sets S;}
3: evaluation(P) {calculate RMSE},, and compression for each S; in P}

4. F = fast_nondominated_sort(P, N)

5. crowding_distance(F)

6: while not StopCondition (epoch = E or validation RMSE grows) do

7
8

P’ = @ {new population P’ will contain children}
forp =1to P do

9: form =1to M do

10: parent(m) = select_parent(P)

11: crossover_point(m) = rnd(N)

12: end for

13: child(p) = new_individual (parent1, . . ., parentM)
14: P’ = P’ Uchild(p)

15.  end for

16:  evaluation gP’ ) {calculate compression and RMSEy},, using the distance metrices}
172 P=PUP

18:  F = fast_nondominated_sort(P,2N)

19:  crowding_distance(F)

20. P = selection(P,F)

21: end while

22: return F

3. Experimental Evaluation

This section presents the experimental evaluation of the MEISR algorithm. The experimental
process is presented in Figure 3. To provide comprehensive results, the algorithm is evaluated with
prediction models (regressors) that belong to three different groups of models, regarding the response
to instance selection (1-NN, k--NN, MLP neural network). Finally, a comparison with several other
instance selection methods is presented. Most of the analysis is based on the relative RMSE; (a ratio
of RMSE after instance selection to RMSE before instance selection) because our focus here is not to
find the best predictive model, but to evaluate how much the performance of the given model will
differ after applying instance selection. However, for a reference, we also present the absolute values
of RMSE. The dataset properties are presented in Table Al. The experimental results are presented in
Tables A2-A14, explained in Figure 2 and its description and summarized in Figure 4.
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3.1. Data Sets

In case of instance selection, we never know the best solution because it is an NP-hard problem,
where trying the number of all possible combinations from sets of thousands of instances is out of
accessible computational resources (the number of 5000 combinations from 10,000 instances is about
10%010 and even the number of 500 combinations from 1000 instances is about 103%°). Thus, we cannot
use a dataset with the best results known and see how much we approached this. To ensure reliable and
unbiased results, we used the standard benchmark datasets from the KEEL Repository [55], as shown
in Table Al. The output values were standardized in the experiments to enable us to evaluate and
compare the results better.

3.2. Experimental Setup

The experimental setup is shown in Figure 3. We conducted the experiments using our own
software written in C# language. Very detailed experimental results and the software source code can
be found in the supplementary resources at kordos.com/entropy2018. The interested reader can find much
more information there than can fit into this paper and replicate the experiments using our software.
The experimental process is presented in Figure 3.

10-fold crossvalidation

Training Test
NSGA-II based obtain the F points results
instance selection of the Pareto front verification
for E epochs using usually between get the rmse,, on the
a population size E> 40 and 60 points |:> test set for each of
of P individuals (individuals) were the F training sets
evaluate the rmse,,, situated on the front represented by the
on the training set in the experiments F points

\ 4

average the F compression-rmse pairs over the crossvalidation
to get points on the average Pareto front, from which the
characteristics points are shown in the tables presenting the results

Figure 3. The experimental process.

Different predictive models display different sensitivity to instance selection. To capture a broad
range of model responses to instance selection and at the same time to keep the paper length within
a reasonable limit, we carefully chose three models, where each of them is a representative of one
model group regarding the sensitivity to instance selection.

The 1-NN algorithm is very sensitive to a change of single neighbor, as the prediction is based on
that only neighbor and for this reason it is strongly influenced by instance selection. K-NN with higher
k is less sensitive to a single neighbor change and thus the instance selection influences the RMSE;s; to
a lower degree than in 1-NN. The distance measures used for the k-NN algorithm are described in
details in Section 2.3 and the optimal k values in Table AT.

There is also a group of predictive models, which base the prediction results (function
approximation) on a broad neighborhood and thus their RMSE;; is much less dependent on instance
selection; however, instance selection strongly accelerates the learning process. We chose an MLP
neural network as a representative of this group, as it is one of the most popular models. We used
a network with a typical structure for regression problems: one hidden layer with hyperbolic tangent
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transfer functions and one neuron in the output layer with the linear transfer function. The hidden
layer consisted of six neurons if the number of attributes was below 12 and 12 neurons otherwise and
was trained with the VSS algorithm [56] for 15 iterations (as this algorithm does not require more
iterations). We also trained it with the well-known Rprop algorithm [57] for 60 epochs and the obtained
results were almost the same as for VSS (the differences were statistically insignificant with t-test and
Wilcoxon test), thus we do not report them here.

As the best results can be obtained if the evaluation model within instance selection is the same
as the final predictive model [24], we used the same models at both positions, with the exception of
when the final model was an MLP neural network. In this case, the evaluation model within instance
selection was k-NN with optimal k because of the speed of the solution and the fact that an MLP
network response to instance selection is closer to the response of k-NN with optimal k than to that
of 1-NN.

We were able to find in the literature two papers suitable for comparison ([4,25], which have been
presented in Section 1.2), which considered instance selection for regression problems and presented
the results on a set of several datasets, reporting the obtained compression and RMSE or 72 correlation.

In [4], the Pareto front was used. Since the experiments were conducted on most of the same
datasets from the Keel Repository using the optimal k in k-NN, we used the detailed results from
the online resources to that paper and performed the comparison. There were eight methods in
this paper and we included in comparisons the four best of them, namely: threshold-based CNN
ensemble (TE-C), threshold-based ENN ensemble (TE-E), discretization-based CNN ensemble (DE-C),
discretization-based ENN ensemble (DE-E) and compared with our MEISR method.

In [25], the results were presented only for a single point with 8-NN for each dataset. We obtained
these from the author’s detailed experimental results, which were also performed on most of the same
datasets from the Keel Repository. Thus, we conducted the experiments with MEISR using 8-NN for
a comparison with their results and measured the output additionally in r? correlation because that
measure was used in the DROP3-RT method evaluation. Four methods were presented in this paper
and DROP3-RT was the best one, so we included only DROP3-RT in the comparison with MEISR.

All the tests were performed using two testing procedures. The first one was 50% holdout, where
randomly chosen 50% of instances were used for training and the remaining instances for testing (in
case of odd instance number, the last instance was randomly assigned to one of the sets). The tests
were performed 10 times with different random instances chosen for the test and training set each time.
The average results over the 10 tests are reported. The reason of repeating this procedure 10 times
is based on the recommendations that an experimental design should provide a sufficiently large
number of measurements of the algorithm performance and, based on many analyses, 10 experimental
measurements is the recommended standard [58,59].

The second procedure was a standard 10-fold cross-validation [59]. In this case, the dataset
was first randomly divided into 10 parts with an equal number of instances (or almost equal it the
instances cannot be divided equally into 10 parts). Then, the 10 measurements were performed; each
of the 10 times a different part of the data was selected as a test set and the remaining nine parts as
a training set.

In both cases, we reported the final goals of instance selection: the average RMSE over the 10 test
sets and average retention over the 10 training sets.

The two most widely used statistical tests for determining if the difference between the results of
two models over various datasets is non-random are the paired t-test and Wilcoxon signed-ranks test.
The t-test assumes that the differences between the two compared random variables are distributed
normally and is also affected by outliers which may decrease its power by increasing the estimated
standard error. The Wilcoxon signed-ranks test does not assume normal distributions and is less
influenced by outliers. However, when the assumptions of the paired f-test are valid, it is more
powerful than the Wilcoxon test [60]. We used both of them and, in each case, both of them equally
indicated the significance of the difference for the standard p-value of 0.05.
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The standard deviations of the RMSE and retention in the experiments can be found in the online
supplementary resources. We do not report them here to save the space because they are not used by
the statistical tests, either by any other analysis.

3.3. Experimental Results and Discussion

The experimental results are summarized in Figure 4 (the figure presents the results in 10-fold
cross-validation, but the results in 50% holdout were very similar). The numerical results for
both testing procedures 50% holdout and 10-fold cross-validation are placed in the tables, where
Table A2 summarizes all the results. The reduction (compression) is obviously independent of the
final prediction model because the model is not used during the instance selection. However, RMSEtst
depends on the final prediction model.

The average influence of instance selection on the results in both testing procedures: 50% holdout
and 10-fold cross-validation was very similar, in spite that the absolute RMSE values were higher
in 50% holdout due to a smaller training set size. The differences were usually below 1% and
statistically insignificant according to Wilcoxon test. There were bigger differences between particular
datasets, especially between the smallest ones, but over all datasets the average change of RMSE was
comparable (¥1/r0, r2/70, #,,3,, /r0). Thus, it can be said that the MEISR algorithm performed equally
well in both testing procedures. There were only bigger differences in the retention at the point c3—on
average, the retention was higher by 11% in 50% holdout. This can be explained by the fact that in 50%
holdout there are fewer instances in the original training set (50% vs. 90%), and as at the point c2 the
instances are sparse and higher percentage of them must remain to allow sufficient instance density to
train the model. The differences in c(r,,;,) can be bigger because, at that point, the Pareto Front is very
flat and very little change in RMSE causes a much bigger change in retention.

The biggest improvement in terms of RMSE;; was observed for 1-NN as the final model
(Tables A3 and A4), where the average RMSE;; decrease was about 3.5% for average retention 62%
and 8.6% for average retention 76%.

In case of k-kNN with optimal k (Tables A5 and A6), on average, lower RMSE;s; was obtained on
the original uncompressed data than at point c1. However, at the point ¢3 with an average retention
rate 85% we were able to reduce RMSE;s; on average by 1.5%.

When the final prediction model was an MLP neural network, on average, the RMSEtst decreased
by 0.8% at c1 and by 2.5% at rmin (Tables A7 and A8). At the point c2 (with the strongest compression),
the increase of the RMSEtst was about three times lower than for 1-NN and k-NN. Thus, the conclusion
is the MLP neural network is much less sensitive to instance selection. However, the unquestionable
benefit of instance selection, in this case, was a reduction of data sizes and the shortening of the
network learning process and thus giving the chance to try many different network configurations
in a limited time. Nevertheless, as we have already mentioned, further RMSEtst decrease could be
improved by using the MLP network also as the evaluation algorithm on the training set during the
evolutionary optimization at the cost of much higher computational complexity.

The real-value instance weighting (Tables A9 and A10) gave better results (lower Pareto front)
only in two areas: for very high compression and for noisy datasets, while, in all the other cases, binary
instance selection was better.

The MEISR method outperformed the four ensemble based methods: threshold-based CNN
ensemble (TE-C), threshold-based ENN ensemble (TE-E), discretization-based CNN ensemble (DE-C),
discretization-based ENN ensemble (DE-E) for the two retention values of 0.5 and 0.25, for which we
run the tests (see Table A11 and A12).

As we had to chose a single point from the Pareto front for comparison with the DROP3-RT
method, in a case that we could not find a point with lower 1-r? and stronger compression, we decided
to always use a point with stronger compression, even if the 1-r* (and RMSE) would be higher (see the
results in Table A13 and A14).
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Comparing with other instance selection methods, the MEISR method allowed for obtaining
significantly better results than all the other methods. Only for the largest datasets, the RMSE obtained
with DROP3-RT was in several cases lower, but the compression of MEISR was stronger. The statistical
tests can be found in Table A15.

3.4. Information Distribution, Loss Functions and Error Reduction

As mentioned in the introduction, the entropy used as a measure of information can increase after
instance selection in classification tasks and some analogy exists for instance selection for regression
problems. Unlike in classification problems, differential entropy used for continuous data (Equation (2))
can also be negative, which means that the information contained in the data is small (which can be
thought of as if 27 is small, then H is negative) [7]. However, unlike only decision boundaries in
classification, in regression, each point of the data space matters. For that reason, to assess the instance
selection performance in regression, a measure that can show the detail differences between closely
located points of the data space will be preferred. Namely, we need to know how well one point can
be represented by another closely located point.

Several such measures can be used. The first one is cross entropy, which identifies the difference
between two probability distributions P and Q. It measures the average number of bits needed to
identify a point from the set P, if a coding scheme from another set Q is used. Cross-entropy loss
increases when the predicted class frequently differs from the actual label. For discrete data, cross
entropy can be written as:

CE=-Y"p(yi)logq (). 20)

For continuous data, cross entropy can be defined per analogy as

CEc = — /Y p (y)logq (y)dy. (21)

However, unlike in classification, in regression problems, we do not usually know the probability
distributions. As cross entropy is used as a loss function in machine learning, other loss functions can
also be useful to identify the difference between the two distributions. If the difference is high, we can
assume that the data contains much noise. In addition, indeed the experimental evaluations confirmed
this assumption, as in this case instance selection allowed for significantly decreasing the RMSE;s; of
the final predictor.

In regression tasks, the most common loss function is root mean square error (RMSE). Since this
measure was used in the optimization, we will also use it to show the dependencies. The loss functions
r0 for 1-NN and the relative RMSEs; (r1/10) obtained for retention = cl are shown in Figure 5, where
r0 is the RMSE;s; without instance selection and 1 is the RMSE; obtained for compression c1.
The Pearson correlation coefficients between these variables were —0.782 for 1-NN and —0.728 for
k-NN with optimal k.

We also observed that the optimal k on the selected subset was frequently different than before
instance selection, and it tended to converge to the range of 5 to 7. That is, if the optimal k was 2 before
instance selection it may increase after and if it was 11 before it is more likely to decrease. It can be
explained, as after the selection fewer instances remained in the dataset, so the distances between them
were bigger and frequently the previous closest neighbor of the examined instance no longer existed
and thus it had to be replaced by the average of some further still existing instances. On the other
hand, a high value of the optimal k is characteristic for noisy datasets, as an average value of several
neighbors is needed to mask the noise. The correlation is shown in Figure 5. Instance selection removes
the outlier and noisy instances, thus no longer so many neighbors are required to mask the detrimental
effect of noise. Therefore, in the cases, where the optimal k was above 11, we used k = 11 because
otherwise the optimal k would decrease anyway during the instance selection process and starting the
optimization with k = 11 allowed for obtaining lower RMSE;;, and RMSE;s; on the selected subset.
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The dependency between 0 for 1-NN and the k value that was optimal on the original datasets (orgK
in Table A1) characterized by correlation coefficient 0.844 is also shown in Figure 5.
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Figure 5. Left and middle: dependency between loss function RMSE(1-NN) and relative RMSEs;
(r1/70) for retention c¢1. MEISR with 1-NN inner evaluator and 1-NN final regressor for retention c1
(left), MEISR with k-NN inner evaluator and k-NN final regressor center) and k = optimal k. Larger and
darker circles stand for datasets with higher number of instances. Right: dependency between optimal
k and RMSE;;. Darker and bigger points represent larger datasets.

3.5. Computational Complexity

In this case, contrary to popular belief, the evolutionary algorithm based solution does not have
to be more computationally expensive than the non-evolutionary ones.
The MEISR instance selection process can be decomposed into two steps:

1. The first step—calculating the distance matrices (see Section 2.3) has the complexity O(n?).
The second step—running the evolutionary optimization has the complexity O(nlogn)—because
of the increasing number of epochs with dataset size.

One operation in the second step takes longer than in the first step. For small datasets, the second
step is dominant, but, for the big ones, the first step. The measurements showed that for 900 instances
the first step took about 10% of the total time, but, for 36,690 instances, it took about 65%.

Most of the non-evolutionary instance selection algorithms must also calculate the distance
matrix or other equivalent matrix. Their complexity is between O(n?) (ENN, RHMC, ELH) and O(n%)
(DROP1-5, GE, RNGE) [22]. We really observed that, for big datasets, the instance selection time with
DROP3 grows much faster than with MEISR.

In the first step, the distances between each instances in the training set are first calculated in O(n?)
and then they are sorted in O(nlogn), so the complexity is O(n?)—the higher of the two. The time
spent on calculating the distance matrix also grows with the number of attributes.

The second step consists of several operations. Calculating the fitness function has the complexity
O(n) because the output value of 7 instances must be obtained, where n = N is the number of instances
in the original training set. Obtaining the output value requires reading on average k non-zero positions
from sorted output value arrays, where k is the number of nearest neighbors in the k-NN algorithm,
which assuming a reduction rate of 50% requires reading 2k entries and calculating the average of
them. The time spent in this step grows with the number of k, but much slower than linearly because
also other operations are performed in this step, which do not depend on k, or depend but weaker than
linearly, as crossover, mutation, and selection. The proportions of time spent at each step depend on
particular software implementation. The experimental measurements confirmed that the complexity
of the step can be considered O(nlogn).

In a practical software implementation, there is also a third-factor consuming time: the constant
operations independent on the data, as calling functions, creating objects, etc. This factor is most
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significant with very small datasets and this is the reason that the times per one instance (two last
columns in Table A16) are higher for the smallest dataset than for some of the following datasets.

Figure 6 shows the dependency of the MEISR running time on the number of instances (left)
for 1-NN and k-NN with optimal k and the percentage of the running time used to calculate the
distance matrix used by k-NN. The two points marked as “85a” denote the tick dataset, which has
85 attributes (more than other datasets) and, for that reason, there is so high cost of calculating the
distance matrix for this case. The measurements were performed using our software (available from
the online supplementary resources) on a computer with two Xeon E5-2696v2 processors. Detailed
values can be found in Table A16).
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Figure 6. Left: MEISR running time as a function of number of instances in the original training dataset.
Right: Percentage of MEISR running time used to calculate the distance matrix used by k-NN. Light
circles denote 1-NN as the inner evaluator and dark circles k-NN with optimal k.

3.6. Performance Metrics for Multi-Objective Evolutionary Algorithms

To measure the behavior of the NSGA-II algorithm used within the instance selection process,
we provide the performance metrics for multi-objective evolutionary algorithms for binary instance
selection with k-NN with optimal k (for other sets of experiments, the metrics were very similar).

However, first, it must be emphasized that the metrics express only the performance of the
evolutionary algorithm in terms of data reduction and RMSE,;, on the training set and not of the
whole process of instance selection, where the final objectives are data reduction and RMSEs; on the
test set. Second, as it was discussed that we had to stop the optimization early to prevent over-fitting
and, for that reason, we could not achieve performance metrics that were as good as could be obtained
if the target objectives would be optimized directly.

We calculated the following popular metrics: Ratio of Non-dominated Individuals—RNI [61],
Inverted Generational Distance—IGD [62] (which expresses closeness of the solutions to the true
Pareto front), Uniform Distribution—UD [61] (which expresses distribution of the solutions, with the
o for UD metric set to 0.025), Maximum Spread—MS [63] (spread of the solutions) and HyperVolume
indicator—HV [64,65] (which applies to several of listed categories, with a reference point for HV
metric set to +5%).

The obtained values of metrics can be summed up as follows:

o  The RNI values are high, average 0.560, which means that more than 50% of the population
formed a Pareto front.

e  The IGD values are low, average: 0.014 (lower = better), which means that the results were always
close to the optimal Pareto front.

o  The UD values are low, average: 0.234 (lower = better), which means that most of the solutions
were properly spread.
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The MS values are high, average: 0.833 (higher = better), which means that obtained Pareto fronts
are wide in range in comparison to optimal Pareto front.

The average HV values are 0.039, which means that the values of RMSEy;, even for high
compression, did not increase significantly, which is good because lower RMSE is preferred
and the very low compression is not present in the results, which is also good because the desired
RMSE has already been achieved with stronger compression and thus HV covers a satisfactory
part of the objectives’ area.

4. Conclusions

We presented and experimentally evaluated an instance selection method applied for regression

tasks, which uses the k-NN algorithm for error evaluation a multi-objective evolutionary algorithm
(NSGA-II in the current implementation) for directing the search process. Different aspects of the

solution were discussed, many improvements were proposed and different tests were performed.

The following main conclusions can be drawn from this work:

A key advantage of the MEISR method is that we obtain several solutions from the Pareto front,
and can choose one of them depending on our preferences of the RMSE-compression balance.
As the solutions create a Pareto front, each of them is best for a given balance between RMSE and
compression, as explained in Section 2.2. If someone is not sure which solution to choose, then
we suggest the solution with the lowest RMSE on the training set (RMSE,) for the purpose for
machine learning and the solution (c2,72) for analyzing the properties of the data, as explained in
Figure 2 and in the text following it. This is valid for every dataset, as this is the characteristic
feature of the multi-objective optimization itself and it is not dependent on the dataset properties.
k-NN is very well suited as the inner evaluation algorithm because of its speed—the distance
matrix has to be calculated and sorted only once and then the prediction is extremely fast. This
makes the computational cost of the method comparable to the cost on non-evolutionary instance
selection algorithms (and some of them, as the DROP family have even higher cost), while the
results are usually better (see Section 3.5, Figure 6 and Table A16 for details).

We were frequently able to preserve all the useful information in the dataset for the purpose of
predictive model performance while reducing it size by about one third (see columns 4 and 5 in
Tables A3—-A8 and Figure 4).

Proper initialization of the population accelerates the instance selection process and helps to find
the desired solutions (see Section 2.4).

The best results in terms of RMSE-compression balance can be obtained if the inner evaluation
algorithm is the same as the final predictor [24]. For that reason, we used 1-NN as the internal
regressor when 1-NN was used as the final prediction model and k-NN with optimal k as the
internal regressor when k-NN with optimal k was used as the final prediction model.

Although our previous experiments showed [24] that when an MLP neural network as the final
predictor better results were achieved if also the internal regressor was an MLP network, it would
be very time-consuming, especially for bigger datasets, as the MLP network has to be trained
each time (at least on the part of the data close to the currently evaluated point). Thus, we decided
to use k-NN with optimal k as the internal regressor for the MLP neural network.

We noticed that there are two areas where real-value instance weighting can provide better results
than binary instance selection: for very high compression, where it was usually able to achieve
lower RMSE and for noisy datasets, which required high k value in k-NN (see Table A10).

The obtained RMSE¢s with the k-NN algorithm for a given point on the Pareto front (for a given
compression) can be approximately assessed by the measures of how well one instances can be
substituted by other, e.g., the loss functions of cross entropy or RMSE. The lower values of the
loss function correspond with lower possible decrease RMSE;s;.
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e The MEISR method achieved better results than the other 12 instance selection methods for
regression, for which we were able to obtain the experimental results to perform the comparison
(see Tables A12 and A14)

o  We can observe that the “front” is less steep for the test set than for the training set. This is the
compression strength grows and the RMSE increases on average slower on the test set than on the
corresponding training set solutions (when moving from right to left in Figure 2, the green points
are getting closer to the orange ones). This allows for choosing a point with higher compression,
as the RMSE;s; on that point is likely to grow less than RMSEy,,

o  There were not significant differences between the algorithm performance tested with 50% holdout
and 10-fold cross-validation. Only retention at the point c2 was on average higher 11% in the first
case, as there were already fewer instances in the original training set.

We have also noticed two areas of possible improvement and we are going to investigate them in
our future work:

e  Asingle front covered all solutions of interest in many cases, but not in all. One of the reasons is
the tendency of multi-objective evolutionary algorithms to not cover the areas on the ends of the
front, as was discussed and some solutions were proposed i.e., in [66,67]. The second reason is
that the front extends gradually during the optimization and, to prevent over-fitting, we must
stop the instance selection process before the front is fully extended.

e  Experimental comparison with other instance selection methods showed that, for the small and
medium size datasets, the MEISR method has the greatest advantage over other methods (see
Tables A12 and A14). However, for the largest datasets, while still the compression was always
stronger, the obtained 1 — 2 began to became similar to that of DROP3-RT method. Although
MEISR optimized RMSE and 1 — r? was used only for comparison and the relation between
RMSE and 1 — 72 is not linear, using 1 — r? as the objective on the training set would most
likely improve the results. This would be true also for the smaller datasets and the tendency
would remain. A well known issue here is that, for genetic algorithms with longer chromosomes,
the convergence is more difficult. Thus, we are going to investigate the possibilities of alternative
encoding of the instances to limit the chromosome length.

To summarize: the presented method of instance selection in regression tasks has proved to
work effectively and has several advantages. Thus, we believe it can be helpful for researchers and
practitioners in industry. Moreover, there is probably still room for further improvements.
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Appendix A. Detailed Experimental Results

This section contains tables with dataset properties and detailed experimental results.
The following symbols are used:

o 10,11, 12, ryyi,—absolute RMSE;; (see Figure 2 for details),
o 11/10,r2/10, 1y, /r0—relative RMSE (see Figure 2 for details),
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e cl, c2—retention (see Figure 2 for details),

e  c(r)—retention for specified r,

o 7yin = min(r0,r1,r2,r3)—the lowest obtained RMSEy,

o JEA—Inner Evaluation Algorithm,

e  FPA—Final Prediction Algorithm,

e  BIS—Binary Instance Selection,

e  RIS—Real-value Instance Selection,

e  Dr2—relative 1 — 2 with DROP3-RT,

e  Mr2—relative 1 — r2 with MEISR,

e  Dcl—retention rate with DROP3-RT,

e  Mcl—retention rate with MEISR,

e TE-C, TE-E, DE-C, DE-E, MEISR (in Tables A11 and A12)—RMSE;s; for these algorithms,
e  10-CV—10-fold cross-validation,

o 50%H—50% holdout; (50% training set, and 50% in test set)—average of 10 runs.

Results for each experimental case, averaged for all datasets, are presented the Table A2 and the
statistical significance test results in Table A15. Results for particular configurations fo the MEISR
algorithm are presented in Tables A3 — A10. Result comparison with other algorithms is presented in
Tables A11, A12, A13 and Al4.

The calculation times is and its particular components are presented in Table A16.

Table Al. Datasets used in the experiments and their properties: number of instances (Ints.), number
of attributes (Attr.), the optimal k - the k in k-NN that gives the lowest RMSE;; (orgK) and the k used
in the experiments as optimal k (optK) for the reason explained further in the text.

Dataset Inst. Attr. orgK optK

mach. CPU 209 6 1 1
baseball 337 16 7 7
dee 365 6 7 7
autoMPG8 392 7 6 6
autoMPG6 392 5 4 4
ele-1 495 2 11 11
forestFires 517 12 50 11
stock 950 9 3 3
steel 960 12 4 4
laser 993 4 3 3
concrete 1030 8 4 4
treasury 1049 15 3 3
mortgage 1049 15 2 2
friedman 1200 5 7 7
wizmir 1461 9 7 7
wankara 1609 9 9 9
plastic 1650 2 3 11
quake 2178 3 50 11
anacalt 4052 7 2 2
abalone 4177 8 13 11
delta-ail 7128 5 17 11
puma32h 8191 32 21 11
compactiv 8192 21 2 2
delta-elv 9516 6 35 11
tic 9822 85 50 11
ailerons 13,750 40 10 10
pole 14,998 26 4 4
elevators 16,598 18 8 8
california 20,640 8 9 9
house 22,784 16 11 11
mv 40,767 10 9 9
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Table A2. Averaged results for experiments presented in Tables A3-A10.

IEA FPA Validation 10 1 /10 c1 r2  r2/r0 2 Details
1-NN (BIS) 1-NN (BIS) 50%H 0.604 0.537 0955 0.619 0.646 1.176 0.246 see Table A3
1-NN (BIS) 1-NN (BIS) 10-CV 0.573 0.503 0960 0.627 0.594 1.175 0.214 see Table A4
k-NN (BIS) k-NN (BIS) 50%H 0476 0486 1.050 0.505 0.516 1.163 0.249 see Table A5
k-NN (BIS) k-NN (BIS) 10-CV 0446 0453 1.056 0.497 0487 1203 0.227 see Table A6
k-NN (BIS) MLP 50%H 0427 0424 0994 0505 0458 1.076 0.249 see Table A7
k-NN (BIS) MLP 10-CV 0.393 0.391 0.992 0.497 0.418 1.068 0.227 see Table A8
k-NN (RIS) k-NN (RIS) 50%H 0.476 0.496 1.116 0.557 0.555 1.307 0.185 see Table A9
k-NN (RIS) k-NN (RIS) 10-CV 0.448 0.465 1.113 0.532 0.508 1.282 0.165 see Table A10

Table A3. Experimental results for MEISR with 50%H, IEA: 1-NN (BIS), FPA: 1-NN (BIS).

Dataset 10 rl 11/r0 cl r2 r2/10 2 Ymin  Ymin/t0  c(tiin)
mach. CPU 0450 0517 1.149 0459 0.541 1202 0.249 0428 0.951 0.910
baseball 0.758 0746 0984 0.609 0.789 1.041 0.668 0.746  0.984 0.609
dee 0561 0502 0.894 0433 0561 0999 0.532 0.502 0.894 0.433
autoMPG8 0478 0450 0.942 0.519 0.509 1.065 0.199 0450 0.942 0.519
autoMPG6 0464 0464 1.001 0.653 0.691 1491 0.203 0451 0.973 0.925
ele-1 0690 0670 0970 0.628 0.708 1.025 0.596 0.670 0.970 0.628
forestFires 1.669 0.899 0.539 0413 0.902 0.541 0.201 0.899 0.539 0.413
stock 0.136 0.158 1.162 0450 0.217 1596 0.168 0.136  1.000 1.000
steel 0359 0404 1.124 0480 0416 1.158 0.391 0.359  1.000 1.000
laser 0293 0312 1.064 0516 0.343 1.170 0.208 0.284 0.969 0.898
concrete 0.639 0677 1.060 0664 0.825 1.292 0.201 0.639 1.000 1.000
treasury 0.092 0.095 1.033 0.530 0.145 1576 0.180 0.090 0.978 0.902
mortgage 0.071 0.082 1.151 0453 0.112 1572 0.309 0.071 1.000 1.000
friedman 0.510 0467 0915 0.735 0.647 1268 0.156 0.467 0.915 0.735
wizmir 0.244 0.245 1.003 0.726 0316 1.293 0.192 0.244 1.000 1.000
wankara 0239 0229 0959 0727 0295 1236 0209 0.229 0.959 0.727
plastic 0.634 0518 0817 0719 0.608 0959 0.286 0.518 0.817 0.719
quake 1.349 1.124 0.833 0.723 1.348 0999 0.143 1.124 0.833 0.723
anacalt 0.263 0.272 1.036 0521 0.304 1.157 0.217 0.248 0.944 0.886
abalone 0900 0771 0857 0718 0926 1.029 0.185 0.771  0.857 0.718
delta-ail 0733 0.691 0943 0706 0.784 1.069 0.208 0.691  0.943 0.706
puma32h 1227 1.036 0.844 0716 1279 1042 0213 1036 0.844 0.716
compactiv. 0303 0344 1.135 0.396 0384 1267 0312 0303 1.000 1.000
delta-elv 0826 0709 0859 0719 0901 1.091 0.165 0.709 0.859 0.719
tic 1.348 1.111 0.824 0719 1349 1.001 0.189 1.111 0.824 0.719
ailerons 0.685 0.601 0878 0720 0.748 1.092 0.144 0.601 0.878 0.720
pole 0.271 0.288 1.061 0.716 0.371 1.367 0.205 0.271 1.000 0.925
elevators 0719 0.659 0916 0.719 0940 1307 0.171 0.659 0.916 0.719
california 0.681 0.612 0.899 0.716 0.766 1.125 0.163 0.612 0.899 0.716
house 0.893 0787 0.881 0.717 0983 1.101 0.199 0.787 0.881 0.717
mv 0.235 0.208 0.884 0.677 0.312 1.325 0.162 0.208 0.884 0.677
average 0.604 0537 0955 0619 0646 1.176 0.246 0.526 0.918 0.777
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Table A4. Experimental results for MEISR with 10-CV, IEA: 1-NN (BIS), FPA: 1-NN (BIS).

Dataset 10 rl r1/r0 cl r2 r2/r0 2 Ymin  Tmin/t0  C(Tmin)
mach. CPU 0.351 0407 1.159 0385 0426 1212 0216 0.351 1.000 0.914
baseball 0.727 0.639 0.878 0.662 0.654 0.899 0.559 0.639 0.878 0.662
dee 0.555 0450 0.811 0.652 0.510 0918 0.401 0.450 0.811 0.652
autoMPG8 0429 0387 0904 0.685 0483 1.127 0.155 0.387 0.904 0.685
autoMPG6  0.407 0424 1.042 0.698 0506 1.242 0.150 0.401 0.985 0.920
ele-1 0.689 0.640 0929 0.678 0.666 0.966 0.619 0.640 0.929 0.678
forestFires 1.548 0.768 0496 0.344 0.796 0514 0.191 0768  0.496 0.344
stock 0.112 0.132 1175 0.629 0.190 1.692 0.155 0.112 1.000 0.918
steel 0.348 0317 0911 0469 0402 1154 0369 0317 0911 0.469
laser 0.231 0276 1.192 0467 0306 1.324 0.221 0.231 1.000 0.911
concrete 0533 0595 1.117 0.696 0.768 1441 0.155 0.533  1.000 1.000
treasury 0.069 0.087 1259 0.662 0.118 1.693 0.159 0.069 1.000 0.916
mortgage  0.054 0.069 1.284 0545 0.096 1784 0287 0.054 1.000 0.926
friedman 0462 0.443 0959 0.692 0595 1288 0.148 0443 0.959 0.692
wizmir 0230 0211 0919 0693 0301 1311 0.160 0.211 0919 0.693
wankara 0225 0218 0966 0.692 0289 1285 0.160 0.218 0.966 0.692
plastic 0.617 0543 0.879 0.682 0.607 0983 0.212 0.543 0.879 0.682
quake 1.344 1.151 0.856 0.685 1.349 1.003 0.157 1.151 0.856 0.685
anacalt 0.227 0227 1.000 0449 028 1260 0.186 0.222 0977 0.887
abalone 0915 0773 0.845 0.685 0.880 0.962 0.155 0.773 0.845 0.685
delta-ail 0.716 0.628 0.877 0.685 0.738 1.031 0.159 0.628 0.877 0.685
puma32h 1212 1.024 0.845 0.689 1212 1.000 0.161 1.024 0.845 0.689
compactiv. 0254 0299 1.177 0429 0297 1.172 0.237 0235 0926 0.847
delta-elv  0.828 0.705 0.851 0.685 0.837 1.010 0.157 0.705 0.851 0.685
tic 1.366 1.130 0.827 0.685 1.330 0973 0.156 1.130  0.827 0.685
ailerons 0.657 0584 0.889 0688 0709 1.079 0.160 0.584 0.889 0.688
pole 0244 0258 1.055 0.686 0.353 1443 0.157 0.244 1.000 0.922
elevators  0.686 0.638 0.930 0.687 0.764 1.114 0.162 0.638 0.930 0.687
california  0.654 0596 0911 0.686 0.718 1.099 0.158 0596 0911 0.686
house 0872 0775 0.888 0.684 0926 1.061 0.159 0.775 0.888 0.684
mv 0210 0.197 0941 0686 0.291 1387 0.158 0.197 0.941 0.686
average 0573 0503 0960 0.627 0.594 1.175 0214 0.493 0.910 0.740

Table A5. Experimental results for MEISR with 50%H, IEA: k-NN (BIS), FPA: k-NN (BIS).

Dataset r0 rl r1/r0 cl 2 r2/r0 2 Ymin  Ymin/t0  c(Tin)
mach. CPU 0450 0517 1149 0437 0541 1202 0.249 0.441 0.980 0.877
baseball 0.648 0.671 1.035 0409 0718 1.108 0.287 0.648  1.000 0.409
dee 0472 0454 0962 0378 0462 0979 0314 0.442 0.937 0.912
autoMPG8 0422 0412 0976 0428 0481 1.140 0.299 0.407 0.964 0.936
autoMPG6 0411 0.398 0.968 0489 0452 1100 0261 0377 0917 0.939
ele-1 0.584 0562 0962 0409 0589 1.009 0.321 0562 0.962 0.409
forestFires 0.901 0.847 0.940 0.324 0.870 0966 0230 0.847 0.940 0.324
stock 0.129 0.148 1.147 0542 0.168 1302 0.293 0.124 0.961 0.962
steel 0364 0391 1.076 0.481 0490 1.348 0.247 0.364 1.000 0.912
laser 0.274 0284 1.038 0472 0324 1.184 0.239 0.258 0.943 0.941
concrete 0576 0.631 1.096 0497 0.687 1.193 0.205 0.576 1.000 0.922
treasury 0.079 0.086 1.093 0502 0.126 1594 0.255 0.079 1.000 1.000
mortgage 0.065 0.082 1258 0.517 0.137 2101 0.172 0.065 1.000 0.941
friedman 0375 0410 1.092 0506 0490 1.305 0200 0.375 1.000 0.899
wizmir 0.199 0.215 1.081 0384 0.225 1.131 0.205 0.199 1.000 1.000
wankara 0.185 0.199 1.076 0503 0224 1211 0.210 0.185 1.000 1.000
plastic 0463 0460 0994 0491 0458 0989 0.211 0.460 0.994 0.491
quake 1.024 1.008 0984 0.621 1.030 1.005 0215 1.008 0.984 0.621
anacalt 0242 0254 1.052 0484 0286 1.184 0.260 0.242 1.000 1.000
abalone 0.713 0704 0987 0.655 0721 1.011 0.197 0.704 0.987 0.887
delta-ail 0.582 0.588 1.010 0.676 0.688 1.181 0.187 0.582  1.000 0.905
puma32h 0910 0918 1.008 0.583 0932 1.024 0220 0910 1.000 1.000
compactiv.  0.281 0.316 1125 0426 0.337 1.200 0.243 0.281 1.000 1.000
delta-elv 0.626 0.624 099 0.687 0.628 1.003 0.266 0.624  0.996 1.000
tic 1.011 0997 0986 0.683 1.007 099 0.224 0997 0.986 0.683
ailerons 0.522 0533 1.021 0523 0568 1.088 0.272 0.522  1.000 0.932
pole 0.244 0270 1.107 0516 0301 1.234 0.302 0.244 1.000 0.933
elevators 0586 0.604 1.030 0.534 0.643 1.097 0287 058  1.000 1.000
california 0548 0566 1.033 0.535 0446 0.814 0.299 0.548 1.000 0.948
house 0712 0.724 1.017 0566 0764 1.073 0.287 0.712 1.000 0.901
mv 0.160 0.198 1.236 0.384 0205 1280 0.267 0.160 1.000 1.000
average 0476 0486 1.050 0505 0516 1.163 0.249 0468 0.986 0.861

25 of 34
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Table A6. Experimental results for MEISR with 10-CV, IEA: k-NN (BIS), FPA: k-NN (BIS).

Dataset r0 rl r1/r0 cl 2 r2/r0 2 Ymin  Tmin/t0  c(tmin)
mach. CPU 0351 0370 1.053 0436 0410 1.168 0.213 0.339 0.964 0.852
baseball 0.584 0582 0998 0450 0.649 1.112 0.217 0.582 0.998 0.450
dee 0424 0427 1.008 0.403 0439 1.035 0.229 0418 0.986 0.928
autoMPG8 0.372 0401 1.078 0458 0.422 1.134 0.218 0.364 0.978 0.927
autoMPG6 0366 0.382 1.043 0424 0.393 1.074 0228 0351 0921 0.944
ele-1 0.584 0557 0954 0533 058 1.002 0.367 0.557 0.954 0.533
forestFires 0.864 0.725 0.839 0.340 0.726 0.840 0.162 0.725  0.839 0.340
stock 0.105 0.124 1.181 0486 0.145 1.38 0.340 0.104 0.990 0.954
steel 0.323 0330 1.022 0444 0421 1302 0.224 0.323 1.000 0.934
laser 0.204 0210 1.031 0435 0261 1280 0.208 0.195 0.955 0.926
concrete 0.521 0549 1.054 0488 0.648 1.244 0.193 0.521  1.000 0.929
treasury 0.058 0.077 1321 0486 0.103 1.768 0.234 0.058 1.000 0.927
mortgage  0.045 0.059 1304 0489 0.107 2387 0.156 0.045 1.000 0.923
friedman 0.340 0365 1.073 0472 0441 1.297 0.162 0.340 1.000 0.947
wizmir 0.178 0.188 1.060 0470 0231 1297 0.214 0.178 1.000 0.779
wankara  0.167 0.183 1.098 0497 0.220 1315 0.160 0.167  1.000 1.000
plastic 0.468 0.453 0969 0446 0466 0996 0.212 0453 0.969 0.446
quake 1.025 1.008 0.983 0.685 1.025 1.001 0219 1.008 0.983 0.685
anacalt 0.212 0215 1.013 0440 0282 1330 0.174 0.209 0.988 0.684
abalone 0.702 0709 1.011 0.682 0.750 1.068 0.158 0.688  0.981 0.801
delta-ail 0.560 0579 1.033 0.686 0.604 1.078 0.158 0.560 1.000 0.835
puma32h 0.896 0908 1.014 0461 0920 1.027 0.222 0.896 1.000 1.000
compactiv 0231 0280 1.209 0461 0286 1.238 0275 0231 1.000 1.000
delta-elv. 0.610 0.620 1.016 0.684 0.628 1.029 0225 0.610 1.000 1.000
tic 1.015 0.995 0980 0.684 1.011 0.9% 0.186 0.995 0.980 0.684
ailerons 0.504 0519 1.031 0473 0550 1.092 0.263 0.504 1.000 0.934
pole 0.214 0241 1.125 0491 0261 1219 0.307 0.214 1.000 0.947
elevators 0.559 0.581 1.040 0.448 0.622 1.112 0.226 0.559 1.000 1.000
california  0.527 0546 1.037 0488 0.571 1.083 0.332 0.527 1.000 0.944
house 0.687 0.707 1.029 0483 0.737 1.074 0276 0.687 1.000 0.894
mv 0.140 0.159 1.136 0492 0.183 1311 0.273 0.140 1.000 1.000
average 0446 0453 1.056 0.497 0487 1203 0227 0437 0.984 0.843

Table A7. Experimental results for MEISR with 50%H, IEA: k-NN (BIS), FPA: MLP.

Dataset r0 rl r1/r0 cl 2 r2/r0 2 Ymin  Ymin/t0  c(Tin)
mach. CPU 0457 0491 1.076 0.437 0570 1.247 0.249 0457 1.000 0.877
baseball 0.618 0.659 1.067 0409 0.763 1.235 0.287 0.618  1.000 0.409
dee 0439 0453 1.033 0.378 0500 1.141 0.314 0428 0976 0.912
autoMPG8 0366 0.343 0.937 0428 0432 1182 0.299 0366 1.000 1.000
autoMPG6 0.367 0.344 0938 0489 0416 1132 0.261 0344 0.938 0.939
ele-1 0.554 0512 0923 0409 058 1.056 0.321 0512 0.923 0.409
forestFire 1.084 1.026 0946 0.324 1.124 1.037 0.230 1.026 0.946 0.324
stock 0.195 0.190 0974 0542 0.198 1.011 0.293 0.190 0.974 0.962
steel 0.251 0219 0.872 0481 0.224 0.893 0.247 0.219 0.872 0.481
laser 0.204 0203 0994 0472 0203 0995 0.239 0.203 0.994 1.000
concrete 0407 0423 1.039 0497 0449 1.103 0.205 0.407 1.000 1.000
treasury 0.077 0.076 0985 0502 0.080 1.050 0.255 0.076 0.985 1.000
mortgage 0.070 0.069 0981 0.517 0.079 1.127 0.172 0.066 0.941 0.941
friedman  0.301 0.300 0.997 0506 0347 1.152 0200 0.298 0.989 0.899
wizmir 0.095 0.096 1.007 0384 0.099 1.042 0.205 0.095 1.000 1.000
wankara  0.100 0.098 0980 0503 0.102 1.023 0.210 0.096 0.961 0.843
plastic 0435 0437 1.004 0491 0442 1016 0.211 0435 1.000 0.491
quake 1.000 0.999 0999 0.621 1.054 1.054 0215 0999 0.999 0.621
anacalt 0223 0.199 0.891 0484 0.251 1.124 0.260 0.199 0.891 0.484
abalone 0.652 0.642 0984 0.655 0.646 0991 0.197 0.642 0.984 0.887
delta-ail 0554 0552 0997 0.676 0551 0.99 0.187 0.550 0.993 0.905
puma32h 0368 0406 1104 0583 0473 1286 0220 0.368 1.000 1.000
compactiv. 0.155 0.158 1.019 0426 0.164 1.055 0.243 0.155 1.000 1.000
delta-elv. 0.600 0.590 0982 0.687 0.614 1.022 0.266 0.588  0.980 0.910
tic 1.019 1.014 0995 0.683 1.052 1.033 0.224 1.014 0.995 0.683
ailerons 0414 0425 1.026 0.523 0447 1.080 0.272 0414 1.000 1.000
pole 0.241 0251 1.041 0516 0282 1.170 0.302 0.241  1.000 1.000
elevators  0.682 0.680 0.997 0.534 0.706 1.036 0287 0.677 0.993 0.922
california 0532 0531 0.998 0.535 0.550 1.034 0.299 0.532  1.000 1.000
house 0.712 0719 1.011 0566 0.728 1.023 0.287 0.712 1.000 1.000
mv 0.055 0.055 1.002 0384 0.055 1.008 0.267 0.055 1.000 1.000
average 0427 0424 0994 0.505 0458 1.076 0.249 0419 0979 0.835
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Table A8. Experimental results for MEISR with 10-CV, IEA: k-NN (BIS), FPA: MLP.

Dataset r0 rl r1/r0 cl 2 r2/r0 2 Ymin  Tmin/t0  c(tmin)

mach. CPU 0.348 0379 1.089 0436 0438 1261 0213 0378 1.000 1.000
baseball 0.626 0656 1.048 0450 0.750 1.198 0.217 0.643  1.000 1.000
dee 0.407 0412 1.012 0403 0470 1153 0229 0404 0.992 0.928
autoMPG8 0354 0.336 0948 0.458 0.421 1187 0.218 0.334 0.942 0.927
autoMPG6 0357 0330 0924 0424 0407 1141 0228 0326 0914 0.944
ele-1 0531 0488 0920 0.533 0.552 1.040 0.367 0486 0.917 0.533
forestFires 0.735 0.699 0.952 0.340 0.745 1.014 0.162 0.691 0.940 0.340
stock 0178 0171 0958 0.486 0.181 1.016 0.340 0.168  0.945 0.954
steel 0225 0198 0.882 0444 0199 0885 0224 019  0.872 0.934
laser 0.164 0.162 0988 0435 0.165 1.011 0208 0.160 0.975 0.926
concrete 0379 0386 1.017 0488 0416 1.097 0193 0.379 1.000 0.929
treasury 0.074 0.072 0970 0486 0.077 1.042 0234 0.072 0.968 0.927
mortgage  0.055 0.054 0975 0489 0.060 1.088 0.156 0.053  0.958 0.923
friedman  0.318 0.315 0.992 0472 0368 1.159 0.162 0.313 0.985 0.947
wizmir 0.085 0.086 1.013 0470 0.087 1.027 0.214 0.085 1.000 1.000
wankara 0.097 0.095 0978 0497 0.097 1.004 0.160 0.094 0.968 1.000
plastic 0437 0433 0990 0446 0434 0995 0212 0433 0.990 0.446
quake 1.000 0992 0.992 0.685 1.017 1.017 0219 0.992  0.992 0.685
anacalt 0201 0.181 0.898 0.440 0.220 1.096 0.174 0.180 0.894 0.684
abalone 0.651 0.650 0998 0.682 0.655 1.006 0.158 0.649  0.997 0.801
delta-ail 0552 0551 0997 0686 0555 1.005 0.158 0.548  0.993 0.835
puma32h 0338 0373 1103 0461 0433 1283 0222 0371 1.000 1.000
compactiv. 0152 0.155 1.018 0.461 0.158 1.042 0.275 0.153  1.000 1.000
delta-elv 0599 0598 0998 0.684 0.604 1.009 0.225 0.596  0.995 1.000

tic 1.017 1.017 1.000 0.684 1.068 1.050 0.186 1.011  0.993 0.684
ailerons 0.402 0409 1.018 0473 0418 1.041 0.263 0407 1.000 1.000
pole 0255 0265 1.038 0491 0303 1188 0.307 0.262 1.000 1.000

elevators 0344 0347 1.011 0448 0348 1.013 0.226 0347 1.000 1.000
california ~ 0.532 0.531 0.997 0488 0.532 0.999 0.332 0524 0985 0.944
house 0.710 0.714 1.005 0483 0.722 1.017 0276 0.710 1.000 1.000
mv 0.055 0.055 1.005 0492 0.056 1.009 0273 0.055 0.991 1.000
average 0393 0391 0992 0497 0418 1.068 0.227 0.388 0.974 0.880

Table A9. Experimental results for MEISR with 50%H, IEA: k-NN (RIS), FPA: k-NN (RIS).

Dataset 10 rl r1/r0 cl 2 r2/10 c2

mach. CPU 0450 0462 1.027 0402 0485 1.079 0.230
baseball 0.648 0.661 1.020 0.650 0.820 1.265 0.114
dee 0472 0471 0998 0429 0577 1222 0.148
autoMPG8  0.422 0460 1.090 0.525 0546 1295 0.166
autoMPG6  0.411 0.442 1.076 0.402 0.511 1.243 0.176
ele-1 0584 0569 0974 0533 0.596 1.020 0.184
forestFires 0.901 0.748 0.830 0490 0.791 0.878 0.151
stock 0.129 0.176 1361 0.753 0.225 1.746 0.364
steel 0364 0410 1127 0.657 0.502 1381 0.193
laser 0274 0330 1205 0484 0365 1.334 0.152
concrete 0576 0.659 1145 0622 0.784 1361 0.137
treasury 0.079 0.120 1523 0.541 0.165 2.093 0.180
mortgage  0.065 0.099 1524 0.749 0.152 2332 0.306
friedman 0375 0429 1.144 0.700 0.535 1.425 0.192
wizmir 0199 0215 1.081 0481 0274 1377 0.140
wankara 0.185 0.206 1.115 0.673 0.297 1.604 0.139
plastic 0463 0452 0975 0551 0.512 1107 0.223
quake 1.024 1.009 0985 0401 1.036 1.011 0.123
anacalt 0242 0399 1652 0504 0478 1978 0.233
abalone 0713 0.738 1.035 0.444 0.780 1.094 0.166
delta-ail 0582 0585 1.004 0475 0.630 1.081 0.180
puma32h 0910 0913 1.003 0.634 0960 1.055 0.151
compactiv. 0281 0303 1.079 0447 0.387 1379 0.105
delta-elv 0.626 0.639 1.020 0.556 0.670 1.070 0.150

tic 1.011 0961 0951 0524 1.002 0.991 0.125
ailerons 0522 0528 1.011 0437 0581 1.112 0.153
pole 0244 0307 1258 0615 0325 1332 0.135

elevators  0.586 0.578 0.985 0.723 0.660 1.126 0.099
california  0.548 0553 1.009 0577 0.568 1.037 0.124
house 0712 0746 1.048 0.699 0.781 1.097 0.304
mv 0160 0205 1279 0578 0.221 1380 0.494
average 0476 049 1116 0.557 0.555 1.307 0.185
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Table A10. Experimental results for MEISR with 10-CV, IEA: k-NN (RIS), FPA: k-NN (RIS).

Dataset 10 rl 11/r0 cl 2 12/10 c2
mach. CPU 0392 0.407 1.038 0.385 0.426 1.086 0.216
baseball 0.606 0.623 1.029 0591 0.753 1.244 0.110
dee 0424 0430 1.015 0403 0501 1.182 0.137
autoMPG8 0.364 0.403 1.108 0.499 0.480 1.320 0.160
autoMPG6  0.366 0.396 1.082 0.401 0.457 1.248 0.156
ele-1 0584 0562 0963 0489 0.575 0.985 0.178
forestFires 0.864 0.729 0.844 0456 0.732 0.847 0.126
stock 0.105 0.140 1338 0.689 0.181 1.729 0.371
steel 0323 0359 1110 0.665 0431 1.333 0.165
laser 0.204 0.243 1.193 0489 0.271 1.330 0.128
concrete 0521 0593 1.138 0.593 0.678 1.303 0.129
treasury 0.058 0.088 1503 0.531 0.118 2.015 0.159
mortgage  0.049 0.076 1554 0.682 0.109 2246 0.263
friedman 0.340 0.385 1.132 0.668 0.489 1.437 0.176
wizmir 0.178 0.192 1.081 0491 0.238 1.339 0.117
wankara 0.167 0.183 1.096 0.643 0.273 1.635 0.127
plastic 0468 0.451 0965 0504 0520 1.112 0.184
quake 1.025 1.000 0976 0.374 1.003 0979 0.117
anacalt 0212 0352 1661 0510 0404 1904 0.226
abalone 0.690 0.709 1.028 0.435 0.730 1.059 0.136
delta-ail 0560 0566 1.011 0477 0.580 1.035 0.170
puma32h  0.896 0902 1.008 0.619 0927 1.035 0.135
compactiv  0.240 0259 1.077 0441 0333 1.388 0.097
delta-elv 0.610 0.610 1.000 0.546 0.627 1.027 0.123
tic 1.015 0985 0.970 049 0992 0977 0.121
ailerons 0.504 0.511 1.015 0421 0.538 1.069 0.128
pole 0214 0267 1249 0583 0.282 1.319 0.108
elevators 0559 0553 0990 0.662 0.620 1.110 0.081
california  0.527 0531 1.008 0.532 0.555 1.053 0.112
house 0.687 0718 1.046 0.671 0.743 1.083 0.236
mv 0.140 0.179 1280 0540 0.186 1.328 0.420
average 0.448 0465 1.113 0.532 0508 1.282 0.165

Table A11. Relative RMSE;; for retention c1 = 0.5 and ¢2 = 0.25 (compression = 50% and 75%) in
50% holdout (average over 10 runs) for Threshold-Ensemble-CNN (TE-C), Threshold-Ensemble-ENN
(TE-E), Discretization-Ensemble-CNN (DE-C), Discretization-Ensemble-ENN (DE-E) and MEISR. Inner
evaluation algorithm k-NN with optimal k and binary instance selection. Final prediction algorithm:
k-NN with optimal k.

c1=0.50 2=0.25
Dataset TE-C TE-E DE-C DEE MEISR TE-C TEE DE-C DE-E MEISR
mach. CPU 1270 1.065 1362 1.022 1.149 1537 1296 1.755 1.393 1.202
baseball 1.118 1.087 1.155 1.266 1.035 1.346 1310 1.734 1.598 1.183
dee 1151  1.09% 1.077 1.066 0.962 1.348 1265 1217 1.374 1.203
autoMPG8 1255 1.086 1.185 1.121 0.976 1.538 1308 1.280 1.248 1.198
autoMPG6 1.170 1.065 1.102  1.092 0.968 1377 1309 1231 1.210 1.112
ele-1 1.047 1.058 1.028 1.066 0.962 1.080 1179 1.075 1.160 1.014
stock 1584 1.323 1445 1.645 1.147 1.875 2497 1.789 2249 1.433
laser 1466 1.142 1543 1132 1.038 1520 1.606 1.797 1.282 1.184
concrete 1279 1156 1225 1.136 1.096 1.382 1278 1338 1.365 1.193
treasury 1544 1589 1.694 1351 1.093 2072  3.062 2360 3.260 1.990
mortgage 1426 1568 1799  1.305 1.281 2.049 4032 2476 3.241 2.101
friedman 1.213 1199 1.147 1173 1.092 1376 1420 1316 1415 1.305
wizmir 1289 1.224 1227 1.146 1.081 1365 1389 135 1.371 1.131
wankara 1214 1220 1.145 1.151 1.076 1422 1588 1401 1.489 1.211
plastic 1.025 1.069 1.033 1.523 0.994 1.033 1155 1285 1.957 0.989
quake 1.238 1.023 1.126 1.064 0.992 1456 1.055 1.187 1.133 1.005
abalone 1.045 1.012 1.137 1.074 1.023 1.093 1.039 1210 1.148 1.011
compactiv.  1.129 1274 1277 1.366 1.125 1.302 2862 1328 1428 1.200
tic 1236 1.013 1.069 1.003 0.992 1429 1.046 1286 0.996 0.996
ailerons 1126  1.033  1.198 1.048 1.028 1238 1126 1236 1.172 1.088
pole 1351 1.066 1420 1.049 1.117 1501 1.747 1598 1.796 1.234
elevators 1126 1.059 1236 1.052 1.041 1.202 1190 1291 1.157 1.097
california  1.103 1.115 1.077  1.080 1.037 1.259 1216 1.197 1.146 1.234
house 1.073  1.093 1253  1.062 1.036 1222 1146 1304 1.258 1.073
average 1.228 1.152 1248 1.166 1.056 1418 1588 1460 1.535 1.224
times best 2 0 0 1 21 2 0 0 0 22
t-test p 0.0000 0.005 0.0000 0.0022 0.0085 0.0158 0.0070 0.0128
Wilcoxonp  0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
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Table A12. Relative RMSE;; for retention ¢1 = 0.5 and ¢2 = 0.25 in 10-fold cross-validation with k-NN
with optimal k. All symbols are explained in the caption of Table A11.

c1=0.50 c2=0.25
Dataset TE-C TE-E DE-C DE-E MEISR TE-C TE-E DE-C DE-E MEISR

mach. CPU 1.267 1.048 1360 1.013 1.052 1373 1227 1547 1.253 1.148
baseball 1.081 1.062 1.171 1.235 0.997 1183 1.149 1.629 1.406 1.094
dee 1129 1105 1.058  1.058 1.007 1199 1.199 1.110 1.293 1.031
autoMPG8 1226 1.098 1172 1.120 1.031 1362 1226 1199 1.199 1.138
autoMPG6  1.127 1.082 1.071  1.088 1.043 1280 1.197 1.141 1.197 1.074

ele-1 1.019 1.029 1.041 1.039 0.954 1.056 1.100 1.054 1.097 1.048
stock 1.549 1345 1442 1.646 1.180 1.849 2401 1771 2236 1.551
laser 1409 1155 1570 1.118 1.031 1.501 1501 1.723 1.293 1.232

concrete 1.240 1181 1.192 1111 1.054 1346 1308 1.346 1.308 1.224
treasury 1491 1563 1763 1327 1.302 1982 3.091 2364 3.273 1.372
mortgage 1374 1555 1.858 1.273 1.304 2.020 4.081 2404 3.111 2.854
friedman 1199 1214 1.191 1.156 1.073 1313 1410 1299 1.343 1.234
wizmir 1.243 1200 1217 1.122 1.060 1362 1362 1362 1.362 1.264
wankara 1212 1212 1.164 1.146 1.098 1373 1492 1373 1.403 1.254
plastic 0991 1.071 1.006 1.519 0.969 1.022  1.138 1.253 1.909 0.989
quake 1235 1.012 1.102 1.056 0.990 1455 1.015 1.144 1.102 0.998
abalone 1.026 1.026 1.121  1.079 1.031 1.036 1.055 1.166 1.103 1.058
compactiv. 1.107  1.293  1.281 1.341 1.209 1245 2810 1331 1.348 1.241

tic 1.221 1.001 1.113  1.000 0.986 1.388 1.002 1.262 1.001 0.993
ailerons 1.096 1.042 1.158 1.054 1.031 1170  1.102 1251 1.138 1.096
pole 1.339 1.082 1478 1.022 1.125 1483 1.684 1.604 1.698 1.261

elevators 1.092 1.050 1.223 1.040 1.039 1.129 1109 1310 1.129 1.103
california  1.082 1.094 1.117 1.077 1.037 1.204 1.147 1177 1154 1.116

house 1.075 1.081 1208 1.034 1.029 1.159  1.085 1.250  1.250 1.078
average 1.201 1148 1253 1.153 1.068 1354 1537 1420 1.484 1.227

times best 1 1 0 3 19 1 0 0 1 22
t-test p 0.0000 0.0000 0.0000 0.0000 0.0235 0.0059 0.0003 0.0167
Wilcoxonp 0.0001 0.0001 0.0000 0.0008 0.0004 0.0000 0.0000 0.0004

Table A13. Relative 1 — 2 in 50% houdout for DROP3-RT and MEISR for retention ¢1 = 0.5 and
c2 = 0.25 with 8-NN. Dr2: relative 1 — 2 with DROP3-RT. Mr2: relative 1 — 2 with MEISR, Dcl:
retention rate with DROP3-RT, Mc1: retention rate with MEISR, 72 is the correlation between the
predicted and actual output.

Dataset Dr2 Mr2 Mr2/Dr2 Dcl Mcl Mcl/Dcl

mach. CPU 1461 1.242 0.850 0.505 0.396 0.784
baseball 1.205 1.182 0.980 0472 0.341 0.723
dee 1120 1.074 0.959 0.523 0.315 0.602
autoMPG8 1211 1.116 0.921 0.539 0.387 0.718
autoMPG6 1.109 1.171 1.056 0.536 0.345 0.644

ele-1 1.082 0.847 0.783 0.530 0.314 0.593
stock 1.420 1.503 1.058 0.583 0.432 0.742
laser 1.381 1.017 0.736 0.659 0.443 0.673

concrete 1.292 1.224 0.948 0.507 0.410 0.808
treasury 1419 1.470 1.036 0.636 0.421 0.662
friedman 1.195 1.153 0.964 0.574 0.434 0.756
wizmir 1.260 1.101 0.873 0569 0.324 0.569
wankara 1.135 1.188 1.047 0.571 0.382 0.669
plastic 1.050 0.797 0.759 0.391 0.378 0.967
quake 1.078 0.962 0.892 0.438 0.403 0.920
abalone 1.031 1.081 1.049 0.455 0.432 0.949
delta,il 1.040 1.037 0.997 0445 0.425 0.955
puma32h 1.642 1537 0.935 0418 0.402 0.963
compactiv. = 1.023  1.094 1.070 0485 0.429 0.885
deltaclv 1.051 1.043 0.992 0469 0.438 0.933
ailerons 1.447 1.049 0.725 0457 0417 0.912
pole 1.151 1.139 0.990 0.335 0.409 1.222
elevators 1.066 1.150 1.079 0470 0.416 0.885
california 1.089 1.072 0.984 0.502 0474 0.944
house 1.136 0974 0.858 0.457 0.428 0.938

mv 1.203 1.300 1.080 0.609 0.530 0.870

average 1.204 1.135 0.935 0.505 0.405 0.819
times best 8 18 1 25

t-test p 0.0773 0.0000

Wilcoxon p 0.0566 0.0000
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Table A14. Relative 1 — 72 in 10-fold cross-validation for DROP3-RT and MEISR for retention ¢1 = 0.5
and c2 = 0.25 with 8-NN. All symbols are explained in the caption of Table A13.

Dataset Dr2 Mr2 Mr2/Dr2 Dcl Mcl Mcl/Dcl

mach. CPU 1541 1.263 0.819 0.495 0.374 0.756
baseball 1.160 1.134 0.978 0.460 0.395 0.859
dee 1166 0.991 0.850 0.511 0.352 0.689
autoMPG8 1210 1.118 0.924 0491 0.421 0.857
autoMPG6  1.168 1.137 0.974 0.511 0.373 0.729

ele-1 1.023  0.892 0.873 0.486 0.353 0.725
stock 1.685 1.421 0.843 0.572  0.483 0.843
laser 1.436 1.079 0.751 0.605 0.455 0.752

concrete 1.351 1.235 0914 0.502 0.465 0.926
treasury 1.346  1.500 1.114 0.620 0.439 0.707
friedman 1.076 1.186 1.102 0.538 0.437 0.812
wizmir 1.329 1.140 0.858 0.510 0.410 0.803
wankara 1.355 1.103 0.814 0.521 0.444 0.853
plastic 0964 0.833 0.864 0419 0.390 0.930
quake 1.058 1.044 0.986 0.420 0.387 0.922
abalone 1.053 1.034 0.982 0416 0.389 0.935
delta-ail 1.039 1.001 0.963 0433 0.364 0.841
puma32h  1.032 1.062 1.028 0.381 0.375 0.986
compactiv.  1.557  1.066 0.685 0449 0.391 0.870
delta-elv 1.016 1.011 0.995 0432 0.376 0.870
ailerons 1.039 1.134 1.092 0425 0.264 0.620
pole 1.425 1.696 1.190 0245 0.244 0.996
elevators 1.137  1.135 0.998 0.438 0.358 0.816
california  1.048 1.105 1.055 0.475 0.402 0.845
house 1.084 1.041 0.969 0.430 0.318 0.741

mv 1.061 1.297 1.222 0.531 0.392 0.739
average 1.228 1.161 0.953 0.481 0.391 0.822
times best 8 19 0 26
t-test p 0.1112 0.0001
Wilcoxon p 0.0588 0.0001

Table A15. Statistical significance test for experiments presented in Tables A3-A10.

t-test Wilco- relation t-test Wilco-
xon p elatio p xon p

MEISR, IEA: 1-NN (BIS), FPA: 1-NN (BIS), 50%H  r1/r0  0.0148  0.0026 r2/r0  0.4708  0.0018
MEISR, IEA: 1-NN (BIS), FPA: 1-NN (BIS), 10-CV  r1/r0  0.0148  0.0026 r2/r0  0.4708  0.0018
MEISR, IEA: k-NN (BIS), FPA: k-NN (BIS), 50%H  r1/r0  0.0259  0.0182 r2/r0  0.0001  0.0001
MEISR, IEA: k-NN (BIS), FPA: k-NN (BIS), 10-CV  r1/r0  0.2309  0.0058 r2/r0  0.0001  0.0001
MEISR, IEA: k-NN (BIS), FPA: MLP (BIS), 50%H rl/r0 05664  0.4839 r2/r0  0.0001  0.0001
MEISR, IEA: k-NN (BIS), FPA: MLP (BIS), 10-CV rl/r0 04782  0.4593 r2/r0  0.0003  0.0001
MEISR, IEA: k-NN (RIS), FPA: k-NN (RIS), 50%H  r1/r0  0.0305  0.0022 r2/r0  0.0001  0.0001
MEISR, IEA: k-NN (RIS), FPA: k-NN (RIS), 10-CV  r1/r0  0.0393  0.0032 r2/r0  0.0001  0.0001
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Table A16. Calculation time of the MEISR algorithm for BIS using our software (available from the
online supplementary resources) on a two Xeon X5-2696v2 machine. inst—number of instances,
at—number of attributes, dist, 1 — NNt and kN Nt—total time of the process, where the inner regressor
was respectively 1-NN and k-NN with optimal k, 1d% and kd%—percentage of total time used for
calculating the distance matrix with respectively 1-NN and k-NN with optimal k as inner regressors,
1 — NNti and kN Nti—total process time per one instance.

Dataset inst at k 1-NNt kNNt dist 1d% kd% 1-NNti kNNt
[s] [s] [s] [%] [%] [ms] [ms]

mach. CPU 188 0119 0119 0.011 9.3 9.3 0.633 0.633
baseball 303 0179 0215 0.018 9.8 8.1 0.590 0.709
dee 329 0.181 0219 0.014 7.8 6.5 0.551 0.667
autoMPG8 353 0.185 0.206 0.016 8.6 7.7 0.524 0.584
autoMPG6 353 0.186  0.202 0.015 8.0 7.3 0.527 0.573

ele-1 446 0243 0319 0.017 6.8 52 0.545 0.716
forestFire 465 0293 0343 0.024 81 6.9 0.630 0.737
stock 855 0474 0491 0.043 9.1 8.8 0.554 0.574
steel 864 0462 0481 0046 98 9.5 0.535 0.557
laser 894 0481 0483 0036 7.6 7.5 0.538 0.540
concrete 927 0494 0536 0.047 95 8.8 0.533 0.578

0491 0506 0.066 135 13.1 0.520 0.536
0508 0513 0.058 114 113 0.538 0.543
0548 0.612 0.048 8.7 7.8 0.507 0.567
0.647 0731 0.077 11.8 105 0.492 0.556
0.671 0802 0.080 119 10.0 0.463 0.554
0.659  0.905 0.065 9.9 7.2 0.444 0.609
0.851 1.070 0.123 145 115 0.434 0.546
1.58 1.61 0309 19.6 19.2 0.433 0.441
1.68 225 0341 203 152 0.447 0.599
2.93 331 0749 256 226 0.457 0.516
4.09 5.06 1.67 408 33.0 0.555 0.686
391 3.93 145 371 369 0.530 0.533
411 519 206 501 397 0.480 0.606

treasury 944
mortgage 944
friedman 1080

wizmir 1315
wankara 1448

plastic 1485
quake 1960
anacalt 3647

abalone 3759

delta-ail 6415
puma32h 7372 32
compactiv. = 7373 21
delta-elv 8564 6

TIONWRNOOUIGHGREGOLNING S

tic 8840 85 6.41 7.81 393 613 503 0.725 0.884
ailerons 12375 40 8.61 10.1 488 567 483 0.696 0.816
pole 13498 26 8.52 10.3 497 583 483 0.631 0.763

elevators 14938 18
california 18576 8
house 20506 16
partofmv 27178 10
mv 36690 10

10.4 12.7 513 493 447 0.696 0.850
16.0 18.2 9.27 579 509 0.861 0.980
18.6 211 11.3 608 53.6 0.907 1.029
28.1 30.3 177 63.0 584 1.034 1.115
47.8 50.0 321 671 642 1.303 1.363
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