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Abstract: The power and ease of Drosophila genetics and the medical relevance of mosquito-
transmitted viruses have made dipterans important model organisms in antiviral immunology.
Studies of virus–host interactions at the molecular and population levels have illuminated
determinants of resistance to virus infection. Here, we review the sources and nature of variation
in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly
Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral
immune mechanisms and describe the virus-specificity of these responses. In the following sections,
we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections,
we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism,
infection history, and endogenous viral elements. We borrow from work on other pathogen types
and non-dipteran species when it parallels or complements studies in dipterans. Understanding
natural variation in virus–host interactions may lead to the identification of novel restriction factors
and immune mechanisms and shed light on the molecular determinants of vector competence.

Keywords: Drosophila melanogaster; Aedes aegypti; vector mosquitoes; RNAi; Toll; IMD; JAK-STAT;
microbiota; endogenous viral elements; antiviral defense

1. Introduction

The vast majority of research on invertebrate antiviral immunity has used dipteran systems,
including the fruit fly Drosophila and the medically important vector mosquitoes of the genera Culex,
Aedes, and Anopheles. These fields have complemented each other, with interest in mosquito-vectored
viruses guiding studies in Drosophila, and the well-annotated genome and genetic tools of Drosophila
providing a model to guide laboratory experiments in the less tractable mosquito. The comparison of
antiviral processes in these dipterans highlights a conserved yet dynamic immune system, with some
antiviral mechanisms conserved from flies to mammals, whereas others have evolved since the
expansion of dipterans.

Studies from both fruit flies and mosquitoes have uncovered variation in host–virus interactions.
These studies have focused primarily on differences in immune mechanisms between virus species
within a host species, or on variation in resistance to a particular virus within or between populations
of host species. Insight into virus-specific mechanisms has been gleaned through the use of a diverse
set of natural and non-natural viruses in Drosophila, and through comparisons of vectored flaviviruses,
rhabdoviruses, alphaviruses, and bunyaviruses—part of a larger group referred to as arthropod-borne
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viruses (arboviruses). These studies reveal a general requirement for antiviral RNAi in dipterans,
virus-specific contributions of canonical antimicrobial pathways (such as Toll, Imd, or JAK-STAT),
a diverse transcriptional response, and emerging antiviral processes that have yet to be studied
in a comparative context (reviewed in [1–7]). In addition, there is tremendous variation in virus
susceptibility between hosts, where the resistance of an individual host is dependent on factors such as
genotype, microbiota, infection history, mating status, and the environment. Variation in resistance is
further complicated in mosquitoes, where the phenotype of interest is vector competence, the ability of
a mosquito to transmit an arbovirus after it had crossed multiple infection barriers (midgut infection
barrier (MIB), midgut escape barrier (MEB), salivary gland infection barrier, and salivary gland escape
barrier) (reviewed in [8]).

Viral genetic variation, both within and between hosts, is likely to contribute to infection
outcomes [9,10]. Arbovirus genetic variation is dynamic within a single host, and is shaped by natural
selection and population bottlenecks and expansions at each infection barrier [11–14]. In some cases,
viral variants affecting vector competence have spread through a population, leading to outbreaks of
arboviral disease in these regions. For example, single amino acid substitutions in Venezuelan equine
encephalitis virus (VEEV) and Chikungunya virus (CHIKV) envelope proteins are associated with
increased infectivity in Ochlerotatus taeniorhynchus and Ae. albopictus, respectively [15–18]. This aspect
of pathogen-associated natural variation is beyond the scope of this review and is discussed in detail
in [12,19].

The nature of variation in virus–host interactions is of great medical and evolutionary importance.
Discerning general immune mechanisms and identifying determinants behind resistant individuals
can inform the development of broadly acting intervention strategies to reduce arbovirus transmission
and arboviral disease. Naturally segregating polymorphisms associated with resistance to viral
infection can provide mechanistic insights into the control of viral infection, and identify loci likely
under pathogen-mediated selection. These loci sometimes exhibit signatures of adaptive evolution or
balancing selection, giving credence to the hypothesis of antagonistic coevolution between viruses
and host immune genes. In this review, we provide a general description of antiviral immune
mechanisms, and their impact across virus species studied in dipterans. We cover the nature and
sources of variation in resistance among host individuals, particularly focusing on population studies
of resistance polymorphisms and microbiota. For a list of viruses discussed in this review, see Table 1.

2. Antiviral Immune Processes

Numerous conserved signaling pathways and cellular processes mediate antiviral immunity in
dipterans (Figure 1) (reviewed in [1,2,4–6]). A subset of these pathways is generally antiviral (e.g., RNA
interference), whereas others provide antiviral defense against only specific viruses (e.g., autophagy).
In some cases, variation in viral resistance or tolerance can be mapped directly to genetic variation
within these pathways. Although our focus is on dipteran immunity, we note that most of these
processes are widely conserved, from flies to mammals. In this section, we briefly review known
antiviral immune mechanisms in dipterans, which we will later discuss in a comparative context in
Section 3.
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Figure 1. Antiviral innate immune pathways in dipteran insects. Toll pathway: Detection of pathogen-
associated molecular patterns (PAMPs) by pathogen recognition-receptors leads to the proteolytic 
maturation of Spätzle, which binds to and activates Toll (dotted arrows). Activated Toll recruits 
adapter proteins MyD88, Tube and Pelle which targets Cactus for proteasomal degradation via 
phosphorylation. Cactus degradation releases the transcription factor Dorsal (Rel1 in mosquitoes) or 
Dif (Dorsal-related immune factor) when activated in response to bacterial infection. These translocate 
to the nucleus and activates the transcription of Toll pathway-regulated genes (e.g., cecropin, defensin 
and drosomycin). IMD pathway: Gram-negative PAMPs (e.g., peptidoglycan) bind to peptidoglycan 
recognition protein, PGRP-LC (or PGRP-LE) and signal through the adapter molecules IMD (Immune 
Deficiency) and dFADD (Drosophila Fas-associated death domain). This stimulates the caspase Dredd 
(Death-related ced-3/Nedd2-like protein), dTAK1 (Drosophila transforming growth factor β-activated 
kinase 1), and dTAK1 adapter protein dTAB2 (TAK1-binding protein 2). These proteins signal 
through the JNK pathway, and activate the IκB kinases kenny and ird-5, which phosphorylate the C-
terminal tail of the transcription factor Relish (Rel2 in mosquitoes), leading to its subsequent 
activation via proteolytic cleavage by Dredd. Activated Relish translocates to the nucleus and drives 
the expression of genes regulated by the IMD-pathway (e.g., diptericin, attacin and metchnikowin). JAK-
STAT pathway: Virus infection, possibly through induction of stress or cellular damage, triggers the 
activation of the JAK (Janus kinase)-STAT (signal transducers and activators of transcription) 
pathway, which begins with the binding of a cytokine of the unpaired (upd) family to the dimeric 
receptor, domeless. Subsequently, the receptor-associated JAK-tyrosine kinase hopscotch 
phosphorylates the cytoplasmic tail of domeless, leading to the recruitment of Stat92E. After Jak-
mediated phosphorylation, Stat92E proteins dimerize and shuttle to the nucleus to activate the 
transcription of genes such as vir-1, TotM, DVRF1 and DVRF2. RNAi pathway: Double-stranded RNA 
derived from virus replication intermediates are recognized and processed by Dicer-2 into 21 nt small-
interfering RNAs (siRNAs), which are then loaded onto an Argonaute-2 (Ago2)-containing RNA-
induced silencing complex (RISC). This complex degrades one of the two strands and uses the other 
strand as a guide RNA to target complementary viral sequences. Dicer-2 can also activate the 
expression of the cytokine Vago through an unknown pathway (visualized as ‘?’ in the figure). RNA 

Figure 1. Antiviral innate immune pathways in dipteran insects. Toll pathway: Detection of
pathogen-associated molecular patterns (PAMPs) by pathogen recognition-receptors leads to the
proteolytic maturation of Spätzle, which binds to and activates Toll (dotted arrows). Activated Toll
recruits adapter proteins MyD88, Tube and Pelle which targets Cactus for proteasomal degradation via
phosphorylation. Cactus degradation releases the transcription factor Dorsal (Rel1 in mosquitoes) or
Dif (Dorsal-related immune factor) when activated in response to bacterial infection. These translocate
to the nucleus and activates the transcription of Toll pathway-regulated genes (e.g., cecropin, defensin
and drosomycin). IMD pathway: Gram-negative PAMPs (e.g., peptidoglycan) bind to peptidoglycan
recognition protein, PGRP-LC (or PGRP-LE) and signal through the adapter molecules IMD (Immune
Deficiency) and dFADD (Drosophila Fas-associated death domain). This stimulates the caspase Dredd
(Death-related ced-3/Nedd2-like protein), dTAK1 (Drosophila transforming growth factor β-activated
kinase 1), and dTAK1 adapter protein dTAB2 (TAK1-binding protein 2). These proteins signal through
the JNK pathway, and activate the IκB kinases kenny and ird-5, which phosphorylate the C-terminal
tail of the transcription factor Relish (Rel2 in mosquitoes), leading to its subsequent activation via
proteolytic cleavage by Dredd. Activated Relish translocates to the nucleus and drives the expression
of genes regulated by the IMD-pathway (e.g., diptericin, attacin and metchnikowin). JAK-STAT pathway:
Virus infection, possibly through induction of stress or cellular damage, triggers the activation of
the JAK (Janus kinase)-STAT (signal transducers and activators of transcription) pathway, which
begins with the binding of a cytokine of the unpaired (upd) family to the dimeric receptor, domeless.
Subsequently, the receptor-associated JAK-tyrosine kinase hopscotch phosphorylates the cytoplasmic
tail of domeless, leading to the recruitment of Stat92E. After Jak-mediated phosphorylation, Stat92E
proteins dimerize and shuttle to the nucleus to activate the transcription of genes such as vir-1, TotM,
DVRF1 and DVRF2. RNAi pathway: Double-stranded RNA derived from virus replication intermediates
are recognized and processed by Dicer-2 into 21 nt small-interfering RNAs (siRNAs), which are then
loaded onto an Argonaute-2 (Ago2)-containing RNA-induced silencing complex (RISC). This complex
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degrades one of the two strands and uses the other strand as a guide RNA to target complementary viral
sequences. Dicer-2 can also activate the expression of the cytokine Vago through an unknown pathway
(visualized as ‘?’ in the figure). RNA decay pathways: Single-stranded viral mRNA can be targeted in
the 3′–5′ direction through the RNA exosome degradation pathway. 5′–3′ degradation occurs through
decapping enzymes Dcp1 and Dcp2 and the RNA exonuclease Xrn1. Autophagy: Some viruses can bind
to the transmembrane receptor Toll-7, resulting in the induction of autophagy. This is most likely in an
indirect manner by negatively regulating the PI3K (phosphatidylinositol 3-kinase)-Akt pathway.

2.1. RNA Interference

RNA silencing pathways utilizes short RNA sequences bound to an Argonaute-family protein
to transcriptionally or post-transcriptionally silence complementary “target” sequences. These
include the microRNA (miRNA) pathway, which primarily regulates endogenous gene expression,
the PIWI-interacting RNA (piRNA) pathway, which regulates transposons, and the small interfering
RNA pathway (siRNA), which serves as one of the most important antiviral defenses in invertebrates.
Briefly, Dicer-2 (Dcr-2), an RNase III family endonuclease, recognizes viral-derived dsRNA and
cuts it into 21 nucleotide siRNA duplexes. A single strand of the siRNA duplex is loaded into the
Argonaute-2 (Ago2)-containing RNAi Induced Silencing Complex (RISC), which then slices any viral
sequence that is complementary to the loaded siRNA, thereby controlling virus infection. In Drosophila,
the siRNA pathway provides broad protection against both RNA and DNA viruses [20,21]. The siRNA
pathway has been shown to be antiviral against arboviruses in relevant vector mosquitoes as well [22].
Recently, “secondary siRNAs” have been described, which are produced from reverse-transcribed
viral DNA circles. These secondary siRNAs are excreted by hemocytes in exosomes and are proposed
to mediate a non-cell autonomous, systemic RNAi-based immune response [23–25] (further discussed
in Section 6.3).

In addition to viral siRNAs, Aedes mosquito species produce virus-derived piRNAs. This pathway is
crucial for transposon suppression in the germline and does not have an antiviral role in Drosophila [26].
However, the PIWI genes have undergone expansion in mosquitoes and generate virus-derived
piRNAs in the mosquito soma [27–29]. Depletion of viral piRNAs in mosquito cells by knocking
down the associated proteins (Ago3 and Piwi5) seemed to have no effect on viral replication [30].
However, silencing Ago3 in An. gambiae mosquitoes led to increased O’nyong-nyong virus (ONNV)
replication [31]. In addition, another piRNA pathway component, Piwi4 has been shown to be antiviral
against Semliki forest virus (SFV) and Zika virus [32,33].

2.2. Other RNA Processes

In addition to RNAi, other RNA-based cellular processes have been implicated in antiviral
defense. The RNA decay pathway protects against defective cytoplasmic RNAs, including those
without 5′ caps or polyadenylated tails, lacking stop codons (nonstop decay), encoding early stop
codons (nonsense-mediated decay), or stalled in ribosomes (no go decay) (reviewed in [34]). Offending
RNA molecules are deadenylated and either degraded 3′ to 5′ by the RNA exosome, or decapped
and degraded by the 5′ to 3′ exonuclease Xrn1 (reviewed in [35]). Viral RNA may include a number
of hallmarks of aberrant cellular transcripts, including 5′ triphosphate groups, limited poly-A tails,
or interior stop codons, making them susceptible to the RNA decay machinery [36,37]. Consistently,
in Drosophila, the decapping enzymes, DCP1 and DCP2, and the RNA exosome have antiviral activity,
and RISC-mediated silencing is partially dependent on Xrn1 and the exosome [38–41]. Additionally,
there is evidence of viral modulation of processing body (P body) and stress granule formation.
For example, Cricket paralysis virus (CrPV) infection leads to dispersal of P body components, which
are sites that may be associated with organized decapping and 5′ to 3′ decay [42]. In mosquitoes,
evidence for antiviral RNA decay comes from the flavivirus noncoding RNA, sfRNA, which is
produced by stalling of Xrn1 on structured RNA elements in the 3′ UTR [43].
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RNA editing by adenosine deaminases that act on RNA (ADAR) occurs during the mammalian
innate immune response, where the replacement of adenosines with inosines reduces the stability
of dsRNA and the accuracy of replication and translation, due to inosines being read as guanosines
(reviewed in [44]). Evidence in support of an antiviral activity of ADAR in insects comes mainly
from mutation and substitution patterns in a subset of RNA viruses. Two sequenced strains of sigma
virus (DMelSV) appeared to have been hypermutated from A to G [45], and analysis of DMelSV
variation within flies and across populations found that ADAR-resistant sites are less likely to be
polymorphic [46]. Similar patterns are also observed in Zika virus, although it is unknown whether
this is insect-mediated [47].

2.3. Nuclear Factor κB Pathways

There are two Nuclear factor κB (NF-κB) signaling cascades in flies: the Toll and immune
deficiency (IMD) pathways (reviewed in [48,49]). Generally, these pathways are activated when
an upstream pattern recognition receptor interacts with a pathogen-associated molecular pattern.
This leads to phosphorylation of IκB (inhibitor of κB; encoded by cactus for the Toll signaling and
by the C-terminal domain of Relish (Rel2 in mosquitoes) in IMD signaling) by an IκB kinase (IKK,
encoded by pelle in Toll signaling and kenny in IMD signaling). This results in degradation of IκB
and subsequent release of the NF-κB transcription factor (encoded by dorsal (Rel1 in mosquitoes) or
Dorsal-related immune factor for Toll signaling and Relish for IMD signaling). These transcription factors
then translocate into the nucleus to induce transcription of immune effectors, including antimicrobial
peptides [48,49]. Activation of IMD may also signal through the JNK pathway [50,51]. Ostensibly,
the primary functions of these pathways are in anti-bacterial and anti-fungal defense, although both
have been implicated in defense against various dipteran viruses [21,52–57]. In agreement with an
antiviral function, some insect viruses encode suppressors of the NF-κB pathway [58,59].

The antiviral effectors downstream of NF-κB are, for the most part, unknown, besides a couple of
examples. The NF-κB-responsive antimicrobial peptides are slightly upregulated after viral challenge,
and some seem to have antiviral properties [60,61]. However, the antiviral activity of the Toll
and IMD pathways may be based on mechanisms independent from antimicrobial peptides. For
example, Toll signaling seems to be involved in differentiation of hemocytes, phagocytic cells in the
hemolymph of invertebrates (see Sections 2.6 and 3.3 for the role of phagocytosis in immunity) [62].
IMD signaling can be pro-apoptotic, which itself can have antiviral functions [63,64], and is involved
in Pvf2 upregulation which activates antiviral ERK signaling [65,66].

2.4. JAK-STAT Pathway

In insects, the JAK-STAT pathway is activated upon binding of one of the unpaired ligands
(upd, upd2, or upd3) to the pathway receptor, domeless. This interaction results in activation
of the JAK kinase hopscotch, which then phosphorylates Stat92E, resulting in its dimerization
and translocation into the nucleus where it induces transcription of JAK-STAT dependent genes
(reviewed in [67]). The antiviral gene Vago, which is induced downstream of dsRNA recognition by
Dcr-2, may also activate JAK-STAT signaling in mosquitoes, although possibly through a different
receptor [21,68–70]. During viral infection, Vago and the upd ligands are upregulated, as well as a subset
of known STAT-regulated genes [71,72]. This activation ostensibly results in an antiviral transcriptional
program, and altering pathway activity in infected flies and mosquitoes affects resistance to some
viruses [21,69–71,73]. Similar to antiviral NF-κB signaling, there are virus-specific differences in
STAT-responsive transcriptional output, and STAT-responsive antiviral effectors are still mostly
unknown. However, attC is upregulated downstream of JAK-STAT following Sindbis virus (SINV)
infection in Drosophila, and heterozygous attC mutations lead to increased viral replication [61].
Additionally, two JAK-STAT pathway candidate effectors have been identified in Dengue virus
(DENV)-infected Ae. aegypti. These DENV restriction factors (DVRF) include DVRF1 (CG15168
in D. melanogaster), a putative transmembrane protein which could serve as a receptor, and DVRF2
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(CG8541 in D. melanogaster), a predicted secreted protein with anti-freezing and allergen domains [73].
Neither of the Drosophila DVRF homologs have been implicated in antiviral immunity.

2.5. Nutrient Signaling

Broadly speaking, diet and nutrient availability are intricately linked to immune variation and
function (reviewed in [74,75]). Known diet-responsive signaling pathways have been implicated in
antiviral immune modulation in dipterans, including ERK and PI3K/Akt signaling. Both ERK and
PI3K/Akt are downstream of insulin receptor signaling, and PI3K/Akt has crosstalk with the amino
acid-sensing TOR signaling pathway [65,76]. The ERK pathway can restrict viral infection in Drosophila
midguts and mosquito cells [65,66]. In addition, downregulation of PI3K/Akt signaling can enhance
antiviral defense, at least partially through releasing its inhibition of antiviral autophagy [77–79].
Akt also inhibits FOXO, a virus-induced transcription factor downstream of Toll, which upregulates
antimicrobial peptides and possibly RNAi pathway components [80–82]. Notably, PI3K/Akt activity
is proviral independent of its role in autophagy regulation, and is activated by SINV to promote
cap-dependent translation [83].

2.6. Apoptosis, Phagocytosis, and Autophagy

Apoptosis, phagocytosis, and autophagy make important contributions to dipteran antiviral
defense. Apoptosis is long known to be an important host defense response in vertebrates (reviewed
in [84]). In Drosophila, viral infection induces p53-mediated transcription of RHG genes (reaper, hid, grim,
and sickle), which promote degradation of Drosophila inhibitor of apoptosis 1 (DIAP1) and consequent
activation of the initiator caspase Dronc [64,85]. This response occurs rapidly after infection, effectively
reducing the duration a virus can access host factors that are crucial for replication [64]. Additionally,
an N-terminal degron (a protein domain that regulates protein turnover rate) renders DIAP1 inherently
unstable [86], allowing the promotion of apoptosis during virus-mediated translational inhibition [87].
Phosphatidylserine on apoptotic cells is recognized by the engulfment receptors draper and Integrin
βν on phagocytes, which eliminate infected cells [88]. Individual viral particles, including Drosophila
C Virus (DCV) and White spot syndrome virus (a natural shrimp nimavirus) may also be direct targets
of phagocytosis in cell culture [89,90].

Autophagy, a process in which intracellular particles are enveloped by membrane crescents
and shuttled to lysosomes for degradation, is also antiviral in some contexts [77,79,91]. For example,
noncanonical Toll-7 signaling may be responsible for activating antiviral autophagy during rhabdovirus
and bunyavirus infection, although autophagy is dispensable against most other viruses [56,78,79].

3. Virus-Specific Responses

Virus–host interactions include both general and virus-specific components. For example,
a genome-wide RNAi screen of West Nile virus (WNV) uncovered 50 restriction factors, over
half of which were antiviral across flaviviruses, whereas only seven were broadly antiviral across
disparate viral families [92]. This indicates that hosts have evolved antiviral mechanisms in response
to virus-specific infection cues (e.g., pathogen associated molecular patterns, pathogenesis, or affected
tissues), and/or that viruses are able to evade a subset of the host immune responses. Comparative
antiviral immunity experiments have primarily focused on RNAi, induced immune pathways and
their downstream transcriptional responses (i.e., NF-κB and JAK-STAT pathways), and cellular
responses. These studies have used a collection of native and non-native viruses (Table 1) and shown
considerable variation in the efficacy of cellular and humoral immunity across viruses, concomitant
with highly virus-specific transcriptional responses to infection [6]. Notably, there has been recent
interest in identifying and isolating native dipteran viruses, focusing both on viruses from diverse
families and those with nearby relatives of medical importance, representing a clear potential for
dipterans to become a powerful in vivo comparative system to study the diversity of antiviral immune
responses [93–96].
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Table 1. Viruses discussed in this review.

Virus Name Abbreviation Genome Family Host Restriction

Cricket paralysis virus CrPV (+) ssRNA Dicistroviridae Insect-specific
Drosophila C virus DCV (+) ssRNA Dicistroviridae Insect-specific

Culex flavivirus CxFV (+) ssRNA Flaviviridae Insect-specific
Nhumirim virus NHUMV (+) ssRNA Flaviviridae Insect-specific
Palm Creek virus PCV (+) ssRNA Flaviviridae Insect-specific
Flock House virus FHV (+) ssRNA Nodaviridae Insect-specific

Eilat virus EILV (+) ssRNA Togaviridae Insect-specific
Nora virus Nora (+) ssRNA Unclassified Picornavirales Insect-specific

Drosophila melanogaster sigma virus DmelSV (−) ssRNA Rhabdoviridae Insect-specific
Drosophila X virus DXV dsRNA Birnaviridae Insect-specific

Invertebrate iridescent virus 6 IIV6 dsDNA Iridoviridae Insect-specific
Kallithea virus Kallithea dsDNA Nudiviridae Insect-specific

Dengue virus DENV (+) ssRNA Flaviviridae Arbovirus
Japanese encephalitis virus JEV (+) ssRNA Flaviviridae Arbovirus

Murray Valley encephalitis virus MVEV (+) ssRNA Flaviviridae Arbovirus
St Louis encephalitis virus SLEV (+) ssRNA Flaviviridae Arbovirus

West Nile virus WNV (+) ssRNA Flaviviridae Arbovirus
Yellow fever virus YFV (+) ssRNA Flaviviridae Arbovirus

Zika virus ZIKV (+) ssRNA Flaviviridae Arbovirus
Chikungunya virus CHIKV (+) ssRNA Togaviridae Arbovirus

O’nyong’nyong virus ONNV (+) ssRNA Togaviridae Arbovirus
Semliki Forest virus SFV (+) ssRNA Togaviridae Arbovirus

Sindbis virus SINV (+) ssRNA Togaviridae Arbovirus
Venezuelan equine encephalitis virus VEEV (+) ssRNA Togaviridae Arbovirus

Western equine encephalitis virus WEEV (+) ssRNA Togaviridae Arbovirus
La Crosse encephalitis virus LACV (−) ssRNA Peribunyaviridae Arbovirus

Rift Valley fever virus RVFV (−) ssRNA Phenuiviridae Arbovirus
Vesicular stomatitis virus VSV (−) ssRNA Rhabdoviridae Arbovirus

3.1. RNA Interference

The RNA interference pathway is often referred to as being the most general and important innate
antiviral immune pathway in insects. Indeed, RNAi is demonstrably antiviral against a spectrum of
RNA and DNA viruses across insects [3,22]. The broad importance of antiviral RNAi is underlined
by the prevalence of viral suppressors of RNAi (VSRs), often found in insect-infecting viruses, which
inhibit processing of viral dsRNA by RNAi enzymes [97–102]. These VSRs may vary in potency,
host-specificity, and mechanism, although commonly act by binding either short or long dsRNA to
shield it from Dcr-2 or Ago2 processing [102,103]. In some cases, a VSR may block RNAi function so
completely that removing key RNAi components appears not to have an effect on virus replication,
and thus variation in VSR efficacy could lead to observed virus-specific variation in the requirement of
antiviral RNAi. For example, Nora virus VP1 encodes an Ago2 suppressor, implying that RNAi poses
an antiviral threat to Nora virus [20]. However, Nora virus titers remain unchanged in Dcr-2, r2d2,
and Ago2 mutants during persistent infection [104].

VSR potency may also be reflected in length distributions of virus-derived small RNAs.
Canonically, virus-derived small RNAs are overwhelmingly 21 nucleotides in length, because Dcr-2
cleaves at 21 base intervals. However, a metagenomic survey of viruses in D. melanogaster found
variation in virus-mapping small RNA length distributions [94]. Four D. melanogaster-infecting
picorna-like viruses (DCV, Nora virus, Kilifi virus, and Thika virus) have broad length distributions,
with similar amounts of 22–29 nucleotide viral-derived small RNAs as 21 nucleotide species. Because
two of the four viruses with broad siRNA length distributions are known to suppress RNAi, a viable
hypothesis is that especially potent VSRs may reduce the number of Dcr-2-generated siRNAs, although
increased viral degradation products and the concomitant increase in 22–29 nucleotide species could
also explain the pattern [94]. Regardless, the prevalence of VSRs underlines the importance of
considering virus-mediated subversion of host immunity when studying virus-specific responses.
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3.2. Induced Immune Responses

Viruses trigger a rapid transcriptional response in infected flies [105]. This depends on recognition
of virus-associated molecular patterns, and on other infection-derived cues such as host manipulation
or damage (reviewed in [4]). As in mammals, NF-κB and JAK-STAT pathways help coordinate these
inducible responses, and a subset of upstream signaling pathway regulators are often differentially
expressed during infection with different viruses [21,71,72,106,107]. In Drosophila, the Toll and Imd
pathways are antiviral against a broad panel of RNA viruses. Toll signaling is antiviral upon oral,
but not systemic, viral infection, and mutants are less resistant to DCV, CrPV, Nora virus, Drosophila X
virus (DXV), and Flock House virus (FHV) [52,57]. Likewise, IMD has been proposed to be antiviral
against DCV, SINV, and CrPV [54,55,66]. The antiviral role of NF-κB pathways in mosquitoes is not
as apparently widespread. The Toll pathway was found to have an antiviral role only against the
flavivirus DENV in Ae. aegypti mosquitoes [53,108], whereas no role of this pathway was observed
for the alphaviruses SFV and ONNV [109,110]. On the other hand, the IMD pathway was found
to be effective against SFV and ONNV when stimulated prior to infection in cell culture [109,111].
Even though some IMD pathway components and effector genes were found to be upregulated during
DENV infection, transient activation of the pathway did not affect viral titers [53].

The antiviral role of JAK-STAT signaling has also been investigated across Drosophila viruses,
where it is crucial in CrPV and DCV infections, but exerts a minimal effect on FHV, SINV and vesicular
stomatitis virus (VSV) [21,71]. However, JAK-STAT controls replication of a SINV replicon, indicating
there may be JAK-STAT-dependent responses specific to tissues or the route of infection [54,112].
In mosquitoes, the antiviral effect of the JAK-STAT pathway has been seen in DENV-infected Ae. aegypti
mosquitoes, where silencing components of the pathway resulted in higher viral titers and activating
the pathway had the opposite effect [70,73]. Similar to the IMD pathway, stimulating the JAK-STAT
pathway prior to infection had an antiviral effect on SFV [109]. However, the antiviral role of this
pathway in other virus–vector combinations remains unclear, where no upregulation of JAK-STAT
pathway components was observed upon infection (reviewed in [113]).

The resulting downstream transcriptional response across viruses is remarkably variable [4,21].
Comparison of the differentially expressed genes following infection with DCV, SINV, or FHV
resulted in the identification of 601 genes, only 42 of which are shared between the three viruses [21].
An exemplar of this trend is an analysis of JAK-STAT responsive genes vir-1 and TotM, which show
an almost mutually exclusive expression pattern in response to a panel of viruses, whereby vir-1 is
strongly induced in response to CrPV, DCV, and FHV, while TotM is induced after SINV, VSV, or DXV
infection [21]. Neither gene is strongly upregulated in response to the DNA viruses IIV6 or Kallithea
virus [21,107]. Likewise, the heatshock pathway is induced in vivo in response to DCV and CrPV, but
not IIV6 [72]. Diedel, a negative regulator of Imd signaling, also has highly virus-specific regulation,
and is induced over 100-fold during SINV and VSV infection, but less than 5-fold in response to
CrPV, DCV, and FHV [59]. However, there may be responses common to a particular virus family or
even between viruses of different families. A comparative transcriptomic analysis of infections by the
flaviviruses DENV, Yellow fever virus (YFV) and WNV infection in Ae. aegypti mosquitoes found 35
genes that were commonly differentially expressed, suggesting a transcriptomic signature unique to
flaviviruses. Antimicrobial effectors of the JAK-STAT pathway (four Cecropin A-like genes and one
defensin gene) as well as components of the Toll pathway were found to be downregulated by all
three viruses [114]. A more recent study compared transcriptional responses between flaviviruses,
alphaviruses and bunyaviruses upon infection of Ae. aegypti mosquitoes. Only 19 genes were found
to be upregulated by all tested viruses and no commonly downregulated genes were found. Among
the 19, the gene responsible for GABA signaling was found to be connected to blood feeding and
responsible for enhancing virus replication [115]. Together, these studies indicate the transcriptional
response to a particular virus is unique, and may be the amalgamation of host adaptation to a
specific virus, virus-mediated damage and immune subversion, cellular and tissue tropism, and virus
replication kinetics.
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3.3. Autophagy, Phagocytosis, and Apoptosis

A recent study using Drosophila has formally compared the requirement of phagocytosis, apoptosis,
and autophagy using a panel of six viruses (DCV, CrPV, FHV, VSV, SINV, and IIV6) [79]. Interference
with phagocytosis by latex bead injection or genetic ablation of hemocytes led to increased susceptibility
to CrPV, FHV, and VSV, but not to IIV6, DCV, or SINV [79]. Antiviral phagocytosis likely operates
through different mechanisms. CrPV and FHV induce apoptosis, and phagocytes were recruited
to dying cells to remove them [79,116]. However, VSV did not induce apoptosis, indicating the
effect from phagocytes may be through direct clearance of viral particles, or, more speculatively,
via the recently described secondary siRNA pathway [25] (described in more detail in Section 6.3).
Additionally, DCV infection induced apoptosis and subsequent phagocytic clearance, although
phagocytosis-deficient flies were not more susceptible to infection [79,88]. Finally, this study found
that autophagy-deficient flies were more susceptible to VSV [77], but not to DCV, CrPV, FHV, and IIV6
infections [79]. Additionally, autophagy appears to be proviral in FHV infection, where flies mutant
for Atg7, a gene required for autophagosome formation, had lower FHV titer and less virus-induced
mortality [79].

4. Genetic Variation in Antiviral Immunity in Dipterans

The evolutionary relationship between host and pathogens is often referred to as antagonistic
coevolution, because an increase in the fitness of one often corresponds to a decrease in the fitness
of the other. Framing host–parasite interactions in an evolutionary context is critical, as variation
in epidemiological and population genetic parameters (e.g., host costs of resistance, demographic
population structure, and pathogen virulence and transmissibility) is expected to result in different
types of selection, which in turn affects the architecture of genetic variation in resistance [117].
Even with relatively simple genetic architectures, where resistance and susceptibility are controlled by
few host and parasite genotypes at single loci, antagonistic coevolution can result in a resistant allele
being maintained at a stable frequency, changing in frequency chaotically or cyclically, or fixing in
a population (e.g., [117–119]). In reality, host–parasite interactions can be immensely complex [120],
and most of the loci under pathogen-mediated selection are unknown. Identification of these loci is
of great medical and evolutionary importance, and efforts have been made to characterize genetic
variation in host resistance, and to determine the effects of parasite mediated selection on host
gene evolution.

4.1. Segregating Genetic Variants Associated with Viral Resistance in Drosophila

In some cases, genetic variation has been mapped to discrete loci in the host genome.
In D. melanogaster, the most extensively studied host–virus system at the population level is DmelSV, a
negative-sense ssRNA rhabdovirus (reviewed in [121]). DmelSV is transmitted vertically to offspring
through eggs and sperm, although some fly strains are not permissive to DmelSV replication [122].
This resistance was first mapped to a complex amino acid substitution in the N-terminal PB1 domain
of ref(2)P (Table 2), a gene now known to be involved in autophagy and Toll signaling [122–126].
Viral replication and transmission is reduced in homozygous ref(2)P mutants or trans-heterozygotes
bearing a mutant ref(2)P and the refractory allele, indicating that ref(2)P is a proviral host factor in
DmelSV infection [127].
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Table 2. Genetic variants associated with viral resistance.

Host Factor Virus Host Associated Mutation Phenotype (Homozygotes) Population Frequency
(Resistant Allele) Related Processes Methodology References

ref(2)P DmelSV Dmel NS polymorphism 24% reduction in infection
rate 24% Autophagy Genetic mapping,

mutagenesis, GWAS [127–130]

CHKov1/CHKov2 DmelSV Dmel TE insertion,
rearrangement

52% reduction in infection
rate

TE: 83%; rearrangement
<0.5%

Predicted
acetylcholine esterase Genetic mapping, GWAS [130,131]

Ge-1 DmelSV Dmel 26 aa deletion 97% reduction in infection
rate 1% RNA decay Genetic mapping [40]

ref(1)H QTL DmelSV Dmel Unknown Unknown Unknown Unknown Genetic mapping [128]

ref(3)O QTL DmelSV Dmel Unknown Unknown Unknown Unknown Genetic mapping [128]

ref(3)V QTL DmelSV Dmel Unknown Unknown Unknown Unknown Genetic mapping [128]

X13 QTL DmelSV Dmel Unknown 38% reduction in infection
rate Unknown Unknown Genetic mapping [132]

X65 QTL DmelSV Dmel Unknown 13% reduction in infection
rate Unknown Unknown Genetic mapping [132]

2R70 QTL DmelSV Dmel Unknown 11% reduction in infection
rate Unknown Unknown Genetic mapping [132]

3R64 QTL DmelSV Dmel Unknown 12% reduction in infection
rate Unknown Unknown Genetic mapping [132]

pastrel DCV Dmel 7 alleles: cis-regulatory,
structural, NS variants

16%, 57%, or 80% increase in
survival

NS: 7–33%, Structural
variants: 4–51% Unknown GWAS, experimental

evolution [130,133,134]

2R69 QTL DCV Dmel Unknown 2.5 day increase in survival
time Unknown Unknown Recombinant inbred line [132]

2L18 QTL DCV Dmel Unknown 0.75 day increase in survival
time Unknown Unknown Recombinant inbred line [132]

APC7 DCV Dmel Synonymous
polymorphism 95% increase in survival 3% Cell cycle GWAS [130]

Ubc-E2H DCV Dmel Intronic polymorphism Not reported 27% (lab-maintained
population)

Predicted ubiquitin
ligase Experimental evolution [133]

Cip4 Kallithea Dmel NS polymorphism 27% increase in survival 77% Membrane trafficking GWAS [107]

Dicer-2 DENV-1 Aaeg Unknown Explains 17.8% of viral
dissemination Unknown RNAi Genetic mapping [135]

71CGT1 QTL DENV-1/3 Aaeg Unknown QTL explains up to 7.6%
variation in MIB Unknown Unknown Genetic mapping [136]
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Table 2. Cont.

Host Factor Virus Host Associated Mutation Phenotype (Homozygotes) Population Frequency
(Resistant Allele) Related Processes Methodology References

335CGA1 QTL DENV-1/3 Aaeg Unknown
QTL explains ≤ 8.1%

variation in MIB and ≤21.4%
in dissemination

Unknown Unknown Genetic mapping [136]

88CA1/88GAA1
QTL DENV-1/3 Aaeg Unknown

QTL explains ≤ 12%
variation in MIB and ≤75.6%

in titer
Unknown Unknown Genetic mapping [136]

301CT1/301ACG1
QTL DENV-1/3 Aaeg Unknown QTL explains ≤ 11.4%

variation in MIB Unknown Unknown Genetic mapping [136]

B19 QTL DENV-1/3 Aaeg Unknown QTL explains ≤ 6.2%
variation in MIB Unknown Unknown Genetic mapping [136]

69TGA1 QTL DENV-1/3 Aaeg Unknown
QTL explains ≤ 22.6%

variation in dissemination
and ≤ 8.9% in titer

Unknown Unknown Genetic mapping [136]

201AAT1 QTL DENV-1/3 Aaeg Unknown QTL explains ≤ 15.2%
variation in titer Unknown Unknown Genetic mapping [136]

470CT2/470AG1
QTL DENV-1/3 Aaeg Unknown QTL explains ≤ 12.3%

variation in titer Unknown Unknown Genetic mapping [136]

17ATA1 QTL DENV-1/3 Aaeg Unknown QTL explains ≤ 13.7%
variation in titer Unknown Unknown Genetic mapping [136]

early trypsin
QTL DENV-2 Aaeg Unknown 86% decrease in infection

dissemination Unknown Blood meal digestion Genetic mapping [137]

B18.621 QTL DENV-2 Aaeg Unknown 87% decrease in infection
dissemination Unknown Unknown Genetic mapping [137]

B20.392 QTL LACV Otri Unknown Transovarial transmission
rate increased from 0 to 60% Unknown Unknown Genetic mapping [138]

C01.385/C13.5573
QTL LACV Otri 2 linked QTL with

unknown mutations
Transovarial transmission

rate increased from 0 to 60% Unknown Unknown Genetic mapping [138]

Dmel, D. melanogaster; Aaeg, Ae. aegypti; Otri, O. triseriatus; aa, amino acid; MIB, midgut infection barrier; NS, nonsynonymous; S, synonymous; TE, transposable element; GWAS,
genome-wide association study.
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More recently, two additional loci have been mapped with segregating variants associated with
resistance to DmelSV. The first is a triallelic polymorphism at the CHKov1 and CHKov2 paralogs [131],
where an insertion of a transposable element (Doc element) in CHKov1 provides resistance to
DmelSV, and a following complex (and rare) rearrangement is associated with even greater DmelSV
resistance [131] (Table 2). The Doc insertion also confers resistance to pesticides [139]. Although
the functional relevance of the CHKov genes during viral infection remains untested, the resistance
mutations could exert an effect on viral entry, as CHKov is a predicted acetylcholine esterase, and Rabies
virus (also a rhabdovirus) uses the acetylcholine receptor as a cell entry point [140]. In addition to ref(2)P
and CHKov, a large deletion in the serine-rich linker region of Ge-1 results in a 10-fold reduction in viral
titer and lower infection rates (Table 2) [40,128]. Ge-1 is a conserved adaptor bridge between Decapping
protein 1 and Decapping protein 2 that helps localize these enzymes to processing bodies [141,142],
and thus could plausibly exert its antiviral effect through the RNA decay pathway [40]. Finally, up to 7
QTLs associated with DmelSV replication or transmission have been identified in genetic mapping
experiments, however the exact loci responsible have yet to be reported [128,132,143,144].

Natural variation has also been mapped for two other Drosophila viruses: DCV and Kallithea virus.
Resistance to DCV has been mapped to complex polymorphisms at the pastrel (pst) locus [130,133].
The primary pst resistance mutation is due to a single amino acid change, although there are multiple
structural alleles and cis-regulatory changes that may enhance resistance, resulting in seven alleles
with four distinct phenotypes [134]. Although the function of pst is unknown, overexpression of the
susceptible allele provides protection against DCV, and pst is upregulated after intra-abdominal viral
injection, indicating that pst is an induced antiviral factor [134]. In addition to pst, polymorphism in
Anaphase promoting complex 7, Ubiquitin conjugating enzyme E2H, and 2 QTLs may also underlie
genetic variation in DCV resistance, although these await more extensive characterization [130,133].

A genome-wide association study has found multiple loci that are associated with either viral
titer or mortality following Kallithea virus infection, a dsDNA nudivirus of D. melanogaster [94,107].
The most confident association was a nonsynonymous polymorphism affecting a subset of splice
variants in Cdc42-interacting protein 4 (Cip4), a gene involved in membrane trafficking [107,145]. Many
other loci were found significantly associated to Kallithea virus resistance (>50 genes), in stark contrast
to the above RNA viruses, where variation in resistance is explained by few large effect loci. This could
reflect general differences in coevolution between hosts and their DNA and RNA viruses, such as the
greater complexity (Kallithea has approximately 100 genes) and reduced substitution rate of DNA
viruses [146].

4.2. Evolution of Resistance Loci

The genetic architecture of resistance to viruses in Drosophila often seems to include large-effect
polymorphisms at an intermediate frequency in populations (Table 2). These variants are likely
under pathogen-mediated selection, and surrounding patterns of polymorphism and divergence
have been compared to expected patterns of balancing selection (i.e., selection that maintains genetic
variation) or recurrent positive selection (i.e., selection on an advantageous allele), which would be
compatible with their involvement in antagonistic coevolution (reviewed in [117,147,148]). Although
none of the identified resistance loci display significantly increased diversity that is a hallmark of
balancing selection, ref(2)P and pastrel have relatively high levels of nonsynonymous or structural
polymorphism [123,130,134,149]. This may be due, in part, to incomplete selective sweeps, whereby a
resistance mutation rises to high frequency and subsequently loses the selective benefit through viral
counter-adaptation. This was witnessed in the 1980s, when a DmelSV strain that regained transmission
advantage in flies with a resistant ref(2)P allele swept through the population [150–154]. Additionally,
some dipteran immune genes exhibit unusually high diversity. NF-κB-responsive AMPs appear to
be under balancing selection and show high levels of nonsynonymous polymorphism, with some
convergently maintained in different species, likely due to their role in anti-bacterial or anti-fungal
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immunity [155,156]. The N-terminal glutamine-rich repeat region of Ago2 is also hypervariable either
due to diversifying selection or high mutation rates and low constraint [157,158].

In addition to maintaining polymorphism, pathogen-mediated arms races may be expected to
fix adaptive mutations. This can occur quickly on an evolutionary timescale, and these beneficial
mutations will only be briefly visible as variation within populations. However, they can be recognized
as elevated divergence between populations or species. This is evident in genes with segregating
resistance polymorphism, and ref(2)P, CHKov1/2, and Ge-1 show signs of recent or recurrent positive
selection [40,131,153]. These patterns are also apparent in some immune genes, and are most striking in
the RNAi pathway, which evolves rapidly due to adaptive evolution, particularly in genes mediating
defense against transposons and viruses, including antiviral effectors Dcr-2 and Ago2 [159–161].
In addition, RNAi genes are more likely to show diversity patterns consistent with positive selection
driving new mutations to fixation [161–164]. Although less likely to be virus-mediated selection,
genes in the Toll and IMD signaling pathways may also have elevated levels of positive selection,
with the most convincing evidence in Relish and its interactors [165–167]. Additionally, genes
encoding pathogen recognition proteins appear to evolve rapidly, especially those involved in
phagocytosis [166,168].

4.3. Genetic Variation Associated with Viral Resistance in Mosquitoes

Although the genomic tools of mosquitoes are not as advanced as those for Drosophila,
the sequencing of the genome of Ae. aegypti (the principal vector of Dengue, Chikungunya and Zika
viruses) [169] has enabled the investigation of the precise genetic determinants of vector competence.
Prior to the genomics age, Ae. aegypti strains with differences in midgut and disseminated DENV
infections were identified [170,171] and used to map alleles associated with susceptible or refractory
phenotypes. Quantitative-trait loci (QTL) mapping allowed the determination of several loci that act
additively to determine midgut infection and dissemination [137,171,172]. Two QTLs were identified
that significantly associated with DENV-2 midgut infection [137]. One of these contained early trypsin,
a female-specific gene induced shortly after blood-feeding, and required for proteolytic digestion of
the bloodmeal [173]. A subsequent fine-scale mapping study of the segregating sites in the early trypsin
coding sequence in four Mexican populations was unable to find a causal variant, indicating that the
locus may be linked to early trypsin in the original QTL, or that polymorphic cis-acting elements are
causing differences in early trypsin expression [174]. Regardless, there is evidence that trypsins are
important regulators of DENV infection, framing this QTL in an interesting context. For example,
addition of a soybean trypsin inhibitor to an infectious blood meal significantly reduced DENV midgut
infection and dissemination [175]. In contrast, another group showed that adding soybean trypsin
inhibitor as well as RNAi knock-down of the late trypsin gene 5G1 led to higher DENV infectivity
of Ae. aegypti mosquitoes [176]. An expressed sequence tag (EST) with high homology to a trypsin
inhibitor was found in refractory Ae. aegypti populations, implying further that midgut proteolytic
activity could limit DENV infection [177].

Another QTL mapping study found four genomic regions associated with variation in body size
that may additionally affect vector competence of Ochlerotatus triseriatus mosquitoes for La Crosse
encephalitis virus (LACV) [178]. This virus belonging to the California serogroup of bunyaviruses
is actively maintained by transovarial transmission from infected females to their progeny in the
intervening periods between epizootic outbreaks, during which the virus maintains low level
replication that is not detrimental to the overwintering embryos [179]. Three genetic loci were found
to additively determine transovarial transmission rates in Ocherotatus triseriatus mosquitoes for LACV
(Table 2) [138].

Genetic differentiation among various Ae. aegypti strains from Vietnam and Thailand, possibly
caused by insecticide use, were also found to be associated with vector competence for DENV [180,181].
Lambrechts and colleagues determined that there is an active interaction and ongoing local adaptation
between vector and virus genotypes, resulting in genotype-by-genotype (GxG) interactions that
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affect vector competence phenotypes [9]. Population genetic studies to map the mosquito loci
underlying these GxG interactions identified QTLs that conferred resistance to several DENV viral
strains and others where a specific QTL varied based on the DENV isolate or serotype used [136].
Further fine-scale mapping of these GxG interactions revealed that polymorphisms in the Dcr-2 locus
correlated with DENV susceptibility in an isolate specific manner. Thus, variation in dsRNA binding
or cleavage by Dcr-2, coupled with variation in the relative importance of antiviral RNAi across
DENV strains could explain the observed G×G interactions, although the precise mechanism remains
to be characterized [135]. As in Drosophila, RNAi genes in Aedes may have higher rates of protein
evolution [182]. Mosquitoes do not have an overtly antagonistic relationship with the arboviruses
they transmit, leading to the speculation that it is not arboviruses, but insect-specific viruses [183] or
transposon movement that could drive such evolution.

Lately, transcriptomic differences between refractory and susceptible vector populations have
been used to identify causal determinants of variation in vector competence, with most studies focusing
on Ae. aegypti and DENV. Behura et al. identified different gene networks being activated in susceptible
versus refractory populations [184]. In particular, apoptosis-related genes were expressed at higher
levels in refractory populations, which may be a defense response that impedes a productive DENV
infection. For example, a mosquito ortholog of the Drosophila pro-apoptotic gene reaper, termed
michelob_x, as well as other related genes, were upregulated upon DENV infection only in a refractory
Ae. aegypti strain [64,177]. In agreement, knock-down of the initiator apoptotic caspase AeDronc in a
refractory Ae. aegypti strain increased its permissiveness to DENV infection, whereas suppressing the
caspase inhibitor AeIAP1 in susceptible strains made them refractory [185]. Differential regulation
of apoptosis in mosquitoes with a refractory phenotype has been documented in other vector-virus
combinations as well [5,186]. For example, WNV infection showed apoptotic effects in the midguts
of a refractory population of Cx. pipiens mosquitoes, and clearance of WNV infection in the salivary
glands over time correlated with levels of apoptosis in Cx. quinquefasciatus [187,188].

In addition to apoptosis-related factors, expression of furin-like genes were higher in the
susceptible strains, suggesting that they may aid in DENV maturation [184]. Expression of many
cuticle protein genes were comparatively lower in the susceptible population, suggesting that they may
possess thinner anatomical barriers that enhance midgut infection and escape [184]. A putative 67 kDa
DENV receptor protein (R67/R64) on Ae. aegypti midgut epithelial cells was found to be expressed
at significantly higher levels in the midguts of strains susceptible to DENV infection as compared
to refractory ones [189]. Interestingly, a glucosyl/glucuronosyl transferase (AAEL003099) was found
to be downregulated in Ae. aegypti populations refractory to DENV [190] and the same gene was
found to be upregulated by a Talaromyces species of fungus that increases the mosquito’s susceptibility
to DENV [191]. These studies suggest that the relative expression levels of these genes in mosquito
populations could be a source of natural variation that influences vector competence.

Several genes belonging to innate immune pathways (Toll, JAK/STAT, IMD) were selectively
upregulated in refractory Ae. aegypti strains, suggesting that the basal expression level of immune
response genes may modulate susceptibility to DENV infection [190]. The same study also highlighted
the importance of differential vATPase subunit expression in influencing vector competence. These
multi-subunit enzymes drive proton transport to acidify organelles like endosomes and lysosomes [192]
and is required during a key step in the DENV life cycle, low pH-mediated viral and cellular membrane
fusion [193]. Indeed, RNAi-mediated knock-down of the vATPase G subunit gene (AAEL012819)
rendered susceptible strains more refractory to DENV [190].

5. Microbe-Dependent Variation in Dipteran Antiviral Immunity

In addition to genetic determinants in the host genome, the fly microbial community may influence
resistance and tolerance to some viruses, where inter-strain variation in antiviral protection can
manifest itself as variation among fly individuals. The effect of Wolbachia infection has been the primary
focus of these studies, although the importance of the gut microbiome is beginning to be understood.
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5.1. Wolbachia in Drosophila

Wolbachia is a α-proteobacterium widespread among insects that infects reproductive tissues and
induces a diverse array of phenotypes across insect hosts, including male-killing, male feminization,
cytoplasmic incompatibility, and increased resistance to RNA viruses [194–196]. The exact mechanism
behind Wolbachia-mediated antiviral protection has remained elusive. Wolbachia titer is generally
correlated with the magnitude of antiviral protection [197–200], which has been explained by
competition between viruses and Wolbachia for resources or by Wolbachia-mediated immune
priming [201]. A cholesterol-rich diet ameliorates Wolbachia pathogen interference against DCV
in Drosophila, but altering nutrient availability has no effect on DENV in mosquitoes [202,203].
Although Ago2, reactive oxygen species, certain AMPs, and Mt2 (a methyltransferase with antiviral or
proviral activity in different contexts) are differentially regulated during Wolbachia infection [204–208],
the effects are small, or species specific, making it unlikely that immune priming is the sole mechanism
of viral interference [207,209–212]. Regardless of mechanism, different Wolbachia strains have different
propensities toward pathogen interference [200]. Natural variation in antiviral protection of Wolbachia
has been investigated in D. melanogaster and D. simulans, where Wolbachia infection is generally
protective against RNA (but not DNA) viruses [195,199].

Three genotypes of the single Wolbachia pipientis strain that infects D. melanogaster have been
extensively characterized for antiviral protection. The most prevalent genotype in the wild, wMel,
provides limited antiviral protection, whereas the other two, wMelCS and wMelPop, provide
intermediate and strong antiviral protection, respectively [213]. Antiviral protection in these strains
is positively correlated with Wolbachia titer and virulence, with wMelPop causing considerable
mortality in infected flies [213,214]. The extreme phenotypes of wMelPop have been mapped to
a copy number variant encompassing eight Wolbachia genes, called Octomom [213,215,216]. Octomom
copy number varies within and across flies infected with wMelPop, where higher copy number
wMelPop genotypes replicate more rapidly, have a higher virulence, and provide greater protection
against RNA viruses [213,216,217]. Wolbachia-mediated antiviral protection is likely more complicated
than this single locus, as wMelCS and wMel3562 (another highly virulent Wolbachia strain) have
single or low Octomom copy numbers [213,218], and Wolbachia with Octomom deletions retains its
pathogenicity (although this genotype has not been assayed for pathogen interference) [215,219].
Notably, the wMelPop strain was recovered from laboratory flies, and has not been found in the
wild [213,214].

Many Wolbachia strains are able to subvert host reproduction, benefiting infected females and
driving the infection through a population [220]. Because antiviral protection and reproductive
subversion appears to be uncorrelated [221], this could lead to waves of viral resistance and
susceptibility in fly populations. For example, comparison of Wolbachia and mitochondrial sequences
indicates that the wMel strain has recently swept to high frequency at the expense of the wMelCS
strain, suggesting that worldwide populations of D. melanogaster may have recently become more
susceptible to viral infection [222–224]. In addition, one of the four native Wolbachia strains that infect
Drosophila simulans (of which two exhibit pathogen interference) has rapidly (within approximately
10 years) swept through populations in California and Australia [197,225–227]. This strain, wRi,
exhibits pathogen interference, suggesting that these D. simulans populations may have recently
become more resistant to RNA viruses. As an estimated 40% of insect species may host Wolbachia and
approximately half of Drosophila-infecting Wolbachia strains provide antiviral resistance [199], Wolbachia
is likely to be a dynamic and sizable source of variation for virus susceptibility among individuals
and species.

5.2. Wolbachia in Mosquitoes

Wolbachia is not found to be naturally associated with Ae. aegypti, although an Ae. albopictus
strain from La Réunion Island naturally harbors two different strains of Wolbachia (wAlbA and
wAlbB) [228]. These bacteria could reduce DENV transmission by limiting the amount of infectious
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virus particles secreted into the saliva, perhaps contributing to the reduced vector competence in
this species relative to Ae. aegypti [228]. Artificial introduction of the Wolbachia wMel strain into
Ae. aegypti limits DENV and CHIKV infection without adversely affecting mosquito life span [229].
This may allow the bacterium to spread and stably establish in the population, making it a promising
candidate for introgression into Ae. aegypti [230]. Since 2011, there have been several efforts to release
Wolbachia-infected Ae. aegypti into wild mosquito populations in Australia [231,232], showing the
successful establishment of Wolbachia in Aedes populations and reduction of DENV transmission
potential in field conditions [233]. Recently, the Eliminate Dengue Program, now known as the World
Mosquito Program (https://www.worldmosquitoprogram.org), in partnership with organizations
and governments of countries with high arbovirus transmission has initiated trials to evaluate the
potential of wMel infected Ae. aegypti to suppress arbovirus transmission. As it constitutes an artificial
intervention, variation in antiviral immunity introduced by transinfecting Ae. aegypti with Wolbachia
will not be discussed further in this review.

5.3. Gut Microbiota in Drosophila

The interplay between gut commensals and viruses has been best studied in mammals, where the
microbiota can be pro- or anti-viral, dependent on the virus [234]. This appears to be true in insects as
well. For example, baculoviruses reach higher titers and are more virulent in the moth Spodoptera exigua
when the microbiota is present [235]. Conversely, in D. melanogaster, the microbiota signals through
Relish to upregulate Pvf2, which in turn activates antiviral ERK signaling in the gut [65,66]. Antibiotic
treatment leads to increased replication rates of DCV and VSV [66], although this does not affect
virus-induced mortality [57]. Upregulation of Pvf2 was strictly mediated by gram-negative bacteria
(E. coli or Acetobacter species), although some bacterial species may be more potent activators [66]. Older
flies have an altered microbiota and concomitantly higher levels of reactive oxygen species, which
renders them unable to upregulate Pvf2 [236]. These phenotypes can be reversed by a faecal transplant
from young to old flies, or with experimental association of old flies with Lactobacillus fructivorans
and heat-killed Acetobacter pomorum [236]. The microbiota also influences gut environmental factors
that likely have a role in antiviral immunity, including gut renewal rate and basal levels of JAK-STAT
and IMD signaling [237]. Thus, it seems probable that the community structure of commensals plays
an integral role in shaping the gut environment that enteric viruses encounter, and that variation
in gut bacterial strains may translate into an important source of variation in natural populations.
Indeed, microbiota is variable in wild flies [238,239]; however, frequencies of strains and species across
worldwide populations is unknown, and little has been done to link specific commensals to antiviral
resistance in flies [66,236].

5.4. Gut Microbiota in Mosquitoes

The mosquito midgut flora affects several mosquito traits, including development, nutrition,
reproductive capacity and vector competence. Mosquitoes start acquiring their gut flora at the larval
stage, the composition of which will be defined by the microbial flora of the larval aquatic habitat.
The gut microflora is not static and changes later in the adult stage based on its sex, the flora acquired
from nectar feeding, gut environmental changes through blood meals, and sometimes from venereal
transmission (reviewed in [240]). As in Drosophila, the microbiota in mosquitoes may have complex and
virus-specific effects on immunity and vector competence. The presence of different Gram-negative
bacterial species such as Proteus, Paenibacillus and Chromobacterium in the Ae. aegypti midgut protects
against DENV infection, whereas an opposite effect was seen for ONNV in its vector, Anopheles gambiae,
in which treatment with antibiotics decreased susceptibility to ONNV [111,241,242]. Oral co-infection
of a naturally occurring midgut bacterium of Ae. aegypti, Serratia odorifera, along with DENV or
CHIKV increased its susceptibility to both arboviruses, presumably through the interaction of bacterial
and mosquito midgut proteins [243,244]. In turn, the microbial community structure in the midguts
of Ochlerotatus triseriatus and Aedes japonicus mosquitoes were significantly changed after a LACV

https://www.worldmosquitoprogram.org
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infectious blood meal, suggesting an interaction between the vector gut microbiota and the infecting
arbovirus, possibly influencing vector competence phenotypes [245].

These microbes could influence vector competence through different mechanisms, including
innate immune priming and secretion of antiviral effectors. For example, the microbiota upregulates
genes encoding antimicrobial peptides such as cecropins, defensins and lysozyme C that have known
antiviral activity against DENV [53,60,241,242]. In addition, certain bacterial isolates belonging to the
Enterobacteriaceae family, isolated from the midgut of Ae. albopictus were found to suppress replication of
LACV in vertebrate cells, and a bacteria-free biofilm from Chromobacterium (isolate Csp_P) could inhibit
DENV replication in vertebrate cells [242,246]. More recently, Talaromyces species of fungus isolated
from the midgut of field-caught Ae. aegypti was shown to increase the permissiveness of the mosquito
to DENV by secreting a hitherto unknown factor that downregulates trypsin gene expression and
enzymatic activity in the gut [191]. This is line with the observation that a trypsin inhibitor or genetic
knock-down of a late trypsin gene increased susceptibility to DENV [176]. Thus, the gut microbial
flora is likely to be a dynamic source of natural variation for susceptibility to arboviral infection.

6. Other Sources of Variation

The resistance of an individual host is dependent on several other factors besides host genotype
and the associated microbiota. The abiotic environment, sexual dimorphism, mating, infection history
and endogenous viral elements have each been identified to influence infection outcomes. However,
most of these factors have received disproportionate attention in either fruit flies or mosquitoes,
and there have been few comparative studies of these effects across viruses, making generalizations
between hosts and among viruses difficult.

6.1. Abiotic Environment

Variation in the abiotic environment, such as temperature, time of infection, or nutrient availability,
can alter infection outcomes, either by interacting with the host immune system or the pathogen life
cycle [74]. These factors have been investigated in laboratory experiments in Drosophila, although
the ecological importance of each is not directly clear, as wild Drosophila have not been analyzed.
For example, temperature influences the virulence of DmelSV and CrPV, and the titer of DmelSV
and Kallithea virus in D. melanogaster [55,107,143]. Infection success may also depend on the time
of day during which an infection occurs, as the antibacterial immune response appears to be more
potent at night, in part due to a circadian rhythm-mediated increase in phagocytosis, although this
has not been investigated in the context of viral infection [247–249]. Nutrient signaling also has
substantial crosstalk with antiviral defense pathways, and starvation and macronutrient availability are
known modulators of innate immunity [80–82,250,251]. Although associations between macronutrient
profiles and efficacy of antiviral defense has not been assessed in Drosophila, African armyworms
“self-medicate” with high protein, low carbohydrate diets after baculovirus infection and a similar
diet leads to greater antibacterial defense in D. melanogaster [251,252]. Additionally, there is substantial
genotype-by-nutrition variation in antibacterial immunity, and polymorphisms have been mapped
which resistance to Providencia rettgeri in a diet-dependent manner [253]. Interestingly, most of these
variants are in genes without a known role in immunity [253].

The interaction between immunity and the abiotic environment has been much better studied in
mosquitoes, where vector competence is known to be modulated by variables emerging from different
mosquito habitats. For example, larval environmental stressors like starvation, competition, elevated
rearing temperatures, and low dose insecticide exposure were shown to increase the susceptibility of
Ae. aegypti to SINV infection. This observation was attributed to the higher expression of antimicrobial
peptides like cecropin and defensin as well as different stress-response genes like HSP70, HSP83,
transferrin and CYP6Z6 [254].

Reduced nutrient availability or larval overcrowding may lead to stress, starvation, and a
smaller adult size in mosquitoes, although the ultimate effect of these variables on vector competence
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is not clear. Nutritionally deprived and smaller-sized Ochlerotatus triseriatus females were better
at transmitting LACV due to the thinner basal lamina layer of their midguts, thereby allowing
more viruses to disseminate into the hemocoel and reach the salivary glands and be subsequently
transmitted [255]. Similarly, laboratory-derived smaller Ae. aegypti mosquitoes were more susceptible
to DENV infection, resulting in higher dissemination rates (frequency at which an arbovirus can infect
and replicate in the midgut epithelial cells and cross over into the hemocoel) ([256], but see [257]).
In contrast, a recent vector competence study of LACV in field collected Ochlerotatus triseriatus
mosquitoes showed the opposite result, where infected females were larger than uninfected ones [258].
Increased larval competition also resulted in increased DENV infection rates in Ae. albopictus, although
no such effects were observed with the lab-adapted Rockefeller strain of Ae. aegypti [259]. However,
in a recent investigation, smaller-sized larvae from a Trinidadian strain of Ae. aegypti exhibited reduced
susceptibility to DENV [260].

For many virus–vector combinations, it has been observed that mosquitoes held at lower
temperatures during the extrinsic incubation period (EIP, time period between the acquisition of a virus
through an infectious blood meal to its subsequent transmission to a susceptible vertebrate host) show
reduced infection and dissemination and/or transmission rates [261–264]. A higher temperature could
lead to a shorter extrinsic incubation period which in turn could lead to an increased transmission
potential, as has been reported in DENV-infected Ae. aegypti and Ae. albopictus mosquitoes [265,266].
However, the relationship is not so straightforward and an inverse effect has been seen with
WEEV-infected Cx. tarsalis mosquitoes and CHIKV-infected Ae. albopictus mosquitoes [267,268].

A mechanistic explanation for the effect of temperature on viral infection was proposed by
Adelman et al. These authors found that although siRNA production was unaffected, RNAi efficiency
was lower when Ae. aegypti mosquitoes were reared at a cooler temperature of 18 ◦C, which in turn
could have led to increased replication of CHIKV and YFV in these mosquitoes [269]. The authors
hypothesized that the differential effect of low temperature on virus replication and the RNAi
machinery determines the eventual outcome on virus transmission [269,270].

Several studies have shown that large fluctuations in diurnal temperatures at a higher mean
temperature (26◦C–30◦C) have a detrimental impact on development of immature stages, fecundity,
survival and susceptibility to DENV infection by prolonging the EIP [271–273]. These results correlate
well with the seasonal variation associated with DENV transmission in an endemic area like Thailand,
where smaller variations in temperature are seen during the high transmission season as opposed to
larger fluctuations during the low transmission season [271]. However, the same authors found that
similar fluctuations at a lower mean temperature (20 ◦C) result in shorter EIPs and increased potential
for DENV transmission [272]. It is thus evident that variation induced by temperature has a significant
effect on vector competence. This environmental variable is multi-factorial and given the importance
of climate change on the global spread of mosquitoes and arboviruses, it is paramount to model its
effect on virus transmission using realistic and natural parameters.

6.2. Sexual Dimorphism and Mating

Sexual dimorphism in immunocompetence is common across animals, where there is a trend
towards males suffering higher costs of infection [274]. In Drosophila, this may be true of viral
infections, which seem to cause more harm in males (although female flies are more affected by
bacterial infections) [275]. For example, the dicistroviruses DCV and CrPV are associated with higher
mortality rates in males, and DCV grows to a higher titer, indicating that males are less resistant
to these viruses [55,276]. Additionally, males have a lower tolerance to Kallithea virus infection,
and die at a much higher rate than females, even though Kallithea virus replicates to a lower titer in
males. Sex-specific immunity has not been well investigated in mosquitoes, because males are not
hematophagous and unable to vector viruses of medical concern.

Although reduced male immune function can be theoretically explained by sex-specific investment
in mating success and survival, the molecular mechanisms remain unclear, and may be specific to
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any given host–parasite combination [277–279]. Basic differences in immune-related traits between
uninfected males and females may, in part, help to explain the observed sexual dimorphism in
resistance and tolerance. For instance, females may be more developmentally resilient against infection.
There is a higher basal rate of intestinal stem cell proliferation and gut renewal, more circulating
phagocytes, and higher phenoloxidase activity in females [275,280,281]. Conversely, males may be
more primed for resisting infection on a transcriptional level, and genes encoding for Toll pathway
components tend to have higher basal expression in males [275].

In Drosophila, mating induces an immunosuppressive state, marked by variable AMP expression
and reduced resistance to some bacterial infections [282–285]. Although this may occur in other insect
species as well [286], it has not been well-studied in mosquitoes, presumably because blood-feeding
is contingent on copulation. The reduction in immune function in female flies has been linked with
increased synthesis of juvenile hormone (JH) [285,287,288], a multifunctional hormone required for
oogenesis [289]. JH signals through the germ cells expressed (gce) receptor, and is itself activated by a
male seminal protein, Sex Peptide (SP), that is transferred to the female during mating [290]. Removal
of the corpus allatum (the endocrine gland where JH is synthesized) or genetic ablation of gce or JH in
female flies, or SP in male flies, restored virgin levels of immunity post-copulation [285]. Although the
effect of mating on antiviral immune function has not been studied in flies, a Heliothis zea (the corn
earworm) nudivirus and a Mythimna separata (the northern armyworm) entomopoxvirus encode JH
regulatory genes likely obtained by horizontal transfer, indicating JH synthesis may be beneficial to
some DNA viruses [291,292].

6.3. Infection History

Infection with other viruses in the past and present may also influence the efficacy of antiviral
responses or replication of cohabiting viruses. Co-infection may occur frequently in D. melanogaster,
although interactions between viruses in this host have not been tested. In a Japanese population
of singly collected flies, 42% were uninfected, 13% were infected with a single virus, whereas 19%
had two infections, and the rest had multiple infections (n = 31) [293]. A similar pattern has been
observed in honey bees [294]. This could either imply that there are flies with general susceptibility
to diverse viruses, or that virus-by-virus interactions can promote infection in some cases, possibly
through expression of virally-encoded immune inhibitors [295,296]. A consistent observation has been
described in Cx. tritaeniorhynchus cells persistently infected with Culex flavivirus (CxFV), which led to
slight enhancement in Japanese encephalitis virus (JEV) and DENV replication [297].

In areas endemic for arbovirus transmission, multiple arboviruses may be co-circulating at the
same time. There have been several reports of DENV and CHIKV co-infections in humans during these
outbreaks [298–300]. Recently, with outbreaks of DENV, CHIKV and ZIKV coinciding in Latin America,
cases of triple co-infection have been detected [301]. The potential of Ae. aegypti and Ae. albopictus
mosquitoes to simultaneously transmit both or all three viruses in their saliva was investigated by
different groups. Indeed, multiple studies showed that a combination of two different viruses or all
three could be transmitted at the same time in the mosquito saliva. Only minor interference effects were
detected due to co-infection or infection of one virus prior to another [302–304]. As such, co-infection or
dual infection of Aedes spp. mosquitoes with other co-circulating arboviruses do not seem to influence
vector competence.

Alternatively, superinfection exclusion has been described in mosquito cells infected by mosquito-
specific viruses (i.e., non-vectored mosquito viruses), whereby a virus-infected cell is refractory towards
a secondary infection by a similar virus, although by an unknown mechanism [183,305]. For example,
prior infection of Ae. albopictus C6/36 cells by Palm Creek virus (PCV) was found to moderately
suppress the replication of two different flaviviruses—Murray Valley encephalitis virus and WNV [306].
In Cx. annulirostris, high PCV titers could suppress subsequent WNV infection when the virus
was introduced through an infectious blood meal, although not when intra-thoracically inoculated.
PCV was found to localize to mosquito midgut cells and may potentially interfere with midgut infection
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or escape [307]. Similarly, the insect-specific Nhumirim virus (NHUMV) was found to significantly
interfere with the replication of WNV and SLEV in C6/36 cells, and to reduce WNV transmission by
40% in Cx. quinquefasciatus in vivo [308,309]. Finally, Eilat virus (EILV), a mosquito-specific alphavirus,
interfered with a panel of alphaviruses in vitro, and delayed CHIKV infection in Ae. aegypti [310],
similar to early CxFV inhibition of WNV in Cx. pipiens [311]. Despite considerable evidence that
mosquito-specific viruses can modulate vector competence of several mosquito species, world-wide
distributions and frequencies of co-infections are unknown, and no association of these viruses with
refractory or susceptible populations of a particular mosquito species has been found.

Recently, a mechanism for antiviral immune memory has been described in flies, hinting that past
infections could contribute to variation in defense among individuals. During infection, hemocytes
take up virus and exogenous viral dsRNA, which are reverse transcribed into DNA molecules [23–25].
These vDNAs serve as a template for de novo synthesis of secondary siRNA, which are packaged into
exosomes and are proposed to mediate a systemic immune response [25]. Although virus-specific
immune memory has not been observed for DCV infections [312], immune memory has been observed
in the Indian mealmoth, Plodia interpuctella, in response to a DNA virus, where the memory benefit can
be trans-generational [313]. Therefore, successful mitigation of virus infection may render the host
refractory towards future infection with similar strains.

6.4. Endogenous Viral Elements—Non-Retroviral Integrated RNA Virus Sequences

Arboviruses are non-retroviral positive or negative-sense RNA viruses that do not produce a
DNA intermediate in their replication cycle. Surprisingly, however, arbovirus-derived viral DNA
(vDNA) forms have been detected in infected mosquitoes and mosquito cells [314,315]. These vDNA
forms are thought to be byproducts of reverse transcriptase activity by cellular retrotransposons [23,24].
Indeed, treating infected cells and mosquitoes with azidothymidine (a reverse transcriptase inhibitor)
led to a dose-dependent reduction in vDNA and reduced production of virus-derived siRNAs in
CHIKV-infected Ae. albopictus mosquitoes. Most importantly, loss of vDNAs reduced the survival of
infected mosquitoes, suggesting that vDNA production is essential for tolerance to infection, possibly
by modifying small RNA production [24]. If confirmed in other virus–vector combinations, these
results suggest that a complex interplay between viruses, transposable elements, vDNA production and
RNAi responses are crucial for sustaining a stable infection and thus for transmission to a susceptible
mammalian host.

During the course of acute infection, vDNAs were also found in the wings and legs of
infected mosquitoes, suggesting that these DNA elements may be episomal [24]. Although no
experimental evidence exists at the moment, it is quite possible that these viral DNA forms are
the precursors to endogenous viral elements (EVEs, also referred to as non-retroviral integrated RNA
virus sequences), found integrated in the genomes of several vector mosquito species [314,316–319].
Recently, a comprehensive bioinformatic analysis revealed EVEs from different arboviral families
(Flaviviridae, Rhabdoviridae, Reoviridae and members from the Order Bunyavirales) predominantly in
the genomes of Ae. aegypti and Ae. albopictus and to a much lower extent in Cx. quinquefasciatus
and Anopheline mosquitoes [320]. Most of these sequences belong to insect-specific viruses, which
are likely maintained in nature by transovarial transmission and would therefore be more likely to
infect germline cells, produce viral DNA forms, and be stably inherited [320]. EVEs were found
to be significantly enriched in piRNA clusters, but were also found in genic and intergenic regions.
More importantly, EVEs produced piRNAs in an antisense orientation to viral mRNA sequences,
suggesting that they have antiviral potential. There is variation in the EVE content in the genomes from
geographic populations of mosquitoes, suggesting that the acquisition of EVEs is a highly variable
process and that the EVE repertoire could be an archive of past infections [320]. An exciting possibility
is that integration of viral sequences in mosquito genomes coupled with their production of antisense
piRNAs serve as an RNAi-based adaptive immune system and could potentially either target or help
tolerate infections with cognate viruses [321]. These new insights into the dynamic composition of
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mosquito genomes coupled with the compelling phenotype of vDNA-associated tolerance provide a
new perspective on the molecular basis for variation in virus–vector interactions.

7. Concluding Remarks

The outcome of viral infection is characterized, in part, by general immune responses, virus-
specific responses, and variation among host individuals. The mechanisms and relative importance
of these factors in host–virus interactions have been the focus of many studies on Drosophilidae and
Culicidae insects and their infecting viruses. D. melanogaster has been an instrumental model in
discerning molecular mechanisms of immunity, and large infection experiments across genotypes
have led to the identification of antiviral resistance loci. However, only five natural viruses have
been isolated, and, of these, three have been used in genome-wide association studies (GWAS) or
mapping studies. GWAS for resistance to non-natural viruses found no associations, underlining
the importance of shared coevolutionary history in maintaining genetic variation for resistance [130].
Thus, the isolation of new Drosophila viruses will enable a more powerful comparative framework to
assess the generality of immune responses and patterns of genetic variation in resistance. In contrast,
there are many isolates of native mosquito viruses, but very few studies focusing on identifying host
loci underlying resistance to viral infection. Although large-effect QTL have been mapped for DENV
and LACV transmission (Table 2), difficult lab rearing, a lack of genomic tools, highly structured
populations, and an incomplete understanding of arbovirus host range has largely precluded fine
scale mapping experiments or GWAS of viral resistance (Table 2) [10,137]. The recent release of
the complete Ae. aegypti genome marks an important step in overcoming these hurdles, and may
make quantitative genetics in this species more feasible [322]. Comparative transcriptomic studies in
Ae. aegypti populations susceptible and refractory to DENV infection have led to the identification
of a few host genes that may contribute to differential vector competence [184,185]. However, many
of these genes need to be validated in multiple susceptible versus refractory populations and their
precise molecular mechanisms need to be characterized. The further implementation of gene-knockout
techniques in live mosquitoes will undoubtedly shed further light on the role of these factors in
determining vector competence.
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