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Diabetes-induced myocardial damage leads to diabetic cardiomyopathy and

is closely associated with the generation of oxidative stress and inflammation.

Naringenin (NG) exhibits antioxidant and anti-inflammatory e�ects. However,

whether NG has cardioprotective e�ects against diabetic cardiomyopathy by

regulating oxidative stress and inflammation remains unknown. This study

investigated the e�ect of NG on diabetic cardiomyopathy based on an

analysis of streptozotocin (STZ)-induced type 1 diabetic mice. The results

indicated that NG reduced cardiac fibrosis and cardiomyocyte apoptosis in

this diabetic model, accompanied by reduced blood glucose. NG inhibited

pro-inflammatory cytokines, the level of reactive oxygen species and the

expression of nuclear factor kappa-B (NF-κB), whereas the expression of

antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2)

were greatly enhanced by NG. Furthermore, in high glucose-treated H9C2

myocardial cells, NG e�ectively reduced cell apoptosis by inhibiting the

formation of reactive oxygen species and pro-inflammatory cytokines. NG’s

antioxidant and anti-inflammatory activities were mechanistically associated

with NF-κB inhibition and Nrf2 activation in animal and cell experiments. Data

analysis showed that NG could regulate Nrf2 and NF-κB pathways to protect

against diabetes-induced myocardial damage by reducing oxidative stress and

inhibiting inflammation.
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Introduction

It is estimated that by 2040, there will be 642 million

diabetes patients aged 20 to 79 years globally (1). Studies

have indicated that diabetic cardiovascular complications have

become the leading cause of mortality among diabetic patients

(2). Some patients have a hyperglycemia-induced myocardial

injury but do not have high blood pressure or coronary artery

disease. This disease, termed diabetic cardiomyopathy (3), is

currently of considerable interest among researchers (4). The

underlying mechanisms of hyperglycemia-induced myocardial

injury include cardiac inflammation, increased reactive oxygen

species (ROS), interstitial fibrosis, and cardiac cell apoptosis

(2, 5). Such adverse reactions induce structural remodeling and

affect heart diastolic function (6). Therefore, pharmacological

inhibition of inflammation, ROS, and cell apoptosis has been

proven to confer cardioprotection.

Many natural flavonoids have been shown to exhibit potent

cardioprotective properties (7, 8). Several lines of evidence have

demonstrated that naringenin (NG), a flavonoid abundant in

grapefruit, plays a valuable role in the cardiovascular system.

NG has been shown to reduce cardiac damage following

ischemia-reperfusion injury by inhibiting mitochondrial

oxidative stress damage (9). In the mouse sepsis model, NG

protected against septic cardiac dysfunction by inhibiting

NF-κB-dependent cardiac inflammation (10). Furthermore,

NG treatment alleviated ischemia-reperfusion injury-induced

myocardial cell death in rat models (11). These studies suggest

that anti-inflammatory and antioxidant properties may be

involved in the cardioprotective mechanism of NG. However,

it remains unknown whether NG improves diabetes-induced

myocardial injury.

Therefore, this study investigated the influence of NG

on myocardial injury and related signaling pathways in STZ-

induced diabetic mice and high glucose-induced H9C2 cells.

Materials and methods

Animals and treatment

Animal experiments followed the protocol previously

described with minor changes (12, 13). In this study, C57BL/6

mice (Chengdu Experimental Animals Co., Ltd., Chengdu,

China) were kept at room temperature of 23 ± 1◦C with a

12:12 h light: dark cycle. For the experimental protocol, the in

vivo experiment was conducted based on that stated by the

National Institutes of Health for the care and use of laboratory

animals (NIH Publications No. 8023, revised 1978).

After 1 week of adaptive feeding, the animals were randomly

assigned to five groups (six mice per group): control group

(Ctrl), diabetes mellitus group (DM), 25mg/kg NG+DMgroup

(LNG + DM), 50 mg/kg NG + DM group (MNG+DM), and

75 mg/kg NG + DM group (HNG + DM). Following 12 h

of fasting, 80 mg/kg of 1% STZ (Sigma, St. Louis, MO, USA)

was injected intraperitoneally in diabetic mice groups (DM

with/without treatment). The mice of the Ctrl group received an

intraperitoneal injection with an equal volume of sodium citrate

buffer. After 72 hours, the tail blood was sampled. The criterion

for successfully establishing the model was a blood glucose

level >16.7 mmol/L. Following the establishment of the model,

different doses of NG (25, 50, and 75 mg/kg; Civi Chemical

Technology Co., Ltd., Shanghai, China) were administered by

gavage to the respective NG groups once daily. After euthanasia

of the mice, the hearts were fixed in 4% paraformaldehyde,

prepared in paraffin, and sections of 4µm thick were cut. Fresh

heart tissues were used for Western blot detection after storage

at−80◦C.

Analysis of myocardial histology

Hematoxylin and eosin (HE) and Masson staining was

performed and images of the stained paraffin sections were

obtained using a light microscope.

Determination of malondialdehyde (MDA)
and superoxide dismutase (SOD) levels

The total protein concentration was determined using the

bicinchoninic acid assay (BCA) method. The MDA and SOD

levels in the cardiac tissues were detected using test kits from

the Jiancheng Bioengineering Institute (Nanjing, China).

Analysis of immunohistochemistry

The paraffin sections were deparaffinized and placed in

citrate buffer. The sections were heated to boiling when the

power was switched off. After 5min, the process was repeated.

After cooling, the sections were washed twice with phosphate-

buffered saline (PBS) for 5min to retrieve antigens. The sections

were blocked with goat serum for 20min at room temperature

and incubated with interleukin (IL)-6 (1:100), tumor necrosis

factor (TNF)-α (1:100), or NF-κB p65 (1:100) antibodies at 4◦C

overnight. A secondary antibody was applied for 30min at 37◦C.

The sections were washed three times with PBS for 5min, and

diaminobenzidine (DAB) was used to develop the color. Finally,

sections were observed, and images were obtained using a light

microscope (OLYMPUS BX53, Japan). For NF-κB p65 and Nrf2

fluorescence staining, fixed cardiomyocytes were incubated with

NF-κB p65 (1:100) or Nrf2 (1:100) antibodies overnight at 4◦C

followed by phycoerythrin (PE)-conjugated secondary antibody

(1:200). The analysis of fluorescent images was performed using

a fluorescence microscope.
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Apoptosis in tissue or cells was quantified using the TUNEL

apoptosis test kit from Beyotime Biotechnology (Jiangsu, China)

according to the manufacturer’s instructions. Fluorescence

microscopy was performed to analyze the samples.

Western blot

The tissues and cells were washed twice using ice-cold PBS

and lysed in lysis buffer. Lysates were separated by sodium

dodecyl sulfate-polyacrylamide (10%−12%) gel electrophoresis

and transferred to polyvinylidene fluoride membranes. The

membranes were washed with Tris-buffered saline/Tween-20

(TBST) and blocked in 5% skim milk powder dissolved in

TBST for three hours, followed by the incubation with the

respective primary antibody at dilutions according to the

supplier’s instructions.

The membranes were examined using an anti-NF-κB

p65 antibody (1:1,000, Cell Signaling Technology), anti-heme

oxygenase-1 (HO-1) antibody (1:1,000, Abcam), anti-Nrf2

antibody (1:1,000, Cell Signaling Technology), anti-Bax

antibody (1:500, Santa Cruz Biotechnology), anti-cleaved

caspase-3 antibody (1:500, Santa Cruz Biotechnology), anti-

IL-6 antibody (1:500, Santa Cruz Biotechnology), anti-TNFα

antibody (1:500, Santa Cruz Biotechnology), anti-nicotinamide

adenine dinucleotide phosphate oxidase 2 (NOX2) antibody

(1:500, Santa Cruz Biotechnology), or anti-NQO1 antibody

(1:500, Abcam). Following conjugation to horseradish

peroxidase, the corresponding immunoglobulin G secondary

antibody (1:1,000, Beyotime Biotechnology) was used to detect

the primary antibodies. Enhanced chemiluminescence (Pierce,

MA, USA) was used to visualize the bands.

Cell culture and treatment

The H9C2 cell line was kindly provided by Dr. Xiaoqiu

Tan (Cardiovascular Research Institute, Southwest Medical

University, Luzhou, China). H9C2 cells were cultured according

to the usual protocol reported previously (14). Additionally,

pretreatment of cells with 10µM NG was performed for 2 h

before exposure to 33mM glucose (HG) for 24 h.

ROS detection

Tissue sections or H9C2 cells were incubated for 30min

at 37◦C using dihydroethidium (DHE; KeyGEN Biotech,

Nanjing, China) or 2,7-Dichlorodi -hydrofluorescein diacetate

(DCFH-DA; Beyotime Biotechnology), respectively. Following

three washes with PBS, images of the tissue sections and

cells were obtained using a fluorescence microscope.

Graphical analysis software was applied to determine the

mean fluorescence intensity.

Flow cytometric analysis

Apoptosis was analyzed by flow cytometry (15). Cells

were trypsinized, harvested, washed twice with cold PBS, and

centrifuged. The supernatant was removed, and the cells were

resuspended in 1ml of binding buffer. Cells were vortexed

gently, incubated for 10min at room temperature in the dark,

and stained using 5 µl Annexin V-FITC. Cell staining was

performed with a 5 µl propidium iodide (PI) solution for 5min

at room temperature in the dark. Cells were resuspended in 500

µl PBS and gently vortexed. Cell analysis was carried out by flow

cytometry within 1 h.

Statistics

Measurements are expressed as means ± standard

deviations. Analysis of variance was applied to determine

FIGURE 1

NG improves hyperglycemia and pathologic damage to cardiac

tissue in diabetic mice. (A) Blood glucose of mice from di�erent

treatments. Data are presented as the mean ± SD (n = 6). $P <

0.05 vs. corresponding groups in 0 day; **P < 0.05 vs. Ctrl group

in 63 days, &P < 0.05 vs. DM group in 63 days. (B) Representative

images of HE or Masson staining for each group, light

microscope (400 ×). The data are presented as mean ± SD (n =

3). *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group.
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FIGURE 2

NG reduces apoptosis of cardiomyocytes in cardiac tissues of diabetic mice. (A) Representative images of TUNEL staining for each group,

fluorescence microscope (200×). Data are presented as the mean ± SD (n = 3). *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group. (B) Quantitative

analysis of the protein expression of Bax and cleaved caspase-3 in cardiac tissues. Data are expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl

group; #P < 0.05 vs. DM group.

the statistical significance between groups. Individual points

were analyzed for statistical significance using Student’s t-test.

Statistics were conducted using SPSS 17. A value of P < 0.05

was considered statistically significant.

Results

NG ameliorated hyperglycemia and
pathologic damage to cardiac tissue in
diabetic mice

The blood glucose level of the STZ-treated groups at 21

days significantly increased compared to day 0 (P < 0.05,

Figure 1A). After 63 days, blood glucose in the DM group was

also significantly elevated compared to the Ctrl group (P <

0.05). In contrast, the differences in blood glucose after NG

interventions were significantly reduced compared with the

DM group (P < 0.05). HE and Masson staining demonstrated

that cardiac structures were ordered in the Ctrl group, with a

clear outline of tissues and collagen fibers in the interstitium

(Figure 2B). On the contrary, degeneration, necrosis of some

cardiomyocytes, disordered arrangement of cells, and most of

the collagen fibers in the interstitium were observed in the DM

group. These morphological injuries were improved in the DM

groups treated with the different doses of NG (Figure 2B).

NG reduced cardiomyocyte apoptosis in
the cardiac tissues of diabetic mice

TUNEL staining was used to detect cardiomyocyte

apoptosis. The apoptosis rate in the DM group was significantly

increased compared with the Ctrl group (P < 0.05, Figure 2A).

Treatment with the different doses of NG significantly reduced

the apoptosis rate (P < 0.05). Cardiomyocyte apoptosis is a

significant factor inducing cardiac dysfunction (16). Therefore,

apoptosis-related signal proteins were evaluated. Induction

of hyperglycemia prominently increased Bax and cleaved

caspase-3 compared with the Ctrl group (P < 0.05, Figure 2B).

By contrast, the expressions of Bax and cleaved caspase-3
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FIGURE 3

NG inhibites the expression of inflammatory cytokines in cardiac tissues of diabetic mice. (A) Representative immunohistochemical staining of

IL-6, TNF-α, and NF-κB p65 in cardiac tissues. Data are expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group. (B)

Quantitative analysis of the protein expression of IL-6, TNF-α, and NF-κB p65 in cardiac tissues. Data are expressed as mean ± SD (n = 3), *P <

0.05 vs. Ctrl group; #P < 0.05 vs. DM group.

proteins were inhibited by treatment with the different NG

doses (P < 0.05).

NG inhibited the expression of
inflammatory cytokines in the cardiac
tissues of mice with diabetes

The images of cardiac sections from the groups stained

for IL-6, TNF-α, or NF-κB p65 are shown in Figure 3A. As

demonstrated by the quantitative analysis results, apparent

upregulation of IL-6, TNF-α, andNF-κB p65 was observed in the

DM group compared with the Ctrl group (P < 0.05, Figure 3A).

Additionally, NG at the different doses used to treat diabetic

mice reduced the expression of IL-6, TNF-α, and NF-κB p65 in

a dose-dependent manner (Figure 3A), as well as decreased the

IL-6, TNF-α, and NF-κB p65 protein levels (Figure 3B).

NG reduced diabetes-induced oxidative
stress in cardiac tissues of mice with
diabetes

The images of the cardiac sections stained with DHE

from the different groups are shown in Figure 4A. Quantitative

analysis demonstrated a significant ROS upregulation in

the DM group compared with the Ctrl group (P < 0.05,

Figure 4B). In contrast, the ROS levels in the different NG

groups were reduced dose-dependent compared to the DM

group (P < 0.05, Figure 4B). Furthermore, NG treatment

resulted in decreased MDA levels (a biomarker of oxidative

Frontiers inCardiovascularMedicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.946766
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


He et al. 10.3389/fcvm.2022.946766

FIGURE 4

NG reduces diabetes-induced oxidative stress in cardiac tissues of diabetic mice. (A) Representative images of DHE staining for each group,

fluorescence microscope (200×). (B) Quantitative analysis of the number of DHE fluorescence cells in cardiac tissue samples. Data are

expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group. (C) The level of malondialdehyde (MDA) from di�erent

treatments in cardiac tissue. Data are expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group. (D) The level of

superoxide dismutase (SOD) of di�erent treatments in cardiac tissue. Data are expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P <

0.05 vs. DM group. (E) Quantitative analysis of the protein expression of NOX2, HO-1, NQO1, and Nrf2 in cardiac tissues. Data are expressed as

mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group.

damage) in a dose-dependent manner (Figure 4C), together

with increased antioxidant SOD enzyme activity (Figure 4D).

Nrf2 was previously shown to have a significant effect in

inducing phase II detoxifying enzymes, for example, HO-1 and

NQO1 (17). Therefore, Figure 4E indicates that Nrf2 and its

downstream signaling proteins HO-1 and NQO1 are down-

regulated in the DM group compared with the Ctrl group (P <

0.05), whereas they are elevated by NG treatment. Since NOX2

is the primary source of ROS, these results showed that NOX2

protein expression was up-regulated in the DM group compared
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FIGURE 5

NG reduced HG-induced oxidative stress and apoptosis in H9C2 cells. (A) Representative images of DCFH-DA staining for each group,

fluorescence microscope (200×). Data are expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group. (B) Evaluation of

apoptosis by flow cytometry using Annexin V staining. Data are expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM

group. (C) Quantitative analysis of the protein expression of IL-6, HO-1, and NQO1 in H9C2 cells. Data are expressed as mean ± SD (n = 3), *P <

0.05 vs. Ctrl group; #P < 0.05 vs. DM group.

with the Ctrl group (P < 0.05, Figure 4E) but was reduced by

NG treatment.

NG reduced HG-induced oxidative
pressure and apoptosis in H9C2 cells

Reactive oxygen species analysis by DCFH-DA staining

demonstrated a much higher percentage of ROS in H9C2 cells

cultured under HG conditions compared to the Ctrl group (P

< 0.05, Figure 5A). However, there was a significantly decreased

percentage of ROS cultured in HG after NG treatment (P < 0.05,

Figure 5A). The apoptosis analyses by flow cytometry showed

a considerable increase in the percentage of apoptotic cells

among the H9C2 cells cultured under HG conditions compared

to the Ctrl group (P < 0.05, Figure 5B). For comparison, the

percentage of apoptotic cells cultured in HG was markedly

reduced after treatment with NG (P < 0.05, Figure 5B). In

addition, significant changes in pro-inflammatory cytokine

and antioxidant proteins were also detected. IL-6 expression

increased in the DM group compared with the Ctrl group

(P < 0.05, Figure 5C), while NG treatment reduced IL-6

expression compared to the DM group (P < 0.05, Figure 5C).

The expression of HO-1 and NQO1 increased in the DM group

compared with the Ctrl group (P < 0.05, Figure 5C), while

the NG treatment reduced the expression of HO-1 and NQO1

compared to the DM group (P < 0.05, Figure 5C). These results

indicated that the protective effects of NG were probably related

to its antioxidant and anti-inflammatory characteristics.

NG regulated NF-κB and Nrf2 expression
in H9C2 cells under HG condition

The influence of NG on NF-κB and Nrf2 activation was

analyzed to determine the signaling pathways responsible

for inflammatory cytokines and oxidative stress. Analysis of

immunostaining data indicated that more positive staining for

NF-κB p65 was observed in the nucleus under the HG condition

compared to the Ctrl group (Figure 6A). At the same time,

NG treatment reduced the positive staining for NF-κB p65

compared to the untreated HG group (Figure 6A). Consistent

with this, NF-κB p65 protein expression in the nucleus was

significantly suppressed by NG under the HG condition (P <

0.05, Figure 6B). Furthermore, analysis of the immunostaining

showed less positive staining for Nrf2 in the nucleus under
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FIGURE 6

NG regulates the expression of NF-κB and Nrf2 in H9C2 cells under the HG condition. (A) Representative immunofluorescence staining of

NF-κB for each group, fluorescence microscope (200×). (B) Quantitative analysis of the NF-κB protein expression in H9C2 cells. Data are

expressed as mean ± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group. (C) Representative immunofluorescence staining of Nrf2 for

each group, fluorescence microscope (200×). (D) Quantitative analysis of the Nrf2protein expression in H9C2 cells. Data are expressed as mean

± SD (n = 3), *P < 0.05 vs. Ctrl group; #P < 0.05 vs. DM group.

the HG conditions compared to the Ctrl group (Figure 6C). At

the same time, NG treatment increased the positive staining

for Nrf2 compared with the untreated HG group (Figure 6C).

NG significantly upregulated the Nrf2 protein expression in the

nucleus under the HG condition (P < 0.05, Figure 6D).

Discussion

Naringenin has been reported to havemany cardioprotective

activities (7, 18, 19). Although NG has been reported to

improve high glucose-induced hypertrophy of cardiomyocytes

in diabetic models (20, 21), the mechanism by which it

exerts these protective effects against diabetic cardiomyopathy

is not fully understood. Progressive oxidative stress and

inflammation development are prominent markers of diabetic

cardiomyopathy (22, 23). Therefore, inhibiting oxidative stress

and inflammation during disease progression may be a

promising strategy for treating diabetic cardiomyopathy.

Several lines of evidence have shown that NG exerts

antioxidant and anti-inflammatory pharmacological activities

(24, 25). Our previous study shows that NG ameliorates

fibrosis by down-regulating Rho A/Rho-associated protein

kinase (ROCK) signaling pathways in diabetic nephropathy

mice (26). Furthermore, NG induced the expression of the

antioxidant protein HO-1, reducing endothelial cell apoptosis

under theHG condition (15). In the current study, NG improved

diabetes-induced myocardial injury by reducing oxidative stress

and inflammation by regulating the Nrf2 and NF-κB signaling

pathways (Figure 7).

Chronic persistent inflammation can be one of the main

reasons that hyperglycemia leads to changes in myocardial

structure and function (16, 27). NF-κB is a vital transcription

regulator for proinflammatory cytokine genes, including IL-6
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FIGURE 7

Proposed pathway for the cardioprotective e�ect of NG against

diabetes-induced myocardial injury. Hyperglycemia or HG

reduces Nrf2 expression and induces NF-κB expression,

resulting in oxidative stress and inflammation. NG, a flavonoid

abundant in grapefruit, partially attenuates diabetes-induced

heart injury by activating the Nrf2 pathway and inhibiting the

NF-κB pathway.

and TNF-α (28). The hearts of diabetic rats were characterized

by increased NF-κB p65, IL-6, and TNF-α expression (29).

Sophocarpine inhibition of NF-κB-mediated inflammation

attenuated diabetic cardiomyopathy (30). In the present

study, NG reduced the hyperglycemia-induced expression

of proinflammatory cytokines and NF-κB. Therefore, the

mediation of the protective effect of NG was based on inhibiting

the NF-κB pathway.

In addition to cardiac inflammation, hyperglycemia-induced

oxidative stress also affects the progression of diabetic

cardiomyopathy. Enhancing antioxidant defense may protect

against diabetes-induced cardiac dysfunction (31). As one of the

most important transcription factors, Nrf2 exerts antioxidant

and anti-apoptotic effects by activating multiple antioxidant

genes, including HO-1 and NQO1 (6, 32). Our study showed

that hyperglycemia increased ROS and MDA levels in vivo.

Furthermore, NG treatment increased antioxidant enzymes

(HO-1, NQO1, and SOD), reduced ROS generation, and

activated Nrf2 in cardiac tissues from diabetic mice. Therefore,

the results suggested that the Nrf2 pathway might be involved

in the cardioprotective effect of NG. In particular, exposure to

HG caused slightly higher Nrf2 expression than the control

group. The findings differ from our in vivo study in which

hyperglycemia suppressed Nrf2 expression. The cause of this

discrepancy may be attributed to the duration of stimulation.

We hypothesize that a short exposure of the cell to HG

induces the compensatory protection mechanism. Therefore,

Nrf2 is activated to exert its antioxidant stress effect. However,

when animals are exposed to longer-term hyperglycemia, the

antioxidant system will be weakened. Thus, Nrf2 expression is

down-regulated by long-term hyperglycemia.

Oxidative stress and inflammation lead to cardiomyocyte

apoptosis (33, 34). Therefore, the effect of NG on cardiomyocyte

apoptosis was observed both in vitro and in vivo. In diabetic

mice, NG treatment reduced hyperglycemia-induced cell

apoptosis. Subsequently, NG also downregulated the expression

of cleaved caspase-3 and the pro-apoptotic protein Bax. These

data showed that inhibition of cardiomyocyte apoptosis could

be one of the critical mechanisms of NG to improve diabetes-

induced cardiac dysfunction. Furthermore, subsequent cardiac

interstitial collagen deposition was attenuated by NG treatment.

This study found that NG ameliorated myocardial injury

in diabetic mice. NG inhibited pro-inflammatory cytokines,

ROS level, and NF-κB expression, while antioxidant enzymes

and Nrf2 expression were significantly enhanced. The main

limitation of this study was the lack of application of signal

pathway inhibitors or gene knockdown in in vitro experiments.

There is no direct evidence that NG inhibits oxidative stress,

inflammation, or apoptosis by regulating Nrf2 or NF-κB.

However, in support of our findings, inhibition of Nrf2

has been reported to suppress the NG-induced protective

effect induced by NG in cardiac fibroblasts and vascular

endothelial cells (15, 35). We will confirm these observations in

future studies.

This study demonstrated that NG ameliorated myocardial

injury in STZ-induced diabetic mice by improving Nrf2-

mediated antioxidant stress and reducing NF-κB-mediated

inflammation. Furthermore, targeting Nrf2 and NF-κB

may be an important therapeutic strategy for reducing

diabetic complications.
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