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Abstract

Background: Current anti-dementia drugs cannot benefit mild cognitive impairment (MCI). Sodium benzoate (a D-amino acid 
oxidase [DAO] inhibitor) has been found to improve the cognitive function of patients with early-phase Alzheimer’s disease 
(mild Alzheimer’s disease or MCI). However, its effect on brain function remains unknown. This study aimed to evaluate the 
influence of benzoate on functional magnetic resonance imaging in patients with amnestic MCI.
Methods: This was a 24-week, randomized, double-blind, placebo-controlled trial that enrolled 21 patients with amnestic 
MCI and allocated them randomly to either of 2 treatment groups: (1) benzoate group (250–1500 mg/d), or (2) placebo group. 
We assessed the patients’ working memory, verbal learning and memory, and resting-state functional magnetic resonance 
imaging and regional homogeneity (ReHo) maps at baseline and endpoint.
Results: Resting-state ReHo decreased in right orbitofrontal cortex after benzoate treatment but did not change after placebo. 
Moreover, after benzoate treatment, the change in working memory was positively correlated with the change in ReHo in right 
precentral gyrus and right middle occipital gyrus; and the change in verbal learning and memory was positively correlated 
with the change in ReHo in left precuneus. In contrast, after placebo treatment, the change in working memory or in verbal 
learning and memory was not correlated with the change in ReHo in any brain region.
Conclusion: The current study is the first to our knowledge to demonstrate that a DAO inhibitor, sodium benzoate herein, 
can alter brain activity as well as cognitive functions in individuals with MCI. The preliminary finding lends supports for DAO 
inhibition as a novel approach for early dementing processes.
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Introduction
Mild cognitive impairment (MCI) is a slight cognitive impair-
ment that is accompanied by mostly normal function in pro-
cesses that control the performance of daily activities (Levey 
et al., 2006). The concept of MCI was developed in an attempt 
to recognize dementia in its earliest clinically expressed form 
(Bowen et  al., 1997; Boeve, 2012). MCI, particularly amnestic 
MCI (aMCI), is a risk factor or a prodromal stage of Alzheimer’s 
disease (AD).

Acetylcholinesterase inhibitors (AChEIs) have been devel-
oped for treating AD, especially mild-moderate AD (Birks, 2006; 
Burns et al., 2006). However, AChEIs are not recommended for 
the treatment of MCI because of the weak beneficial effects 
(Fellgiebel, 2007). Memantine, an N-methyl-D-aspartate (NMDA) 
receptor (NMDAR) antagonist, has been used to treat moderate-
severe AD based on the “glutamate excitotoxicity theory” 
(Reisberg et al., 2003; Scarpini et al., 2003) but not for mild AD 
(Schneider et al., 2011). Moreover, MCI is not effectively treated 
by memantine either (O’Brien et al., 2011). The poor efficacy of 
AChEIs and memantine for MCI implies that there should be 
other mechanism(s) underlying the pathogenesis of MCI.

NMDAR, a subtype of ionotropic glutamate receptor, plays 
an important role in synaptic plasticity, learning, memory, 
and cognition (Wu et  al., 2007; Amano and Maruyama, 2011). 
The NMDAR density decreases with age (Segovia et  al., 2001). 
In AD patients, glutamate levels declined in cerebrospinal fluid 
(Martinez et al., 1993) and brain (Lowe et al., 1990), the number of 
glutamate terminals decreased in the hippocampus (Cowburn 
et al., 1988), and D-serine (an NMDAR agonist) levels decreased 
in the serum (Hashimoto et al., 2004). Therefore, dysfunction in 
the NMDAR neurotransmission may contribute substantially to 
the pathophysiology of AD.

The classical way for activation of NMDAR is applying agon-
ists, such as D-serine (Esposito et  al., 2012) or D-cycloserine 
(Pitkanen et al., 1995a, 1995b). However, D-cycloserine has failed 
in the treatment of patients with AD (Laake and Oeksengaard, 
2002). A novel way to activate NMDAR is inhibiting the activity 
of D-amino acid oxidase (DAO) (Lin et al., 2012), which is respon-
sible for degrading D-serine (Vanoni et al., 1997; Sasabe et al., 
2012). DAO levels have been found to play a role in early-phase 
AD (Lin et al., 2017). Sodium benzoate, a pivotal DAO inhibitor, 
is generally recognized as safe and widely used as food preser-
vatives in many countries (Joint FAO/WHO Expert Committee 
on Food Additives, 1973). Sodium benzoate is also used for 
the treatment of urea cycle enzymopathies, with the thera-
peutic dose in the range of 250–500 mg/kg body weight (15 000–
30 000 mg for a 60-kg patient) per day (Tremblay and Qureshi, 
1993; Feillet and Leonard, 1998). In a 24-week, randomized, 
double-blind, placebo-controlled clinical trial (Lin et  al., 2014) 

on aMCI or mild AD, benzoate significantly improved cognitive 
functions (including working memory and verbal learning and 
memory tests). The elderly patients tolerated sodium benzoate 
250–1500 mg/d very well.

Resting-state functional magnetic resonance imaging (rfMRI) 
is a non-invasive way to investigate the spontaneous brain ac-
tivity that may reflect the brain dynamics in local cortical 
tissues or large-scale brain networks (Jiang and Zuo, 2016). A re-
cent study suggested that the changes of local functional con-
nectivity (FC) may affect whole-brain dynamics via the change 
of the local excitation-inhibition ratio (Deco et al., 2014). With 
the treatment of NMDAR antagonist MK801, increased brain 
responses to olfactory stimuli have been observed in primates 
using pharmacological fMRI (Zhao et  al., 2018). The increased 
brain responses may be underpinned by the change of the local 
excitation-inhibition ratio with blockade of NMDAR on local 
inhibitory interneurons and then disinhibit principal neurons. 
Moreover, long-term exposure of ketamine, another NMDAR 
antagonist, has been associated the altered local FC in human 
(Liao et  al., 2012). Hence, with treatment of sodium benzoate, 
the local excitation-inhibition ratio may be changed in terms of 
the changes in local FC. Regional homogeneity (ReHo) is a reli-
able method to characterized the local FC (Zang et al., 2004). In 
the present study, we conducted the rfMRI scans and ReHo ana-
lysis to investigate the benzoate treatment-associated local FC 
changes, which may contribute to the improvement of cognitive 
function in early-phase AD.

Methods

This study enrolled patients with aMCI from the outpatient 
clinic at the Department of Psychiatry, Kaohsiung Chang Gung 
Memorial Hospital, Kaohsiung in a 24-week clinical trial. The 
institutional review board of the hospital approved the study 
in accordance with the current revision of the Declaration of 
Helsinki.

The trial was registered on the ClinicalTrials.gov website 
(NCTNCT02239003): https://clinicaltrials.gov/ct2/show/NCT02239003.

Patients

After a description of the study to the patients, written informed 
consent was obtained. Patients were evaluated by the research 
psychiatrist after a thorough medical and neurological workup.

Patients were enrolled in this study if they were aged 50–90; 
(2) satisfied the criteria for aMCI (McKhann et al., 1984) of a pre-
sumably degenerative nature defined as subjective memory 
complaint corroborated by an informant and insufficient global 
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cognitive and functional impairment to meet NINCDS-ADRDA 
criteria, and had a Clinical Dementia Rating (Morris, 1993) score 
of 0.5; (3) were physically healthy and had all laboratory assess-
ments (including urine/blood routine, biochemical tests, and 
electrocardiograph) within normal limits; and (4) had sufficient 
education to communicate effectively and were capable of com-
pleting the assessments of the study. For patients who had al-
ready been on AChEIs therapy, AChEIs had to be continued for 
at least 3 months before enrollment and AChEIs doses had to be 
kept unchanged during the study duration. For patients who had 
not yet been on AChEI therapy, AChEIs or other anti-dementia 
medications were forbidden during the study duration.

Exclusion criteria included history of significant cerebrovas-
cular disease; Hachinski Ischemic Score >4; major neurological, 
psychiatric, or medical conditions other than MCI; substance 
(including alcohol) abuse or dependence; delusion, hallucin-
ation, or delirium symptoms; severe visual or hearing loss; and 
inability to follow the protocol.

Treatments

Eligible patients continued their originally ongoing psycho-
tropic drugs (if any) throughout the study period and were ran-
domly assigned to either of 2 treatment groups in a double-blind 
manner: sodium benzoate (250–1500  mg/d) or placebo for 24 
weeks. Sodium benzoate (250 mg/capsule) was purchased from 
Excelsior Biopharma Inc.

To ensure concealment of the randomization assignment, 
study medication was provided in coded containers with 
supply of identical-appearing capsules of placebo or benzoate. 
Patients were randomized through a computer-generated ran-
domization table to receive placebo or benzoate treatment in 
a 1:1 ratio. Non-blinded pharmacists dispensed appropriate 
medication for treatment according to the randomization 
table. Benzoate was initiated at 250–500 mg/d. According to the 
clinical condition, cognitive function assessment, and the pa-
tients’ tolerance, the dose was adjusted every 8 weeks in each 
group. If cognition did not improve, the dose could be titrated by 
250–500 mg/d from the ninth week and another 250–500 mg/d 
from the 17th week of the study. The total dose range was 250–
1500 mg/d. The dosing strategy of benzoate was based on the 
doses in our aforementioned pilot study (Lin et al., 2014), where 
benzoate was effective and safe after 24 weeks of treatment in 
the elderly patients.

During the study period, limited use of benzodiazepines (up 
to 4 mg/d lorazepam or equivalent) was allowed as concomitant 
medication for anxiety or insomnia. No other centrally acting 
drugs or cytochrome P450 inducers (or inhibitors) were per-
mitted (Lane and Chang, 1998).

Patients, caregivers, and investigators, except the investiga-
tional pharmacist, were all blinded to the assignment. Patient 
medical adherence and safety were closely monitored by care-
givers and research physicians, and pill-counting was moni-
tored by the study staff.

Evaluation of Cognitive Function and Side Effects

Cognitive functions were measured by working memory 
(Wechsler Memory Scale–Third Edition [WMS-III], Spatial Span) 
(Wechsler, 1997; Silver et  al., 2003) and verbal learning and 
memory tests (WMS-III, Word Listing) (Wechsler, 1997) at week 
0 and week 24, and the Alzheimer’s disease assessment scale-
cognitive subscale (ADAS-cog) (Rosen et al., 1984) at weeks 0, 8, 
16, and 24.

Clinical ratings were performed by a research psychiatrist 
(C.H.L.), who was trained and experienced in the rating scales.

Side effect assessments were examined every 8 weeks during 
the drug treatment period by routine physical and neurological 
examinations and the Udvalg for Kliniske Undersogelser Side-
effects Rating Scale (Lingjaerde et al., 1987). Routine laboratory 
tests, including CBC and biochemistry, were checked at baseline 
(week 0), week 8, week 16, and endpoint of the drug treatment 
(week 24).

Methods for Image Study

Image Acquisition
Resting-state fMRI was measured at baseline (week 0)  and 
endpoint (week 24). Images were acquired with an 8-channel 
head coil in a 3.0 Tesla MRI scanner (Signa Excite, GE). The rfMRI 
sessions were continuously scanned with ascending echo-
planar imaging sequence for whole-brain scanning (repeti-
tion time = 2000 ms; echo time = 30 ms; flip angle = 80°; matrix= 
64 × 64; field of view = 240 × 240  mm2; slice number = 32; slice 
thickness = 4  mm) after 10-second blank scans for stabilized 
the signal. All scans were acquired within a dim-light shielding 
room. Before scanning, patients were instructed to remain re-
laxed and awakened but not to move head or focus on any spe-
cific matter.

Preprocessing of Resting-State fMRI Data
The preprocessing protocol of rfMRI data was reported else-
where (Wu et  al., 2016). In brief, the rfMRI images (without 
first 10-second blank scans) were preprocessed using Data 
Processing Assistant for Resting-State fMRI 4.3 (DPARSF 4.3, 
State Key Laboratory of Cognitive Neuroscience and Learning, 
Beijing Normal University, China). Images were corrected for 
different slice acquisition times, realigned to correct the head 
motions occurring alone the session, normalized into Montreal 
Neurological Institute reference space with echo-planar image 
template, and resampled with the voxel size 2 × 2 × 2 mm3. The 
time-series activities in each voxel were then linearly detrended, 
band-pass filtered (0.01–0.08 Hz), and regressed out the con-
founding variables as 6 head movement parameters, global 
mean signal, mean signal of white matter, and mean signal of 
cerebral spinal fluid. The ReHo maps were generated by calcu-
lating the Kendall’s coefficient of concordance voxel by voxel on 
preprocessed time-series activities between a given voxel and 
its nearest neighbors (26 voxels). The ReHo maps were spatially 
smoothed using a 3D Gaussian kernel of 8  mm full-width at 
half-maximum and then standardized by divided with its own 
global mean.

Data Analysis

Chi-square test (or Fisher’s exact test) was used to compare dif-
ferences of categorical variables, and Student 2-sample t test (or 
Mann-Whitney U test if the distribution was not normal) was 
used for continuous variables between 2 treatment groups.

The statistical analysis of standardized ReHo maps was con-
ducted by statistical parametric mapping 12 (SPM12, Wellcome 
center for Human Neuroimaging, University College, London, 
UK). The 2-sample t test and paired t tests were performed to 
probe the possible difference between different groups at base-
line and different time points (i.e., before and after treatment) in 
each group, respectively. The correlation analysis was also con-
ducted between change of cognitive measurements and change 
of ReHo maps in each group. As an exploratory study, a less 
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stringent significant threshold (uncorrected P < .005 at voxel-
level with the cluster size >50, corresponding to the uncorrected 
cluster level P < .080) was applied in the present study to reduce 
the chance of Type II error (Cremers et al., 2017).

Results

A total of 24 patients with aMCI were enrolled into this study. 
Among them, 3 patients were excluded (1 alcohol use and poor 
medical adherence, 1 comorbid with delusional disorder, 1 diag-
nosed as Parkinson disease). The remaining 21 patients com-
pleted the 24-week clinical trial and brain MRI measurement.

The demographic and clinical characteristics are shown 
in Table 1. Patients in the sodium benzoate group appeared 
younger (P = .042) and had a lower education level (P = .003) than 
patients in the placebo group.

At week 0 (baseline), patients in the benzoate group had 
a higher ADAS-cog score than the placebo group (15.1 ± 3.9 vs 
10.8 ± 3.6, P = .023, Mann-Whitney U test). At endpoint, there was 
no significant difference between the 2 groups in ADAS-cog 
(9.1 ± 3.5 vs 6.8 ± 2.7, P = .113, t test). There was no significant dif-
ference in ADAS-cog score change from baseline to endpoint be-
tween the 2 groups (6.0 ± 2.2 vs 4.0 ± 4.0, P = .196, t test).

ReHo at Baseline and After Treatment

At baseline, the benzoate group showed higher ReHo than in the 
placebo group in right middle frontal gyrus (recognized as part of 
orbitofrontal cortex [OFC]) and bilateral medial frontal gyrus (rec-
ognized as supplementary motor area) (supplemental Table 1).

After benzoate treatment, decreased ReHo was found in right 
middle frontal gyrus, while no increased ReHo was found. After 
placebo treatment, no significant changes of ReHo were found 
(Figure 1; Table 2).

Correlations Between Cognitive Changes and ReHo 
Alterations

Regarding the relationship between the change in working 
memory (assessed by WMS-III, Spatial Span) and the change in 
ReHo, a positive correlation was found in right precentral gyrus 
(recognized as primary motor cortex) and right middle occipital 

gyrus (recognized as primary visual cortex), but no negative cor-
relation was detected in any brain region in the benzoate group. 
There was neither positive nor negative correlation observed in 
any brain region in the placebo group (Figure 2; Table 3).

Regarding the relationship between the change in verbal 
learning and memory (measured by WMS-III, Word Listing) 
and the change in ReHo, a positive correlation was shown in 
left precuneus, but no negative correlation was revealed in any 
brain region in the benzoate group. There was neither positive 
nor negative correlation discovered in any brain region in the 
placebo group (Figure 2; Table 3).

Safety

Both sodium benzoate and placebo were well-tolerated. The side 
effect was mild and did not warrant medical treatment. All 21 
patients completed the trial without dropout. The routine blood 
cell count and chemistry were all within the normal ranges and 
remained unchanged after treatment (data not shown).

Table 1.  Demographic and Clinical Characteristics of Patients With aMCI

 

Treatment groups

P value
Sodium benzoate  

(n = 9)
Placebo  
(n = 12)

Demographics    
  Gender, female, n (%) 7 (77.8) 5 (41.7) .184a

  Age, year, mean (SD) 66.1 (3.2) 69.2 (3.6) .058b

  Age at illness onset, y, mean (SD) 65.4 (3.6) 68.9 (3.6) .042b

Education, y, mean (SD) 5.0 (1.8) 8.8 (2.7) .003c

BMI, mean (SD) 22.7 (5.8) 24.0 (2.4) .466b

No. of patients using anti-dementia drugs    
  Total 0 1 1.000a

  Donepezil (dose, mean ± SD) 0 1 (5.0 ± 0.0) 1.000a

Abbreviations: aMCI, amnestic mild cognitive impairment; BMI, body mass index.

aFisher’s exact test. 

bindependent t test. 

cMann-Whitney U test if the distribution was not normal. 

Figure 1.  The changes of regional homogeneity after benzoate treatment in 

schizophrenia patients. After 24 weeks benzoate treatment, decreased regional 

homogeneity (ReHo) was found in right middle and medial frontal gyrus that 

belong to right orbitofrontal cortex. The warm and cold colors denote increased 

and decreased ReHo, respectively. G, gyrus; Med, medial; Mid, middle; R, right. 

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab001#supplementary-data
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Discussion

To our knowledge, this is the first study exploring the effect of 
an NMDAR enhancer on brain activity in individuals with MCI or 
dementia. The benzoate treatment decreased ReHo in the right 
OFC (which consists of Brodmann area 10, 11, and 47) (Figure 1), 
while placebo treatment did not alter ReHo (Table 2). These re-
sults may indicate the possible brain mechanisms for the treat-
ment of benzoate on MCI patients.

Anatomically, OFC is interconnected with parahippocampus 
(Haber and Behrens, 2014). It has been indicated that increased 
parahippocampal-prefrontal functional connectivity is pre-
dictive of impaired episodic memory in aMCI (Zhang et al., 2016). 
Further, the MCI patients with increased ReHo in the orbital 
part of the inferior frontal gyrus (which is cytoarchitectonically 
most closely represented by Brodmann area 47) showed a trend 
of deteriorating into AD or remaining in MCI rather than re-
verting to a cognitively intact state (Cai et al., 2018). Accordingly, 
in the present study, at baseline, the benzoate group also dis-
played greater ReHo in the right OFC and more cognitive im-
pairment (as shown by the higher ADAS-cog score) than the 
placebo group.

After treatment, the mean ADAS-cog score decreased by 
6.0 ± 2.2 in the benzoate group and 4.0 ± 4.0 in the placebo group; 
however, the group difference was insignificant in this small-
sized study (P = .196). Of interest, as aforementioned, after 

benzoate treatment, decreased ReHo was found in right middle 
frontal gyrus, while, after placebo treatment, no significant ReHo 
change was found (Figure 1; Table 2). Therefore, decreased ReHo 
in OFC with benzoate treatment may be potentially beneficial 
for the outcome of the cognitive aging process. In accordance, 
transcranial direct current stimulation, with its potential to en-
hance NMDAR-related neurotransmission and neuroplasticity 
(Chang et  al., 2018), significantly reduced prefrontal hyper-
activity and resulted in “normalization” of abnormal network 
configuration during fMRI (Meinzer et al., 2015).

Furthermore, after benzoate treatment, the change in 
nonverbal (spatial) working memory was positively correlated 
with the change in ReHo in right precentral gyrus and right 
middle occipital gyrus; and the change in verbal learning and 
memory was positively correlated with the change in ReHo 
in left precuneus (Figure 2). On the other hand, after pla-
cebo treatment, the change in nonverbal working memory or 
in verbal learning and memory was not correlated with the 
change in ReHo in any brain region (Table 3). In accordance, 
previous study has shown that, in the nonverbal working 
memory, regions of activation included the precentral gyrus 
and precuneate gyrus in the left parietal lobe and the occipital 
cortex in the right hemisphere (Binder and Urbanik, 2006). 
In addition, in the MCI patients, perfusion in precunei, par-
ietal cortex, and left hippocampus was correlated with verbal 
memory (Nobili et al., 2008).

Dysregulation of NMDAR is implicated in the pathogen-
esis of AD (Lin et al., 2019a, 2019b; Chang et al., 2020). DAO can 
regulate the NMDAR function. In a recent study in 397 indi-
viduals (including aMCI, mild AD, moderate to severe AD, and 
healthy elderly), DAO levels in the serum increased with the se-
verity of the cognitive deficits (Lin et al., 2017); this is the first 
study indicating that the peripheral DAO levels may increase 
with age-related cognitive decline. The finding supports the 
hypofunction of NMDAR hypothesis in AD (Lin et  al., 2020). It 
is critical to identify and treat AD as early as possible, poten-
tially to arrest its progression (Hsu et  al., 2018). Following the 
pilot study on sodium benzoate for the treatment of cognitive 
function of early-phase AD (Lin et al., 2014), the current study 
further supports that DAO could serve as a novel target of drug 
development for early stages of cognitive decline.

This study is limited by its small sample size. In addition, 
whether the finding in Han Taiwanese can be extrapolated to 
other populations is unclear.

In conclusion, the preliminary results may contribute to the 
elucidation of the pathophysiology of MCI and the development 
of novel therapy to enhance NMDAR. Future larger-sized studies 
in patients of various ethnicities are warranted. In addition, 

Table 2.  Changes of ReHo After Treatment With Benzoate or Placebo

Increased ReHo Decreased ReHo 

Anatomic area BA Size t Score

Coordinates 
(mm)

Anatomic area BA Size t Score

Coordinates 
(mm)

x y Z x y z

Benzoate              
  No significant cluster       R Mid Frontal G 11 61 4.46 39 48 −12
       R Med Frontal G 10  4.45 18 54 −6
Placebo              
  No significant cluster       No significant cluster       

Abbreviations: BA, Brodmann area; G, gyrus; Med, medial; Mid, middle; R, right; ReHo, regional homogeneity; Size, number of voxels in the cluster. 

Figure 2.  Correlation between the changes of regional homogeneity and the 

changes of memory tests with benzoate treatment in schizophrenia patients. 

The changes of regional homogeneity were positively correlated with (left) the 

changes of working memory in right precentral gyrus and right middle oc-

cipital gyrus and with (right) the changes of verbal learning and memory in left 

precuneus. The warm and cold colors denote positive and negative correlation, 

respectively. G, gyrus; Mid, middle; R, right.
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whether neuroimaging biomarkers, as shown in the current 
study, can be applied for early detection and individualized 
medicine also deserves further investigation.
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