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Worldwide, colorectal cancer (CRC) ranks as the third most common malignancy, and the
secondmost deadly with nearly one million attributable deaths in 2020. Metastatic disease is
present in nearly 25%of newly diagnosedCRC, and despite advances in chemotherapy, less
than 20% will remain alive at 5 years. Epigenetic change plays a key role in the epithelial-to-
mesenchymal transition (EMT), which is a crucial phenotype for metastasis and mainly
includes DNA methylation, non-coding RNAs (ncRNAs), and N6-methyladenosine (m6A)
RNA, seemingly valuable biomarkers in CRCs. For ncRNAs, there exists a “molecular sponge
effect” between long non-codingRNAs (lncRNAs), circular RNAs (circRNAs), andmicroRNAs
(miRNAs). The detection of exosomes is a novel method in CRC monitoring, especially for
predicting metastasis. There is a close relationship between exosomes and EMT in CRCs.
This review summarizes the close relationship between epigenetic changes andEMT inCRCs
and emphasizes the crucial function of exosomes in regulating the EMT process.

Keywords: colorectal cancer (CRC), epithelial to mesenchymal transition (EMT), exosomes, DNA methylation, non-
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INTRODUCTION

In 2020, colorectal cancers (CRCs) have become significant public health problems worldwide, and their
incidence has increased to twice in the top 10 cancers (1–3). Monitoring distant metastatic loci and
recurrence in situ is the last and most crucial step for cancer treatment. Furthermore, it is the most
common cause of concern and anxiety for patients with CRCs. Based on previous studies, the mortality of
metastatic CRCs is much higher than that of primary CRCs, especially for liver metastasis. Metastatic
cancers severely influence the 5-year survival rate and quality of life of patients (4). Therefore, it is pivotal to
predict the metastasis and recurrence of CRCs in order to increase distal survival time and quality of life.

For CRC, epithelial–mesenchymal transition (EMT) is a vital phenotype in its metastasis. EMT is a
reversible process that promotes tumor cells exfoliating into circulation and damaging the intercellular
skeletal structure. These exfoliated tumor cells could reach distal cites and form metastatic loci. The
transcription factors (TFs) SNAI1, SNAI2, Zeb1, Zeb2, and Twist, called EMT-TFs, and some non-coding
RNAs (ncRNAs) can influence the EMT process to regulate the migration and infiltration of tumor cells
(5, 6). EMT is a dynamic process that is affected by genetic, epigenetic, and immune environmental
factors. N-cadherin, vimentin, matrix metalloproteinases (MMPs), E-cadherins, claudins, epithelial cell
adhesion molecules (EpCAMs), and cytokeratins are common biomarkers for the detection of EMT or
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its reverse process, mesenchymal–epithelial transition (MET). EMT
is an essential phenotype in the study of tumor metastasis.

The liquid biopsy (LB) technology is a novel method used to
detect the genesis, progress of recurrence, and metastasis in CRC
patients. Circulating tumor cells (CTCs), circulating tumor
DNAs (ctDNAs), and cell-free RNAs are detectable biomarkers
in serum (7). In addition, the detection of exosomes in the urine,
cerebrospinal fluid, and saliva is applied widely and clinically.
Detecting genetic materials has more perspective as nano-scale
biological vesicles that are stable, suitable for storage, and
valuable as both biomarkers and therapeutic nano-drugs,
exosomes likely have a brighter future than cells (8).

Exosomes are tiny vesicles derived from tumor cells that
contain DNA, ncRNAs, epigenetic modulation, and metabolites.
Especially in comparison to obtaining tissue biopsies, liquid
biopsies, including the relatively noninvasive venipuncture, or
sampling other bodily fluids is often safer and more convenient.
According to previous studies, exosomes play a pivotal role in
predicting cancer metastasis. Comparably, exosome detection is
safer and more convenient in malignant cancers, especially for
CRCs. LB has shown considerable accuracy in CRC testing. Its
sensitivity and specificity can reach up to 60% and 90%,
respectively (9, 10). Therefore, this review summarized the
relationship between epigenetic changes and EMT in CRCs
and emphasized the association between exosomes and EMT.
EPIGENETIC CHANGES AND THE EMT
PROCESS IN CRC

The reverse EMT process is characterized by the downregulation
of E-cadherin, desmoplakin, claudins, and b-catenin and the
upregulation of N-cadherin, vimentin, fibronectin, and Snail1/
Snail2 mediate the migration and invasive metastasis of cancer
cells (11–13). Whether to promote or inhibit is a question that
can be answered using qualified biomarkers in EMT and reflects
their influence on tumor migration, infiltration, or more
aggressive properties. This process may not be complete;
partial EMT is a novel phenomenon that has been recently put
forward and proven to be more related to a malignant
phenotype. It provides a warning that paying more attention to
the regulators during the EMT process is more critical than just
the results.

The chromosomal instability (CIN), microsatellite instability
(MSI), and the CpG island (CGI) methylator phenotype (CIMP)
pathways are three principle pathways involved in the genesis
and development of CRCs. CIMP is related to the
hypermethylation of promoters or the upstream regulator
regions that usually contain CGIs, reported to be related to
the detection of CRCs (14, 15). The definition of CIMP depends
on the number of methylated loci on these CGIs; these also
decide the survival outcomes and long-term prognosis of CRCs
(16–18). The CIMP pathway could predict metastasis and
recurrence via the detection of epigenetic biomarkers, such as
DNA methylation, overexpression of ncRNAs, and N6-
methyladenosine (m6A) modification. These epigenetic changes
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are regulated by genes and can be inherited by the next
generation, but they cannot be transmitted into proteins to
form phenotypes. Their influence is so strong that they have
gained wide attention (19, 20). Several signaling pathways such
as the Wnt signaling pathway, Raf/MEK/ERK pathway, and the
NF-kB pathway function in CRCs. Especially for the Wnt
signaling pathway, canonical Wnt signaling is frequently
activated in the tumorigenesis of CRCs, with loss of the
adenomatous polyposis coli (APC) genes and the translocation
of b-catenin into the nucleus (21–23).

Regarding epigenetic changes, 5-methylcytosine (5mC)
methylation for DNA and m6A modification for RNA are two
epigenetic modifications affecting the transcription and
expression of critical genes. In addition, ncRNA is another
group that cannot be transcribed, but has high regulatory
ability for coding genes. These two mechanisms can
undoubtedly regulate the EMT process in CRCmetastatic events.
DNA 5mC METHYLATION: A ROBUST
PROGNOSTIC BIOMARKER IN CRC

DNA methylation occurs when a methyl group is transferred to
the carbon-5′ position of the cytosine base (5-methylcytosine)
concentrated in CGIs under the catalytic action of DNA
methyltransferase enzymes (24). The hypermethylation of 5-
mC can regulate not only the transcription elements but also
alternative splicing, which can modulate the production of
ncRNAs (25–27). The methylation of promoters could weaken
the transcription activity into messenger RNA (mRNA) and
affect the function of the translated proteins. The intensity of
their influence depends on the methylated sites on CGIs, which is
differentially sensitive to the distance between the CpG sites
among groups (28, 29).

This review focuses on several common and proven effective
DNA methylation indicators for CRCs, shown in Table 1. The
secreted frizzled-related protein (SFRP) family is regarded as an
antagonist of the Wnt signaling pathway for its similarity to
frizzled (Fz) receptors with bidirectional function (41). SFRP1
and SFRP2 are expressed in stromal myofibroblasts and are
downregulated from typical adjacent tumor (normal tissue
adjacent to the tumor, NAT) tissues toward the tumor (30, 31,
42, 43). They are diagnostic and prognostic biomarkers and
suppress the growth and metastasis of CRC tumor cells. SFRP4
and SFRP5 may also inhibit invasion in CRC, but the underlying
mechanisms in regulating the signaling pathways are more
complex by comparison (32, 33, 44). Additional studies
focusing on the SFRPs family as it relates to CRC should be
undertaken to clarify their overall role and potentially derive a
novel therapeutic regimen. Different from that of SFRPs, SDC2
methylation is a carcinogenic biomarker in CTCs tested in
patients with CRC (45). Hua et al. conducted a study to prove
that the upregulation of SDC2 promotes cell proliferation,
migration, and invasion; inhibits apoptosis; and activates and
promotes EMT through mitogen-activated protein kinase
(MAPK) signaling pathways (34). Apart from that of SFRPs
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and SDC2, the methylation of TAC1, SEPT9, HPP1, HLTF, and
NPY has also been proven to be related to the recurrence and
metastasis of CRCs (39). Moreover, the methylation of two
factors, hyperplastic polyposis protein 1 (HPP1) and helicase-
like transcription factor (HLTF), has prognostic value for therapy
and metastatic location in CRC patients (35, 36, 46, 47). Several
DNA methylation have been applied clinically with high
sensitivity and specificity. Overall, the panels of methylated
SEPT9 and SDC2 (48, 49), SEPT9 and OSMR (77.0%) (37),
SEPT9 and OSMR (37), SEPT9 and TAC1 and HIC/CYCD2/
VHL (50), APC/MGMT/RASSF2A/WIF1 (51), SYNE1 and
FOXE1 (52), WIF1/NPY/PENK (53), THBD and C9orf50 (54),
and the combinations of FAM123A/GLI3/PPP1R16B/SLIT3/
TMEM90B (55) and MGMT/RASSF1A/SEPT9 (56) were
reported to have diagnostic significance in early-stage CRCs
and may be more promising than the use of single markers.
The combinations of BCAT1/IKZF1 and BCAT1/IKZF1/IRF4
were exploited and were shown to perform better than
individual markers (57, 58), with higher sensitivity (73.9%) and
specificity (90.1%) and an area under the curve (AUC) of 0.82
(38, 59).

Methylated DNA analysis in exosomes has been reported for
gastric cancer, prostate cancer, lymphoma, breast cancer, and
gingivitis (60). Although an association between DNA
methylation in vesicles and CRCs exists, no study on their
relationship has been conducted. DNA methylation can regulate
the expression of hypoxia-inducible factor (HIF), which can
modulate the development and progression of hypoxic CRCs. It is
a critical factor in the regulatory EMT process.
NCRNAS REGULATE THE EMT
PROCESS IN CRC

NcRNAs are a class of small RNA fragments or circulars in the non-
coding regions. Although an association between DNA methylation
in vesicles and CRCs exists, no study on their relationship has been
conducted. The ncRNAs in CTCs originate from three main
pathways, namely, membrane-bound vesicles, apoptotic bodies, and
RNA-binding proteins (RBPs), which have been elucidated in detail
in a previous review (61). The ncRNAs can maintain highly stable in
the bloodstream with the protection of exosomes or RBPs, such as
argonaute-2 (AGO2) high-density lipoprotein (HDL), due to their
Frontiers in Oncology | www.frontiersin.org 3
small size and their ability to escape RNase-mediated degradation
(62–66). NcRNAs include a number of RNA types, such as
microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs).

MiRNAs were the first discovered ncRNAs that can regulate
the functions of genes and proteins. The sequence of miRNAs is
short and can form complementary pairs with mRNAs. Most
miRNAs are inhibitory and can lead to the degradation of
mRNAs, which decreases the expressions of target proteins.
Many cytoplasmic miRNAs have been discovered that can
regulate expression of N-cadherin, Vimentin, MMPs, E-
cadherin, Claudin, and EpCAM, thereby influencing the
direction of EMT through molecular regulation in targeted
pathways (67–69). Go et al. provided proof that the maternally
expressed gene 3 differentially methylated region (MEG3-DMR)
can control liver metastasis by regulating miRNAs, such as miR-
655-3p, in the 14q32 cluster in CRCs (70, 71). This confirms that
circulating miRNAs have an endothelial cell and blood
component origin (19, 63, 72). A molecular classification based
on epigenetically regulated gene expression profiles was
established by Wang et al. to provide a better understanding of
the epigenetic mechanisms underlying CRC heterogeneity using
The Cancer Genome Atlas (TCGA) dataset and validated across
Gene Expression Omnibus (GEO) datasets (73–78).

The upregulation or the downregulation of miRNAs hinges on
regulating genes and epigenetic modifications. This variability, the
targets and resultant outcomes are exemplified by the following:
miR192-2 promoter hypermethylation was shown to modulate
tumor metastasis in CRC by regulating the expression of SOX4
(80). MiR-31 has been reported to increase the sensitivity to 5-
fluorouracil (5-FU) at an early stage (81). In the latest study, miR-31
has been proven to increase radiosensitivity in CRC cell lines
through targeting STK40 (80, 82–85).

LncRNAs can promote or suppress the metastasis of tumor cells
via upregulating or downregulating the process of EMT. LncRNAs
have RNA sequences longer than 200 nucleotides that are not
translated into proteins (86), so they are more stable than miRNAs
(87). Similar to miRNAs, detection of expression or methylation of
lncRNAs in CRC has been reported (88). Several lncRNAs, such as
XIST, H19, and SPRY4-IT1, are related to EB1, 2/E-cadherin, and
vimentin and can be detected from CTCs in plasma (89–91). The
lncRNA H19 can promote CRC metastasis via inducing EMT (92).
EMT promotes tumor cell growth, proliferation, and metastasis
TABLE 1 | Potential DNA methylation seen in colorectal cancers (CRCs).

DNA methylation Expression Function in CRCs Reference

SFRP1 Down Suppressor Detection, prognosis, and metastasis (30)
SFRP2 Down Suppressor Detection, prognosis, and metastasis (31)
SFRP4 Up Suppressor Detection, prognosis, and metastasis (32)
SFRP5 Up Suppressor Detection, prognosis, and metastasis (33)
SDC2 Up Carcinogenic Detection, prognosis, and metastasis (34)
HPP1 Up Carcinogenic Metastasis and pre-therapeutic outcomes (35)
HLTF Up Carcinogenic Metastasis and pre-therapeutic outcomes (36, 37)
SEPT9 Up Carcinogenic Metastasis and pre-therapeutic outcomes (37)
BCAT1 Up Carcinogenic Metastasis and pre-therapeutic outcomes (38)
NPY Up Carcinogenic Metastasis and pre-therapeutic outcomes (39, 40)
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(93). The upregulation of the lncRNA TUG1 increases the risk of
metastasis and further invasion in CRCs via activating the Wnt/b-
catenin signaling pathway (94). The lncRNA MALAT1 is a
predictive biomarker for metastasis by regulating the epigenetic
model (95). Urothelial carcinoma-associated 1 (UCA1), which is
produced by cancer-associated fibroblasts (CAFs) and released into
serum, is associated with the metastasis of CRCs. The upregulation
of UCA1 can change the expressions of the genes in EMT (96). The
lncRNA BANCR is an oncogenic molecule that enhanced the
aggressiveness of CRC metastasis (97). The TGF-b signaling
pathway is a critical pathway in regulating cancer-associated
expression. The lncRNA activated by TGF-b (LNCRNA-ATB) can
suppress the expression of E-cadherin in EMT to promote CRC
metastasis (98). The lncRNAs HOTAIR and HOXA-AS2 in plasma
correlate with the invasion of CRCs via EMT (99, 100). The role of
lncRNAs in serum is shown in Table 2.

CircRNAs are novel derivatives from the alternative splicing of
lncRNAs that have small ring structures (120, 121). Compared to
miRNAs and lncRNAs, circRNAs have shown their fantastic
advantage in forecasting the metastasis of CRCs. By analyzing the
expression profiles of circRNAs in the six pairs of CRC tissues and
adjacent normal tissues, Chen et al. found that about two in three
circRNAs were upregulated and one in three circRNAs was
downregulated (122). In CRC tissues, the recovery of some
circRNAs hints at the possibility of metastasis and recurrence of
CRCs. CircRNA-1662 is an oncogenic circRNA that promoted CRC
cell invasion and migration through control of EMT, and was
reported to be a robust predictor for cancer metastasis (122).
Frontiers in Oncology | www.frontiersin.org 4
CircCSPP1 can promote CRC metastasis by regulating COL1A1,
which is composed of type I collagen (105). CircRNA_0001946,
hsa_circRNA_102209, circPTK2, hsa_circ_0001178,
circRNA_100876, circ-SIRT1, hsa_circRNA_002144,
circRNA_101951, and circTBL1XR can be overexpressed in CRC
to promote metastasis and proliferation (106, 109–111, 113, 114,
116–118). On the other hand, circ_0026344, circRNA-0074027,
hsa_circ_0009361, and hsa_circ_0001666 are downregulated in
CRC tissues and suppress the metastasis of tumor cells (107, 108,
112, 115, 119). The elevation of circPTK2 in CRC CTCs increases
the possibility of tumor metastasis (110). The hsa_circ_0001821
(circ3823) from both CRC tissues and sera may lead to tumor cell
infiltration by binding withmiR-30c-5p and its target to regulate the
expression of TCF7 (123). The role of circRNAs in CRCs is shown
in Table 2.
INTERACTIONS BETWEEN MIRNAS,
LNCRNAS, AND CIRCRNAS—THE
“SPONGE EFFECT”

There are reports that, at times, the outcomes of miRNA
transcription and expression is less satisfactory than expected,
which hints at the existence of miRNA inhibitors might be
present in the tumor microenvironment of CRCs (124). Seitz
et al. hypothesized this inhibitor as a “miRNA sponge” that
competes with endogenous mRNAs for miRNAs (125).
LncRNAs and circRNAs can regulate miRNAs from binding
TABLE 2 | Role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) associated with epithelial–mesenchymal transition (EMT) in colorectal cancers (CRCs).

Expression Signaling pathway Function in CRCs Reference

Long non-coding RNAs
XIST Up ZEB1, 2/E-cadherin, vimentin Promotes metastasis (101)
H19 Up ZEB1, 2/E-cadherin, vimentin Promotes metastasis (92)
SPRY4-IT1 Up ZEB1, 2/E-cadherin, vimentin Promotes metastasis (91)
TUG1 Up Wnt/b-catenin Signaling Promotes metastasis (102)
MALAT1 Up Chromatin Remodeling and epigenetic modulation Promotes metastasis (103)
UCA1 Up mTOR signaling Promotes metastasis (96)
BANCR Up MAPK/ERK Promotes metastasis (104)
LNCRNA-ATB Up Caspase signaling Promotes metastasis (98)
HOTAIR Up unclear Promotes metastasis (100)
HOXA-AS2 Up unclear Promotes metastasis (99)

Circular RNAs
circCSPP1 Up circCSPP1/miR-193a-5p/COL1A1 axis Promotes metastasis (105)
circRNA_0001946 Up miR-135a-5p/EMT axis Promotes metastasis (106)
circ_0026344 Down Wnt/b-catenin signaling Inhibits metastasis (107)
circRNA_0074027 Down EMT signaling pathway Inhibits metastasis (108)
hsa_circRNA_102209 Up Ras and Rab interactor 1 signaling Promotes metastasis (109)
circPTK2 Up EMT signaling pathway Promotes metastasis (110)
hsa_circ_0001178 Up ZEB1/miR-382/587/616 axis Promotes metastasis (111)
hsa_circ_0009361 Down Wnt/b-catenin signaling Inhibits metastasis (112)
circRNA_100876 Up EMT signaling pathway Promotes metastasis (113)
circ-SIRT1 Up circ-SIRT1/EIF4A3/N-cadherin/vimentin pathway Promotes metastasis (114)
circRNA_104916 Down EMT signaling pathway Inhibits metastasis (115)
hsa_circRNA_002144 Up miR-615-5p/LARP1/mTOR pathway Promotes metastasis (116)
circRNA_101951 Up KIF3A-mediated EMT pathway Promotes metastasis (117)
circTBL1XR1 Up CircTBL1XR1/miR-424 axis Promotes metastasis (118)
hsa_circ_0001666 Down miR-576-5p/PCDH10 axis Inhibits metastasis (119)
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with the target genes by functioning as competing endogenous
RNAs (ceRNAs), which can regulate the expressions of genes by
competitively integrating with miRNAs (126). The “lncRNA/
circRNAs/miRNA/mRNA/protein” pathway is also called the
molecular sponge effect (126).

In contrast, miRNA modulation can regulate the expressions
of lncRNAs as well. MiR-939-5p is a suppressive miRNA that can
inhibit the invasion and metastasis of CRC cells by decreasing the
level of LIMK2. LncRNA LINC00460 reduced the inhibition of
miR-939-5p on LIMK2 and bound with miR-939-5p as a ceRNA
(127). It is oncogenic through upregulation of annexin to
promote the EMT process (128). The glycolysis-related
lncRNA MIR17HG was found to competitively bind with miR-
138-5p to increase glycolysis, which can promote CRC liver
metastasis (129). The antisense lncRNA MCM3AP-AS1 sponged
miR-193a-5p through upregulating SENP1 to promote the
progression and migration of CRC (130). The lncRNA SNHG7
sponges miR-216b to promote the proliferation and liver
metastasis of colorectal cancer through upregulating GALNT1
(131). In the cytoplasm, LINC00460 is a type of lncRNA that can
regulate the expression of high mobility group A1 (HMGA1) of
m6A modificat ion under the cata lyt ic funct ion of
methyltransferase 3 (METTL3) (132). The earliest found
lncRNA, H19, functioned as a ceRNA that sequesters miR-138
and miR-200a and leads to the inhibition of vimentin and the
protein expressions of ZEB1 and ZEB2 (90, 92). The regulatory
pathway of lncRNAs on miRNAs is shown in Figure 1. Similarly,
circRNAs can act as ceRNA sponges of miRNAs (133). Most
circRNAs positively affect target genes and promote the
metastasis of CRCs. A few circRNAs act as suppressors of
t umo r i n v a s i on and p r omo t i on . C i r c _ 0 0 263 44 ,
hsa_circ_0009361, and hsa_circ_0001666 are negative
Frontiers in Oncology | www.frontiersin.org 5
regulators of tumor proliferation and inhibit metastasis. The
sponge mechanism of circRNAs on miRNAs is shown
in Figure 2.
THE ROLE OF M6A METHYLATION OF
RNAS IN EMT

M6A methylation is a novel and critical component of RNA
modification related to the expressions of ncRNAs in epigenetics
(134). M6A in RNA post-transcriptionally regulates mRNAs by
affecting the splicing, export, stability, and translation of transcripts
(135–138). Its methylation regulates miRNA synthesis, processing,
and maturation, which are crucial in tumorigenesis and cancer
progression (139). It has been reported that the m6A modification
could alter its local RNA structure at the terminal loop region of
primary miRNAs (pri-miRNAs) to promote their processing
through nuclear transcripts and alternative splicing by modulating
RALY binding (140–142). It is promising that m6Amethylation can
predict metastasis and the prognosis of therapy (143). The
upregulation of HMGA1 of m6A modification in CRC cells
enhances the probability of metastasis (132).

In total, 11 readers, 7 writers, and 2 erasers have already been
found. The term “writers” often denotes methyltransferase as the
beginning of m6A methylation, and different methyltransferases
form a complex to gain more powerful catalytic ability. The (143)
methyltransferase complex (MTC) comprises the m6A/METTL
complex (MAC) and the m6A/METTL-associated complex
(MACOM). MAC consists of METTL3 and METTL14, which
can form stable heterodimers (144). Besides METTL3 and
METTL14, WTAP is another writer that can participate in the
formation of complex to regulate m6A. NcRNAs can affect the
FIGURE 1 | Mechanism of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in colorectal cancer (CRC) metastasis.
May 2022 | Volume 12 | Article 879848
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process of m6A by regulating the function of the “writer”
complex. For example, METTL3 is the first discovered RNA
methylation-related mRNA with a catalytic subunit and is
upregulated in metastasis to promote cell migration and
invasion in CRCs by regulating miR-1246 (145). Contrarily,
METTL14 is regulated to suppress cell proliferation, invasion,
and migration in CRCs via miR-375 (146–149). Furthermore,
there exists mutual action between m6A modulation and
ncRNAs. Prior studies demonstrated that knockdown of
METTL3 downregulated the expression levels of miR-483,
miR-676, miR-877 and circ1662-YAP1-SMAD3 axis in
regulating CRC invasion (122, 142). The m6A modification of
circRNA_103783 (also called circNSUN2) could increase export
into the cytoplasm in the circNSUN2/IGF2BP2/HMGA2 ternary
complex (150). In addition, the high expression of circNSUN2
predicts a more aggressive characteristic of CRC; thus, m6A
modification enhances the metastasis risk of CRC cells (150).

Beyond the methyltransferases, the “readers” that can
recognize m6A modulation sites, such as YTHDF1, IGF2BP1,
IGF2BP3, and EIF3B (151), are also under the influence of
ncRNAs. The tumor-suppressive miR-1266 promoted the
occurrence and progression of CRCs by directly targeting FTO
(152). Moreover, the expression of the lncRNA GAS5 can
reversely regulate YAP1 via m6A (153). Surprisingly, the levels
of m6A can positively increase with the increased concentrations
of circRNAs (154). The upregulation of the lncRNA RP11 by
m6A methylation can accelerate the spread of CRC cells through
the upregulation of ZEB1 (155). Interestingly, it has been proven
that m6A circRNAs are different from m6A mRNA sites.
Frontiers in Oncology | www.frontiersin.org 6
This indicates that disturbance in the m6A modification of
mRNA is not equivalent to that of m6A circRNAs. Therefore,
to abolish the effects of m6A modification, then the m6A of
circRNAs must be considered as well (123, 154). Therefore, to
abolish the effects of m6A modification, then the m6A of
circRNAs must be considered as well. NcRNAs can regulate
the critical enzymes as the downstream target molecules or
combined partners. Feedback of the essential enzymes affects
the m6A modulation of ncRNAs, and this process can change the
cancer-related phenotype and lead to metastasis (155).
THE EXOSOMES AND EMT IN CRC

What is an exosome? Exosomes are microvesicles with diameters
from 30 to 150 nm. They are derived from normal intestinal cells,
CRC cells, and other cancer-related stromal cells (156). Exosomes
have various physiological functions and participate in multiple
cancer-related signaling pathways. Exosomes derived from CRCs
cells are associated with a metastatic phenotype in CRCs, such as
migration, infiltration, and EMT. For exosomes, surface antigens act
as biomarkers that contribute to recognition, and their components
determine the tasks exosomes carry out. Exosomes are secreted not
only from cancer cells but also from normal intestinal cells or other
tumor-related cells. Hepatocytes and fibroblasts can also produce
exosomes to enter into the blood, urine, or saliva (157, 158).
NcRNAs excreted from exosomes play an important role in
regulating the signaling pathways in CRC metastasis (159).
Studies that excluded the interference of miRNAs and lncRNAs
FIGURE 2 | Mechanisms of circular RNAs (circRNAs) acting as competing endogenous RNAs (ceRNAs) in colorectal cancer (CRC) metastasis.
May 2022 | Volume 12 | Article 879848
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in cells via the addition of anti-miRNAs and exogenous exosomes
containing miRNAs confirmed that ncRNAs negatively regulated
the downstream target proteins or mRNA molecules to promote
tumor metastasis via EMT (160–162). In contrast, EMT cancer cells
can promote exosome secretion via increasing the permeability of
vascular epithelial layers, and miR-27b-3p can regulate this process
through the STAT3 pathway (163). There is a mutual regulation
between exosomes and the EMT process, but most studies have
focused on the influence of exosome transportation in EMT, as
shown in Table 3. While the ncRNAs in exosomes can negatively
regulate the target genes and promote tumor metastasis, this also
hints that they may be brilliant therapeutic targets for the
prevention of metastasis. Besides CRC cells, tumor-associated
macrophages (TAMs) comprise another class involved in the
regulation of exosome and regulate the EMT process in
inflammatory or immune diseases (164). The effects being
positive or negative depend on the inflammatory cells and
cytokines that TAMs secrete. The miRNAs or lncRNAs wrapped
in vesicles could affect the M1 or M2 polarization of TAMs (172).
CONCLUSION

Cancer metastasis has always been a hot topic for scientists and
clinicians, and discovering the risk factors and suitable
therapeutic targets is a critical part of preventing metastasis.
Epigenetic change is a popular context associated with the
progression and metastasis of CRCs due to its variability and
vulnerability. NcRNAs plays a crucial role in regulating epithelial
tissues and the mesenchymal components. The dynamic process
determines the tumor metastasis tendency. In this regulation, the
sponge effect between lncRNAs/circRNAs/miRNAs/mRNA is
critical. In addition, epigenetic modification is a crucial link.
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The 5mCmethylation of DNA and the m6A methylation of RNA
in CRCs could enhance the invasive and migration ability to
promote metastasis. The mechanisms of the mutual effect
between methylation and ncRNAs may provide a novel
direction for future studies.

The EMT is a vital regulator in metastasis, while the
mechanism and influence factor of EMT is still unclear. As
mentioned before, these epigenetic changes are not independent
but interacting. The methylation of promoters can regulate the
process of alternative splicing and production of ncRNAs. The
review interprets a crosstalk interaction in epigenetic changes
from DNA methylation, ncRNAs, and m6A methylation. The
function of epigenetic changes is powerful and complex in
regulating mechanisms in CRC metastasis. At the same time,
EMT is a cross point that the DNA methylation, m6A
methylation, and ncRNAs can all affect CRC metastasis. They
can upregulate or downregulate the biomarkers in EMT such as
N-cadherin, Vimentin, MMPs, E-cadherin, Claudin, and
EpCAM to control the progress of the epithelial transition.

Another novelty of the review is that the exosomes can
regulate EMT as a carrier for transporting ncRNAs. The
function of exosomes has gained widespread attention in
cancers. The exosomes have been proved to be related to
cancers detection. This review summarizes the effect of
exosomes in CRC metastasis related to EMT. That indicates
that exosomes are a vital factor in the tumor micro-environment.
The tumor cells or other stromal cells can secret exosomes to
regulate EMT. And this review indicates that DNA methylation,
ncRNAs, m6A methylation, exosomes, and EMT can all act as
potential therapeutic targets in CRC metastasis. The associated
relationship and mutual interaction among them are elucidated
thoroughly in this review. While prior studies have been
published elucidating the mechanisms of exosomes and EMT,
TABLE 3 | Functions of exosomes in colorectal cancer (CRC) metastasis via regulating the epithelial–mesenchymal transition (EMT) process.

Author Source of
exosomes

Components in
exosomes

Target molecules Regulated phenotype Outcomes Reference

J.L. Hu Cancer-associated
fibroblasts (CAFs)

miR-92a-3p FBXW7 and MOAP1 EMT Metastasis (160)

T. Liu normal intestinal FHC
cells

miR-128-3p BMI1 and MRP5 EMT Metastasis and
oxaliplatin resistance

(161)

Z. Liang CRC cells LncRNA RPPH1 TUBB3 and macrophage M2 polarization EMT Metastasis (162)
H. Xu hepatocyte miR-203a-3p Src EMT Metastasis (158)
D. Wang CRC cells miR-25-3p, miR-130b-

3p, and miR-425-5p
PTEN through PI3K/Akt signaling
pathway/macrophage M2 polarization

EMT Metastasis (164)

R. Rezaei CRC cells miRNA-375-3p b-catenin, vimentin, ZEB1, and SNAIL EMT Metastasis (165)
X. Zhang CRC cells miR-1255b-5p Human telomerase reverse transcriptase

(hTERT) and BRG1
EMT Metastasis (166)

T. Li Mesenchymal stem
cells

microRNA-3940-5p Integrin a6 and TGF-b1 EMT Metastasis (157)

H. Liu CRC cells miR-106b-3p DLC-1 EMT Metastasis (167)
L. Zhou Cancer-associated

fibroblasts (CAFs)
LncRNA LINC00659 miR-342-3p/ANXA2 axis Proliferation, invasion,

migration, and EMT
Metastasis (168)

Z. Xiao CRC cells miR-1915-3p PFKFB3 and USP2 EMT Metastasis (169)
F.
Mannavola

CRC cells miR-106b-3p Deleted in liver cancer 1 (DLC1) EMT Metastasis (170)

Y. Xu CRC cells circRNA FBXW7 miR-18b-5p EMT and oxaliplatin
resistance

Metastasis (171)
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the field remains in its relative infancy, with the potential to
discover important new therapeutic targets for CRC.

The detection of exosomes in LB is a novel method to predict
metastasis in CRCs. The variety of stromal cells can produce
exosomes to participate in the progression, proliferation,
migration, and EMT in CRCs. Epigenetic changes, ncRNAs,
and exosomes are not independent of each other; on the
contrary, there exists an intrinsic interrelation between them.
Different from previous studies, this review elaborated on the
potential links between epigenetic changes, exosomes, and EMT
in CRCs regarding metastasis. It provided novel sights for the
study of probable mechanisms of metastasis in CRCs. There have
Frontiers in Oncology | www.frontiersin.org 8
already been several studies on the mechanisms of exosomes and
EMT, but more studies are needed to discover new therapeutic
targets for CRCs.
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