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Abstract: Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes
including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular
internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes
the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target
Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a
regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the
endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional
modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the
most suitable cell line for an in vitro blood–brain barrier model.

Keywords: ACE2; Akt; blood–brain barrier; brain; coronavirus; CD304; COVID-19; endothelium;
epigenetics; hBMEC; microRNA; miR-24-3p; neurology; non-coding RNA; NRP1; SARS-CoV-2;
vascular permeability; VEGF; VEGF165R

1. Introduction

Neuropilins are single-pass transmembrane, non-tyrosine kinase surface glycoproteins
that are expressed in all vertebrates with versatile roles in a wide range of physiological
processes including angiogenesis, immunity, development, and axonal guidance [1–5]. The
family includes two homologous isoforms, Neuropilin-1 and Neuropilin-2, encoded by
distinct genes on different chromosomes (10p12 and 2q34, respectively) [6]. Both isoforms
are upregulated in a number of clinical disorders, including cancer, where they increase
the oncogenic activities of malignant cells by promoting survival, inducing angiogenesis
and lymphangiogenesis, and contribute to therapy resistance [7]. Neuropilin-1 has been
shown to regulate the endothelium-dependent inflammatory responses at the level of the
blood–brain barrier [8].

MicroRNAs (miRNAs, miRs) are small non-coding RNAs involved in post-transcriptional
gene regulation [9–12]. They play crucial regulatory roles in a number of biological pro-
cesses [13–20]. Of note, miRNAs represent a very attractive therapeutic strategy to manipulate
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various processes as their activity can be efficiently modulated with innovative and personal-
ized technologies [21,22]. We, and others, have identified a number of miRNAs involved in
the regulation of endothelial function [23–28].

The main aim of this study was to identify miRNAs that specifically target Neuropilin-
1 in human brain endothelial cells. We were able to pinpoint and validate hsa-miR-24-3p
(indicated for brevity as miR-24) as a main regulator of Neuropilin-1 transcription.

2. Materials and Methods
2.1. Cell Culture and Reagents

All reagents were purchased from Millipore-Sigma (Burlington, MA, USA), unless
otherwise stated. Human brain microvascular endothelial cells (hBMECs) were obtained
from Neuromics (Minneapolis, MN, USA; catalog number: #HEC02). These cells have been
proved to be the most suitable human cell line for an in vitro blood–brain barrier (BBB)
model [29].

Cells were cultured in a standard humidified atmosphere (37 ◦C) containing 5%
CO2. In some experiments, cells were transfected with pcDNA3.1-Neuropilin-1 plasmids
(GenScript, Piscataway, NJ, USA).

2.2. Identification of miRNAs Targeting Neuropilin-1

To identify miRNAs targeting the 3′-UTR of Neuropilin-1, we used the online target
prediction tool Targetscan 7.2, as previously described by our research group [28,30–33].

2.3. Biological Validation of miR-24 as a Regulator of Neuropilin-1

To evaluate the effects of miR-24 on Neuropilin-1 gene transcription, we used a
luciferase reporter containing the 3’-UTR of the predicted miRNA interaction site, both
wild-type and mutated, in hBMECs cells. The mutant construct of Neuropilin-1 3′-UTR
(Neuropilin-1 MUT, as shown in Figure 1), harboring a substitution of two nucleotides
within the predicted miR-24 binding sites of Neuropilin-1 3′-UTR was obtained through
means of the NEBaseChanger and Q5 site-directed mutagenesis kit (New England Biolabs,
Ipswich, MA, USA) as we described [30,32].

Figure 1. Identification of miR-24 as modulator of Neuropilin-1. Complementary nucleotides
between the target region of Neuropilin-1 3′-UTR (in green) and hsa-miR-24-3p are highly conserved
across different species.

We transfected hBMECs with the 3′-UTR reporter plasmid (0.05 µg) and miR-24
mirVanaTM mimics (ThermoFisher Scientific, Waltham MA, USA) or miR-24 miRIDIAN
hairpin inhibitors (PerkinElmer, Waltham MA, USA), as well as a non-targeting negative
control (scramble), all used at a final concentration of 50 nMol/L, using Lipofectamine
RNAiMAX (ThermoFisher Scientific) [32]. Firefly and Renilla luciferase activities were
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measured 48 h after transfection, using a Luciferase Reporter Assay System (Promega,
Madison, WI, USA), normalizing Firefly luciferase to Renilla luciferase activity [32].

Levels of miR-24 were measured via TaqMan miRNA assays (ThermoFisher Scien-
tific), according to the manufacturer’s instructions, and normalized to the level of U6 as
we previously described and validated [28,30]. Cellular expression of Neuropilin-1 was
determined by RT-qPCR, as we described [28,30,33], normalizing to endogenous glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH). Sequences of oligonucleotide primers
(Merck KGaA, Darmstadt, Germany) are reported in Table 1.

Table 1. Sequences of oligonucleotide primers and product sizes.

Gene Primer Sequence (5′–3′) Amplicon (bp)

Neuropilin-1
Forward CCA CAG TGG AAC AGG TGA TG

114
Reverse ACA CAC ACA GGC GTT AGC TG

GAPDH
Forward GGC TCC CTT GGG TAT ATG GT

94
Reverse TTG ATT TTG GAG GGA TCT CG

GAPDH: glyceraldehyde 3-phosphate dehydrogenase.

2.4. Western Blot

Immunoblots were obtained as we previously described and validated [28,30,31] using
the Odyssey system (LI-COR Biosciences, Lincoln, NE, USA); the intensity of bands was
quantified using the FIJI software.

The following antibodies were used: Neuropilin-1 (catalog number: #ST0530, Novus
Biologicals, Bio-Techne, Minneapolis, MN, USA); Akt (catalog number: #sc-5298, Santa
Cruz Biotechnology, Dallas, TX, USA); pAktSer473 (catalog number: #9271, Cell Signaling,
Danvers, MA, USA); β Actin (catalog number: #ab8229, abcam, Cambridge, MA, USA).

2.5. Endothelial Permeability Assay

The in vitro permeability assay was performed as we previously described [34].
Briefly, hBMECs transfected with miR-24 mimic or miR scramble were grown on 0.4-mm
fibronectin-coated (R&D Systems, Inc., Minneapolis, MN, USA) Transwell filters (Corn-
ing Inc., Corning, NY, USA). After 48 h, the medium in the upper well was replaced by
FITC-dextran 70 kD (0.5 mg/mL in PB).

Cells were stimulated in the lower well with PBS alone or PBS containing 50 ng/mL
VEGF-A165 (R&D Systems). The entity of endothelial permeabilization was determined
measuring at 520 nm the fluorescence of Dextran that passed in the bottom chamber
through the cell monolayer.

2.6. Statistical Analysis

All data are expressed as means ± standard error of means (SEM). Statistical analyses
were carried out using GraphPad 8 (Prism, San Diego, CA, USA). Statistical significance,
set at p < 0.05, was tested using the two-way ANOVA followed by Tukey–Kramer multiple
comparison test or the nonparametric Mann–Whitney U test, as appropriate.

3. Results
3.1. Identification of miR-24 as a Specific Modulator of Neuropilin-1

A bioinformatic screening resulted in the identification of hsa-miR-24 as a highly
conserved miRNA potentially capable of repressing Neuropilin-1 mRNA expression. The
complementary nucleotides between the target region of Neuropilin-1 3’ untranslated
region (3′-UTR) and miR-24 are evolutionarily highly conserved across different species,
including humans, nonhuman primates, and rodents (Figure 1).
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3.2. Neuropilin-1 Is a Molecular Target of miR-24

The proposed relationship was substantiated by an experimental validation of seed
complementarity, confirming through a luciferase assay the interaction between miR-24
and the 3′-UTR of Neuropilin-1 in hBMECs (Figure 2).

Figure 2. Validation of Neuropilin-1 targeting by miR-24. Luciferase activity was measured in
hBMECs 48 h after transfection, using the vector without Neuropilin-1 3′-UTR (empty vector), the
vector containing the wild-type Neuropilin-1 3′-UTR, and the vector containing a mutated Neuropilin-
1 3′-UTR (Neuropilin-1 MUT); a non-targeting miRNA (miR scramble) has been employed as further
control. Means ± S.E.M; * p < 0.05.

3.3. miR-24 Regulates Neuropilin-1 Transcription Levels in Human Endothelial Cells

After having validated that miR-24 targets Neuropilin-1 3’UTR, we verified the effects
of miR-24 mimic and miR-24 inhibitor on the transcription levels of Neuropilin-1 in hB-
MECs (Figure 3). These results were confirmed by immunoblot in terms of protein levels
(Supplementary Figure S1).

Figure 3. Neuropilin-1 expression in human brain endothelial cells is reduced by miR-24 and
increased by miR-24 inhibitor. Neuropilin-1 mRNA levels (A) were measured in hBMECs transfected
with miR-24 mimic, inhibitor, or scramble (negative control) for 48 h; miR-24 expression was assessed
as well (B). Means ± S.E.M; * p < 0.05.

3.4. miR-24 Regulates Neuropilin-1 Mediated Endothelial Permeability

Several investigators have demonstrated that Neuropilin-1 is involved in EC perme-
ability [35–37]. To assess the functional role of miR-24 on Neuropilin-1 mediated endothe-
lial permeability, we performed an in vitro permeability assay, following an experimental
protocol that we have recently described [34].

As shown in Figure 4, we found that miR-24 significantly reduced the permeability
of hBMECs in response to VEGF165, an established agonist of Neuropilin-1 [4,38,39], and
Neuropilin-1 overexpression rescued such an impaired response. Moreover, miR-24 mimic
reduced VEGF165 induced Akt phosphorylation (Figure 5).
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Figure 4. Targeting Neuropilin-1 by miR-24 significantly reduces endothelial permeability. En-
dothelial leakage triggered by VEGF-A165 (50 ng/mL) was measured in hBMECs transfected with
miR-24-3p mimic, miR scramble, or combining miR-24-3p mimic and Neuropilin-1 overexpression;
* p < 0.05 vs. PBS, # p < 0.05 vs. miR-scramble. PBS: Phosphate-buffered saline.

Figure 5. Targeting Neuropilin-1 by miR-24 significantly reduces Akt activation. Akt phosphory-
lation in Ser473 (representative immunoblots from 4 experimental assays) triggered by VEGF-A165

(50 ng/mL) was measured in hBMECs transfected with miR-24-3p mimic or miR scramble * p < 0.05
vs. PBS, # p < 0.05 vs. miR-scramble. PBS: Phosphate-buffered saline.

4. Discussion

In the present study, we have demonstrated for the first time that miR-24 directly
targets the 3’UTR of Neuropilin-1. To the best of our knowledge, we also provide the first
evidence of the actual expression of Neuropilin-1 in human brain endothelial cells.

Our findings are consistent with previous research showing that Neuropilin-1 is ex-
pressed by pulmonary endothelial cells [40] and by tumor-associated vascular endothelial
cells (TAVECs) [41]. Our data on miR-24 are in agreement with previous studies exploring
the functional role of miR-24 in endothelial cells. Indeed, miR-24-3p has been shown to
regulate angiogenesis in rodents, zebrafish embryos, and in diabetic patients by modulat-
ing endothelial function [42,43]. Additionally, miR-24 has been demonstrated to reduce
endothelium-dependent inflammatory responses [44].

Neuropilin-1 is a transmembrane receptor that is abundant in the respiratory and
olfactory epithelium and in olfactory-related regions such as the olfactory tubercles and
para-olfactory gyri [45]. Two independent studies recently published in Science have
demonstrated that Neuropilin-1 represents a crucial co-factor necessary for the entry of the
severe acute respiratory syndrome coronavirus (SARS-CoV-2)—which causes the coron-
avirus disease 2019 (COVID-19)—in human cells [46,47]. The first one, led by Ludovico
Cantuti-Castelvetri [46] has shown that Neuropilin-1 significantly potentiates SARS-CoV-2
infectivity; the second one, led by James L. Daly, has proven via biochemical approaches
and x-ray crystallography that the cleaved Spike protein of SARS-CoV-2 directly binds
Neuropilin-1 [47].
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Mounting evidence has shown that SARS-CoV-2 can directly target endothelial cells
[48–57], an aspect initially reported by our group in March 2020 by simply observing the
systemic manifestations in COVID-19 patients [48,49,58], and later corroborated by autop-
tic findings [59–63] and by the analysis of amputation specimens [64]. Intriguingly, brain
endothelial cells show a distinct pro-inflammatory response when exposed to SARS-CoV-2
spike protein subunits [65] and infected vascular endothelial cells have been shown to spread
SARS-CoV-2 to glial cells in the central nervous system [66]. Furthermore, COVID-19 has
been associated with a wide spectrum of neurological symptoms and Neuropilin-1 has been
proposed as a key factor in the neurological manifestation of COVID-19 by enhancing the entry
of SARS-CoV-2 into the brain [66–71].

The most studied ligands of Neuropilin-1 are vascular endothelial growth factor
(VEGF), semaphorins, complement split products, and furin-cleaved substrates [1–4,72].
Interestingly, augmented VEGF levels have been reported in bronchial alveolar lavage fluid
from COVID-19 patients [73] and asymptomatic COVID-19 have lower serum VEGF levels
compared to symptomatic patients [74]. In line with these observations, the interaction
between Neuropilin-1 and VEGF has been recently shown to be implied in nociception [75].

Neuropilin-1 could also be involved in the relationship between COVID-19 and
diabetes mellitus. Various studies have demonstrated that severe COVID-19 dispropor-
tionately affects patients with diabetes [76,77]. Of note, among the proposed SARS-CoV-2
cell-entry and amplification factors assessed in a cryopreserved human diabetic kidney
single-nucleus RNA sequencing dataset [78], only Neuropilin-1 was found to be signifi-
cantly upregulated [46]. In agreement with these reports, hyperglycemia has been shown
to downregulate miR-24 expression in plasma and tissue and knocking miR-24 down in
mice leads to increased expression and secretion of von Willebrand factor in endothelial
cells, accompanied by a significantly enhanced platelet tethering [79], thereby suggesting a
pathophysiologic role for this miRNA in the thromboembolic complications described in
COVID-19 [49,80–82].

In addition to endothelial cells, Neuropilin-1 is expressed in immune cells, including T
cells, B cells, macrophages, dendritic cells, and mast cells, where it regulates development,
migration, recruitment, and communication between different immune cells [83]. Despite
emerging evidence for the immune regulatory functions of Neuropilin-1, its exact molecular
pathways remain not fully understood. Nevertheless, it is likely that Neuropilin-1 could
be also involved in the cytokine storm and the subsequent hyper-inflammatory state
observed in COVID-19 patients [84–86], although further dedicated studies in this sense
are necessary.

Our study should be interpreted in light of some limitations. For instance, we only
performed in vitro experiments testing the association between miR-24 and Neuropilin-1
mRNA, and we did not verify the actual effects of miR-24 on SARS-CoV-2 infection. Since
most of the findings were obtained using exogenously expressed miRNAs, further studies
are required to evaluate the translational potential of our results. Nonetheless, our findings
are consistent with the observation of miR-24 expression in endothelial cells [42–44,87] and
its roles as a regulator of various cerebrovascular phenomena, including angiogenesis in
gliomas [88,89] and vasospasm following subarachnoid hemorrhage [90]. The study also
has some strengths, including the fact that the 3′-UTR of Neuropilin-1 that is targeted by
miR-24 is highly conserved among species, from primates to rodents.

In conclusion, our data show for the first time that Neuropilin-1 is a direct target of
miR-24 in human brain endothelial cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/2311-553
X/7/1/9/s1, Figure S1: Neuropilin-1 protein expression is regulated by miR-24-3p.
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