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A B S T R A C T

Randomized clinical trials (RCT) increasingly investigate combination therapies. Strong biological rationale or
early clinical evidence commonly suggest that the effect of the combination treatment is importantly greater
than the maximum effect of any of the individual treatments. While these relationships are commonly well-
accepted, RCTs do not incorporate them into the design or analysis plans. We therefore propose a simple
Bayesian framework for incorporating the known relationships that the effectiveness of a combination treatment
exceeds that of any individual treatment, but does not necessarily exceed the sum of individual effects. We term
the collation of these two relationships ‘fractional additivity’. We performed a binary outcome simulation study
of a response adaptive randomized three-arm clinical trial with treatment arms A, B, and A&B that allowed for
dropping an inferior treatment arm and terminating the trial early for superiority during any of 4 interim
analyses. We compared the Bayesian fractional additivity model to a conventional analysis by measuring the
expected proportion of failures, sample size at trial termination, time to termination, and root mean squared
error of final estimates. We also compared the fractional additivity model to a ‘full additivity’ model where the
effect of A&B was assumed to be the sum of the effect of A and B. In simulation scenarios where important
fractional additivity or full additivity existed, the Bayesian fractional additivity model yielded a 3–4% relative
reduction in expected number of failures, and a 30%–50% relative reduction in sample size at trial termination
compared to a conventional analysis. These results held true even when the Bayesian fractional additivity model
employed a biased prior. The full additivity model had slightly higher gains, but too frequently terminated the
trial at the first interim look. In scenarios where no or weak fractional additivity exists, the expected sample size
and time to termination were similar for the Bayesian fractional additivity model with a moderately optimistic
bias about fractional additivity and the conventional model. Lastly, the fractional additivity model generally
yielded similar or lower root mean squared error compared to the other models. In conclusion, our proposed
Bayesian fractional additivity model provides an efficient approach for estimating effects of combination treat-
ments in clinical trials. The approach is not only highly applicable in adaptive clinical trials, but also provides
added power in a conventional RCT.

1. Background

Several clinical trials investigate combinations of interventions that
have already been demonstrated to be individually effective.
Historically, the superiority of combination therapies (vs single agent
therapies) have been demonstrated medical areas such as in cardio-
vascular diseases (e.g., the poly-pill) and respiratory diseases [3,4].
Recently, superiority of combination therapies have been definitely
demonstrated in phase III randomized clinical trials (RCT) in areas such
as immuno-oncology and type II diabetes (see example Box 1 for de-
tailed description) [1,2,5,6]. In these combination therapy RCTs, the
effectiveness of the individual interventions is typically well known,
and there are typically substantial biological rationale, early clinical

evidence, or evidence from related disease areas to suggest that the
combination of interventions will work markedly better than any of the
interventions alone [3,4,7]. However, RCTs of combination treatments
commonly analyse a combination therapy arm as if it is a separate in-
dividual intervention. For example, this is generally the case in 2 × 2
factorial trials across all areas of medicine. Thus, no advantage is taken
of prior knowledge and assumptions about the combination therapy in
the conduct and analysis of the clinical trial.

While true additivity (i.e. the property that the effect of the com-
bination of two intervention equals the sum of the two individual
treatment effects) is rare, in many cases it is plausible to assume that
treatment combinations investigated in clinical trials will exhibit
markedly better effects than each of the individual treatments alone. In
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other words, it is plausible to assume clinically meaningful fractionally
additive effect of the combination treatment investigated (also pre-
viously referred to as antagonistic additivity [3,7]). Thus, structurally
incorporating fractional additivity into the statistical analysis of a clin-
ical trial should theoretically suffice to optimize the trial design in
terms of mitigating sample size requirements and trial duration. Yet to
our knowledge, no clinical trial has previously capitalized on prior
knowledge about additivity or fractional additivity.

We therefore propose a Bayesian framework for incorporating
fractional additivity in the statistical model and analysis of clinical trial
of combination treatments. The proposed model expresses the effect of
a combination treatment, A&B, as the maximum of A and B, plus a
fractional additivity parameter times the minimum of A and B. A weakly
informative prior distribution is assigned to the fractional additivity
parameter to reflect plausible ranges of fractional additivity, yet does not
rule out equipoise nor full additivity (also previously referred to as
synergistic additivity). Due to the hypothesized efficiency gain we apply
the proposed Bayesian fractional additivity model within an adaptive
clinical trial setting. We test the performance of the proposed model
against a conventional approach using simulations.

2. Methods

We propose a Bayesian fractional additivity modelling framework to
optimize estimation of additive effects in clinical trials. Under the
conjecture that the proposed model adds considerable efficiency com-
pared to the conventional framework, we conduct a simulation study to
assess its performance in an adaptive clinical trial setting. In addition,
we illustrate the evolution of posterior probabilities informing trial
adaptation in 3 simulated clinical trials.

For simplicity, we only consider a binary outcome clinical trial
setting in this paper. However, the proposed model can easily be gen-
eralized to other types of outcomes (e.g., continuous or time-to-event
data).

2.1. The Bayesian fractional additivity model

Under the proposed fractional additivity model, we make two
seminal assumptions:

1) The effect of A&B is likely larger than the maximum of A and B;
2) The effect of A&B is likely smaller than the sum of the effects of A

and B.

Letting θA, and θB denote the log odds of the treatment responses for
A and B, respectively, and letting θA&B denote the log odds treatment
response of A&B, we can express θA&B as a function of θA, and θB as
follows:

θA&B = max(θA, θB) + f·min(θA, θB), (1)

where f is likely a number between 0 and 1 that denotes the fraction of
additivity that the combination treatment exhibits (note that ‘θA&
B = θA + θB’ is what is conventionally referred to as ‘full additivity’).

This model is easily set up in a Bayesian framework that places non-
informative priors on the effect sizes (i.e., the log odds) of individual
treatment effects, θA and θB, and a weakly-informative prior on the
fractional additivity parameter f. The model is fit using RStan version
2.14.1 (Stan is a probabilistic programming language that implements
Hamiltonian Monte Carlo and RStan is an R interface to Stan) [8]. The
Stan implementation of the model is provided in the supplementary
material.

2.1.1. Prior choice for fractional additivity parameter
The parameter f represents the fractional additivity. Under the as-

sumptions for model (1), f should lie between 0 and 1, and so a first

natural choice would be a beta distribution. However, strictly con-
straining f to the (0,1) interval, by the choice of prior, implicitly vio-
lates the assumption of equipoise in RCTs. Thus, hard constraints
should be avoided to allow deviations from the fractional additivity
assumption. We instead propose to use a normal distribution as a prior
for f. Expert belief can be used to determine the prior mean, while a
variance of 0.16 is supposed to introduce sufficient uncertainty under
model (1) to allow the accumulating data to shape the inference, while
still being sufficiently informative to stabilize and strengthen estima-
tion (see Table 1 for 95% confidence intervals for group responses
under this choice of variance). In practice, f is not known, but good
biological rationale or early clinical evidence is typically available to
inform f's distribution. In this paper, we specifically test scenarios
where the mean prior distribution for f is unbiased (i.e., the truth in the
simulation), and where f is biased positively or negatively by a 25% (see
section 4.2 for further details).

2.2. Adaptive design

Due to the anticipated efficiencies of the proposed fractional ad-
ditivity model as well as the Bayesian nature of the model, we propose
applying the model within an adaptive trial design framework. For
completeness, however, we confirmed the superior power of the model
in a conventional parallel design framework (see Fig. S.1 in supple-
mentary material). We consider a three-arm response adaptive rando-
mized (RAR) clinical trial design that allows for 1) continually adapting
the allocation ratios by the updated probabilities of superiority for any
treatment; 2) dropping of an inferior treatment arm; and 3) early
stopping for superiority. At the beginning of the trial patients are as-
signed to each of the three intervention arms with equal probabilities
(1:1:1). Adaptations can in principle be applied anytime new outcome
data becomes available. However, for simplicity and computational
feasibility we consider 4 interim analyses at which adaptations can be
made. The four interim looks are spaced equally between the first pa-
tient enrollment and reaching a fixed parallel design sample size re-
quirement between A&B and the maximum of A and B (e.g., 80% power
and 5% type I error to detect a 20% difference). Thus, the first interim
analysis occurs when outcome data on 20% of this required sample size
has been accrued, the second at 40%, and so forth. Trial adaptations are
based on the interim posterior probabilities that A, B, and A&B, re-
spectively are better than the two other interventions. Let pA best, pB best,
and PA&B best denote these three probabilities. At each interim look, the
allocation proportions are updated to the ratio between the square roots
of these three probabilities (i.e., √pA best: √pB best: √PA&B best). The use of
square roots rather than crude probabilities avoids too rapid adaptation
and has become common place in adaptive trials [9]. We also allow for
dropping an inferior treatment arm if the square root probability of
superiority falls below 0.01, as well as early termination of the trial for
superiority if the probability of superiority exceeds 0.95 at any interim

Table 1
Overview of simulation scenarios.

Simulation Parameter Fixed values by scenario

Response probabilities for Tx A
and Tx B

1 Pr(response with A) = 35%, Pr
(response with B) = 40%

2 Pr(response with A) = 40%, Pr(response
with B) = 40%

Fractional additivity 1 f = 0.50
2 f = 0.75
3 f = 1.00

Prognostic factor variability σ2 = 0.16 corresponding to 95%CI of group
response of:
1 6.8%–80% when Pr(response with
A) = 35%

2 8.4%–83% when Pr(response with
A) = 40%

K. Thorlund et al. Contemporary Clinical Trials Communications 8 (2017) 227–233

228



look. If the termination criterion is not met during interim looks, the
trial continues until the total sample size is reached.

Note, the above adaptation and termination rules were established
via preliminary simulations monitoring evolution of posterior prob-
abilities at a fixed 1:1:1 allocation (see supplementary material Figs. S2
to S.4).

2.3. Data model

Data for a three-arm clinical trial are simulated from given values
for probability of response in treatment arm A and in treatment arm B, a
fractional additivity value, and added variability to introduce potential
for confounding by prognostic imbalance at lower sample sizes. For
each patient, a treatment is first allocated randomly according to the
given allocation proportion. For patient i, the probability of response on
treatment Xi is given by

= = + ∼X θ ε σpi Pr(response )   expit(     ) where N(0, ),i X i
2 (2)

where θX denotes the log odds for treatment X , εi is a random offset to
impose the well-known risk of prognostic imbalance, and σ2 is the
variance of εi determining the degree of potential prognostic imbalance.
The incorporation of prognostic imbalance via εi is similar to that em-
ployed in previous simulation studies of clinical trials [10,11]. Subse-
quently, the binary response, ri, follows a Bernoulli distribution

ri ∼ Bernoulli(pi). (3)

For the treatment A&B, θA B& is calculated using equation (1) with
given values of θA, θB, and f.

3. Illustration of the fractional additivity model

To illustrate the performance of the fractional additivity model
under the investigated adaptive clinical trial design, we select two si-
mulated clinical trials representing possible clinical trial settings. These
two select examples are simulated with the methods described above.
We monitor how the probabilities of superiority for each treatment
evolve over time along with the models' estimates of intervention ef-
fects, and how these influence adaptation decisions under the con-
sidered adaptive design.

The examples were chosen based on the number of interim looks
required for a decision to be reached. The two selected examples re-
present.

a) an example with low early random error yielding a rapid termina-
tion of the trial as early interim data strongly agree with the model;

b) an example with high early random error necessitating some interim
looks before the fractional additivity assumption is confirmed by the
data.

Fig. 1 presents the evolution of the probabilities of superiority in
relation to the evolution of posterior distributions of f and θA&B for each
of the above two examples. Fig. S.5 in the supplementary material
presents the same for θA and θB. The speed of adaptation is strongly
correlated to the accuracy of estimates of f. For example, in scenario a)
the posterior distribution of f at the first interim look is concentrated
around the truth ( =f 0.5). By contrast, in scenario b) the posterior
distribution of f converges more slowly and at the fourth interim look
where the trial meets the stopping criteria f and θA&B are even slightly
downward biased. It is also worth noting the interplay between the
evolution of posterior probabilities of f and the treatment effects (θA, θB
and θA&B). In scenario a), the first interim look yields an overestimate of
θA and an underestimate of θB, which nonetheless together add up to an
overestimate of θA&B. At the second interim look, the biases of θA and θB
are more negligible. From the first interim overestimate of θA&B the
RAR has ensured a relatively large number of patients enrolled to A&B,

thus substantially increasing the precision of A&B, which appears to
support a high probability of superiority for A&B thus leading to ter-
mination at the second interim look. In scenario b), both θB and θA&B
start at slight underestimates. In the second interim look θA is also
slightly underestimated, leading to all three parameters being under-
estimated. While A&B is trending as superior to both A and B in the
third interim look, the point estimates do not change, and thus, it is
only at the fourth interim look that sufficient precision is available to
assert trial termination.

We have selected the above two examples under the case that Pr
(response with A) = 40%, Pr(response with B) = 40% and =f 0.5.
With respect to statistically detecting superiority of A&B, this is a re-
latively ‘challenging’ scenario as the superiority of A&B to the in-
dividual treatments is fairly subtle. Thus, out of all the considered si-
mulations scenarios (see below) the signal to noise ratio is the lowest in
this scenario. With larger fractional additivity such as 0.75 or 1 (tested
in the simulations) or with Pr(response with A) = 35%, RAR and ter-
mination rules are likely more efficient due to the more apparent
treatment effect and superiority of A&B.

4. Simulation study

4.1. Simulation scenarios

To test the empirical performance of the proposed fractional ad-
ditivity model as well as the full additivity model against the conven-
tional approach we run 2000 simulations from the three arm clinical
trials data model described above across six select scenarios where
meaningful fractional additivity or full additivity existed. These sce-
narios include pre-set values for probability of response in treatment
arms A and B, and given fractional or full additivity values. These are
presented in Table 1. In addition, the variance of the prognostic im-
balance offset is set to σ2 = 0.16, which corresponds to reasonably wide
distributions for the individual-patient response probabilities (see
Table 2). Lastly, across the six chosen combinations of θA, θB, and f, we
consider the fixed sample size requirement to detect the true difference
between A&B and the maximum of A and B with 80% power and 5%
type I error (two sided) as last possible point trial termination (under
the adaptive design). The ‘true’ difference between A&B and the max-
imum of A and B is determined by the set simulation scenario values,
which are presented in Table 3.

In addition to the above simulation scenarios, we also consider cases
where no or weak fractional additivity is present, i.e., =f 0 and

=f 0.25. Like the above six scenarios, we consider the fixed sample size
requirement to detect the true difference between A&B and the max-
imum of A and B with 80% power and 5% type I error (two sided) as
last possible point trial termination (under the adaptive design).
However, since the simulated fractional additivity is either absent or
weak, the assumed difference was set to an upward bias of 0.5 added to
the true (simulated) fractional additivity (i.e., 0.5, when f = 0.25, and
0.75 when f = 0.25) These four scenarios with no or weak fractional
additivity are analysed separately from the first 6 scenarios with
meaningful fractional or full additivity mentioned above to represent
the situation where the fractional additivity is an incorrect assumption.

4.2. Analysis

We compare the Bayesian fractional additivity model (1) with a
corresponding conventional Bayesian model in which A&B was con-
sidered independent of A and B (i.e., as a third treatment C) as well as a
model that incorporates full additivity assumption, i.e. θA&B = θA + θB.
We also test three sets of priors for the fractional additivity coefficient f:
a weakly informative prior without bias and a weakly informative prior
with 25% optimistic bias and a prior distribution with 25% negative
bias (see also Table 2). For the scenarios where no or weak fractional
additivity exists, only priors with means 0.5 and 0.75 where used to
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represent the case that the fractional additivity assumption is in-
corporated incorrectly via overtly optimistic priors. The models are
compared under the described adaptive clinical trial setting in which
posterior probabilities are used to drive response adaptive allocation,
early termination of arms, and early termination of the trial.

The models are assessed by conventional ethics and efficiency
measures in the RAR framework explained above. First, we consider the
expected proportion of failures (EPF) and the expected sample size
(ESS) at time of termination. In addition to ESS, we also consider the
cumulative probabilities of trial termination for all models at each in-
terim look. The rationale for estimating EPF is that when a therapy is
less effective than the others, one would hope that the trial is adapted
more quickly to assign fewer patients to the inferior arms, thereby
decreasing the number of negative outcomes. Note, however, for sce-
narios with weak or no additivity we do not consider EPF as there is no
meaningful ethical gain from allocating more patients to an experi-
mental treatment arm. Second, from the statistical perspective bias and
precision of the estimates are common bases of comparison. Therefore,
we compute the Root Mean Squared Error (RMSE) for the effect size
estimates obtained throughout the trial analysis for the two models. For
therapy T the RMSE is given by,

∑ ∑= −
= =

ˆRMSE
MK

θ θ1 ( ) ,T
m

M

k

K

mk T T
1 1

( )
2

where M is the number of simulations, K is the number of looks at the
data throughout the trial (max of K is 5 if the final look is at the fixed
sample size and the trial is not terminated early), θT is the true effect
size of therapy T and θ̂ mk T( ) is the estimated (posterior mean) effect size
after interim look k and in simulated trial m.

5. Results

Fig. 2 presents the EFP across the simulation scenarios with mean-
ingful fractional additivity or full additivity (i.e., f = 0.5, 0.75, or 1.0.
Figs. 3 and 4 show the ESS at trial termination and cumulative prob-
abilities of trial termination over interim looks for the scenarios with
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Fig. 1. Presents two illustrative examples of the evolution of posterior distributions with the fractionally additive model under the adaptive design: an example where the data shows the
expected fractional additive effect early (first row); one example in which fractional additivity is less pronounced due to random error and a larger number of batches is required to
identify the superior therapy (second row). The graphs in the first column show the evolution of the probabilities of being the best therapy and the graphs in the second and third columns
show the posterior density estimates for the fractional additivity parameter and the effect size of combined treatments evolving as more data are collected.

Table 2
Overview of analytic approaches tested for each scenario.

Model specification Description

Statistical model 1 Fractional additivity model: logistic model
with θA&B given by equation (1)

2 Conventional logistic model treating θA&B as
independent of θA and θB

Priors for f (fractional
additivity)

1 Normal distribution, mean = scenario f (i.e.,
no bias), variance = 0.16

2 Normal distribution, mean = f ± 0.25 (i.e.,
25% absolute bias), variance = 0.16

Randomization allocation 1 Adaptive by adjusted posterior probability of
being best (see analysis section))

2 Conventional 1:1:1 ratio (see sensitivity analysis
in supplementary material)

Table 3
Total fixed sample size requirement for each scenario.

Pr(response with A) Pr(response with B) f Total sample size per arm

0.35 0.4 0.50 1745
0.40 0.4 0.50 1637
0.35 0.4 0.75 789
0.40 0.4 0.75 736
0.35 0.4 1 452
0.40 0.4 1 420
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meaningful or full additivity, and Figs. S.9 to S.10 in the supplementary
material present these two plots for scenarios with no or weak frac-
tional additivity. The simulation results for MSE are presented in Figs.
S.8 to S.10 (meaningful or full additivity) and Figs. S.11 to S.13 (no or
weak fractional additivity) in the supplementary material.

5.1. Expected proportion of failures

In all scenarios, the fractional additivity models yielded a lower EPF
than the conventional model. Across scenarios this reduction of EPF

approximately varied between 3 and 4% of patients. All fractional ad-
ditivity models (positive prior bias, negative prior bias, no prior bias)
were highly similar. The full additivity model attained the smallest EPF,
but as stated in Section 5.3, it is due to underestimating the individual
treatment effects that the trial is terminated early under this model. The
full additivity model yielded an approximate 5% reduction in EPF
compared to the conventional model across scenarios.

f: 0.5
f: 0.75

f: 1

P_A = 0.35 P_B = 0.4 P_A = 0.4 P_B = 0.4

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

E
P

F

model
Conventional

FA_biased_n

FA_biased_p

FA_unbiased

FullA

Fig. 2. Expected proportion of failures in 6 si-
mulation scenarios for the proposed fractional
additivity model with positively and negatively
biased and unbiased priors on θA&B, the conven-
tional model (i.e, where θA&B is treated as com-
pletely independent of θA and θB and all priors are
non-informative) and a model with full additivity
assumption (f = 1). The upper, middle and lower
plots present the scenarios where the true frac-
tional additivity parameter value (f) is set to 0.5,
0.75, and 1, respectively. The left plots present
the scenario where the failure probabilities of
treatments A and B are set to PA = 0.35 and
PB = 0.40, whereas the plots to the right present
the scenarios where PA = 0.40 and PB = 0.40.
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Fig. 3. Expected sample size in 6 simulation
scenarios for the proposed model with posi-
tively and negatively biased and unbiased
priors on θA&B, the conventional model (i.e,
where θA&B is treated as completely in-
dependent of θA and θB and all priors are
non-informative) and a model with full ad-
ditivity assumption (f = 1). The upper,
middle and lower plots present the scenarios
where the true fractional additivity para-
meter value (f) is set to 0.5, 0.75, and 1,
respectively. The left plots present the sce-
nario where the failure probabilities of
treatments A and B are set to PA = 0.35 and
PB = 0.40, whereas the plots to the right
present the scenarios where PA = 0.40 and
PB = 0.40.
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5.2. Expected sample size at trial termination

In the scenarios where meaningful or full additivity was simulated,
the ESS at the trial termination was consistently smaller for the frac-
tional additivity models and the full additivity model. Across all sce-
narios the fractional additivity model approximately reduced the ESS
by a relative 30–50%, and the full additivity model by approximately
50–60%. For scenarios where fractional additivity existed (i.e., f = 0.5
and 0.75), the full additivity model yielded substantially smaller ESS
than the fractional additivity models. For the scenario where full ad-
ditivity existed (i.e., f = 1.00), the ESS were similar across all models.
The absolute decrease in ESS varied from approximately 1000 to 4000
patients across the six scenarios. The average time to trial termination
was also lower under both the fractional additivity models and the full
additivity model. Fig. 4 presents the cumulative probability of trial
termination by the cumulative information fraction (i.e., the fraction of
required sample size reached). Under all scenarios, the cumulative
probability of termination increases more rapidly under the fractional
additivity models and full additivity model compared to the conven-
tional model. Similar to the EPF, the ESS values where smaller under
the full additivity model due to early termination of the trial resulted
from underestimating the individual effects. In the scenario where
f = 0.5, the full additivity model resulted in trial termination in over
90% of all first interim looks. In scenarios where f = 1.0, the fractional
additivity models and the full additivity model performed similarly.

In the scenarios where no or weak fractional additivity was simu-
lated, the ESS at termination was approximately 3-fold lower under the
full additivity model and the fractional additivity model assuming a
0.75 positive bias. However, ESS of the fractional additivity model as-
suming a 0.5 positive bias did not differ markedly from the ESS of the
conventional model.

5.3. Root mean squared error

In the scenarios where meaningful or full additivity was simulated,
the RSME estimates of A&B were similar across all models with no

difference between any of the models exceeding 0.02. For estimates of
A and B, the highest RSME was generally associated with the full ad-
ditivity model in scenarios of 0.5 fractional additivity, the conventional
model was associated with the highest RSME in the scenarios of full
additivity. The conventional model generally had slightly higher RSME
than the full additivity model in scenarios with fractional additivity of
0.75, although some variation to this trend could be observed. Both had
higher RSME than all three fractional additivity models for A and B
across all scenarios and were similar for full additivity. Note, however,
the sample sizes are larger for the conventional models and RMSEs are
not standardized by differences in sample sizes between simulations. As
for the full additivity model the RMSEs for the individual effect esti-
mates are systematically larger except for, f = 1, in which case full
additivity is the correct assumption. We emphasize the increase in
RMSE under the full additivity model is mainly due to the bias in es-
timating the effect sizes. The fractional additivity model does just as
well when full additivity is a correct assumption and therefore it is the
recommended model since in practice the full additivity assumption is
not verifiable.

6. Discussion and conclusion

In this paper, we have proposed a Bayesian fractional additivity
model, which more efficiently estimates an established superiority of a
combination treatment compared with the single agents of the treat-
ment combination. We have demonstrated, via simulation, that the
proposed model is highly applicable and efficient under adaptive clin-
ical trial designs. In particular, the proposed model increases power,
reduces mean squared error results and results in notable reduction in
expected sample size and expected proportion of failures. The model
also performs as well as a full additivity when full additivity exists,
whereas a full additivity model performs poorly in scenarios where full
additivity is not met. Lastly, we have demonstrated via simulation that
the proposed fractional additivity model has acceptable statistical
properties when no or weak fractional additivity exists. While the
proposed model is only presented for binary outcomes, both the model
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and the simulation results are easily generalizable to other types of
outcomes.

To our knowledge, our proposed model is the first model to allow
for efficient modelling of fractional additivity. The superior performance
of the Bayesian fractional additivity model over conventional model,
both within an adaptive design framework and a conventional RCT
framework, was expected as the model is distinctly designed to capi-
talize on the link between the individual agents and the combination of
these. Further, the added information via prior on the fractional ad-
ditivity parameter f is expected to decrease sample size requirements. It
is also comforting that under a substantially biased prior (both opti-
mistic and pessimistic) for f the model still performs similarly to that of
an unbiased prior. Likewise, the superior performance of the fractional
additivity model over the full additivity model was also expected as the
underlying assumption of the latter is, of course, violated when full
additivity does not exist. The performance of the fractional additivity
model (with optimistic priors) under scenarios where no or weak
fractional additivity exist suggest a reasonable trade-off between a re-
latively small risk of stopping early for superiority versus the sub-
stantial improvement in efficiency one stands to gain if fractional ad-
ditivity holds. Of course, it should be recognized that since this paper is
the first to propose a Bayesian fractional additivity model, only a lim-
ited number of scenarios have been covered. Scenarios with lower po-
pulation event rates or multi-center clinical trials where large between-
center variation exists could prove challenging for the fractional ad-
ditivity model to adapt to. While we hope to pursue this further is later
methods papers, clinical trial investigators employing the proposed
model should of course make sure to run a comprehensive set of si-
mulations during the planning of their adaptive trial. Even with this
precaution, there are still many examples where pre-trial simulations
have concluded one thing, but the opposite finding was observed upon
trial termination. Thus, as with any novel method for adaptive clinical
trials we can only recommend caution and diligence.

Since the number of clinical trials investigating combination
therapies are increasing, our proposed model will have incremental
relevance and utility over the next years. Of course, we would re-
commend scrutiny around applying our model to the specific context.
In our simulations, we have applied somewhat arbitrary but general
weakly informative priors to the fractional additivity parameter. In
practice, prior knowledge (or lack thereof) about the likely degree of
fractional additivity may call for use of different priors than the ones
applied in this paper. Further, as several clinical trials of combinations
will surely also be evaluating efficacy and safety with time-to-event

outcomes or continuous outcomes, the proposed model framework
should be expanded accordingly. In this vein, equation (1) is easily
generalizable as long as a suitable link function can be chosen, but the
choice of priors may require further testing in preliminary simulation
studies.

In conclusion, the proposed Bayesian fractional additivity model
provides an efficient approach for estimating effects of combination
treatments in clinical trials. The approach is highly applicable in
adaptive clinical trials, but also provide added power in conventional
settings.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.conctc.2017.11.001.
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