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ABSTRACT

Introduction: Many measures implemented to
control the coronavirus disease 2019 (COVID-19)
pandemic have reshaped the epidemic patterns of other
infectious diseases. This study estimated the impact of
the COVID-19 pandemic on respiratory and intestinal
infectious diseases and potential changes following
reopening.

Methods: The  optimal  intervention  and
counterfactual models were selected from the seasonal
autoregressive integrated moving average (SARIMA),
neural network autoregression (NNAR), and hybrid
models based on the minimum mean absolute
percentage error (MAPE) in the test set. The relative
change rate between the actual notification rate and
that predicted by the optimal model was calculated for
the entire COVID-19 epidemic prevention period and
the “reopening” period.

Results: Compared with the predicted notification
rate based on the counterfactual model, the total
relative change rates for the 9 infectious diseases were
-44.24%, respiratory infections (-55.41%), and
intestinal infections (-26.59%) during 2020-2022.
Compared with the predicted notification rate based
on the intervention model, the total relative change
rates were  +247.98%,  respiratory infections
(+389.59%), and intestinal infections (+50.46%) in
2023. Among them, the relative increases in influenza
(+499.98%) and hand-foot-mouth disease (HFMD)
(+70.97%) were significant.

Conclusions: Measures taken in Jiangsu Province
in response to COVID-19 effectively constrained the
spread of respiratory and intestinal infectious diseases.
Influenza and HFMD rebounded significantly after the
lifting of COVID-19 intervention restrictions.

Since 2020, China has classified coronavirus disease
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2019 (COVID-19) as a Category B infectious disease
but managed it as a Category A disease, empowering
local authorities to impose lockdowns and other
stringent control measures (/). These COVID-19
control measures in China have persisted for nearly 3
years and may have far-reaching consequences for the
healthcare system and other disease burdens. In
January 2023, the Chinese government substantially
adjusted its control policies, completely lifting
COVID-19 interventions and resuming normal social
and economic activities. The first COVID-19 case was
confirmed in Jiangsu Province on January 22, 2020
(2). Several studies have shown that these measures are
effective against COVID-19 and numerous other
common infectious diseases, particularly respiratory
and intestinal infections (3). Currently, the impacts of
COVID-19 interventions on the spread of other
respiratory and intestinal diseases in Jiangsu Province
have been inconsistent.

Therefore, in this study, we established COVID-19
intervention models and counterfactual models of 9
respiratory and intestinal infectious diseases by
adopting the seasonal autoregressive integrated moving
average (SARIMA), neural network autoregression
(NNAR), and hybrid models. We then compared the
actual notification rate with the predicted rate and
analyzed the impact of COVID-19 intervention
measures in Jiangsu Province. This study aimed to
provide a decision-making basis for the prevention and
control of emerging infectious diseases.

METHODS

Data Source
Data on respiratory and intestinal infectious diseases
between January 2004 and December 2023 in Jiangsu
Province were obtained from the nationwide Notifiable
Infectious Diseases Reporting Information System
(NIDRIS). Based on the criterion of an annual average
number of reported cases exceeding 250 from 2020 to
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2022, a total of nine notifiable infectious diseases were
identified for analysis: tuberculosis, influenza, mumps,
hepatitis A, dysentery,
diarrhoeal diseases other than cholera, dysentery, and
typhoid/paratyphoid (OID), hand-foot-mouth disease
(HFMD), and hepatitis E.

This study used the overall government response
index from the Oxford COVID-19 Government
Response Tracker (OxCGRT) to quantify COVID-19
interventions (4). This index tracks the strength and
variation of all relevant indicators of government
response from 2020 to 2022 on a scale of 0 to 100.

scarlet fever, infectious

Establishment of the SARIMA Model

SARIMA, a variant of the ARIMA model, is
expressed as  SARIMA(p,4,9)(P,D,Q)s (5). The
parameters p, d, and ¢ represent the orders of
autoregression, the degree of trend difference, and the
moving average for the nonseasonal component,
respectively. P signifies the order of seasonal
autoregression; D, the degree of seasonal difference; Q,
the order of the seasonal moving average; and s, the
seasonal period.

Establishment of the NNAR Model

NNAR models can be conceptualized as a complex
network of neurons or nodes, exhibiting intricate
nonlinear interactions and functional forms. The
model can be described with the notation
NNAR(p,P,k)m for seasonal data, where p represents
the number of nonseasonal lagged inputs for the linear
autoregressive (AR) model process, P denotes the
seasonal lag for the AR model process, # signifies the
number of nodes in the hidden layer, and m is the
length of the seasonal period (5).

Establishment of The SARIMA-NNAR
Hybrid Model

A hybrid model was constructed by combining the
SARIMA and NNAR models with equal weights.

Model Evaluations
We used a quantitative metric to evaluate and
compare the performance of the models: MAPE. The
formula used to calculate the metric is shown below

(6):
b = i
Ve

MAPE = % i
=1

where y, and j, denote the original and predicted
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values at time #, respectively, and 7 is the number of
predictions. A model with small mean absolute
percentage error (MAPE) values is preferred.

Constructing the Counterfactual Models

The SARMA, NNAR, and hybrid models were
used to construct counterfactual models. Monthly case
counts for each infectious disease from 2004 to 2017
served as the training set, while data from 2018 to
2019 served as the test set. The baseline models with
the lowest MAPE values on the test set were selected
and trained using data from 2004 to 2019 to predict
case counts from 2020 to 2023.

Constructing the COVID-19

Intervention Models

Three models were constructed using monthly case
counts for each infectious disease and overall
government response indices. Data from 2004 to 2021
were used for model training and construction, while
data from 2022 served as the test set to assess model
performance. The best baseline models were selected
based on the minimum MAPE value obtained from
the test set. Subsequently, these models were trained
using data from 2004 to 2022 to predict the number
of cases in 2023 (Supplementary Figure S1, available at
hteps://weekly.chinacdc.cn/).

RESULTS

Selection of The Optimal Model

The counterfactual models were neural network for
tuberculosis, influenza, and OID; SARMA for mumps,
scarlet fever, and HFMD; and hybrid for hepatitis A,
dysentery, and hepatitis E. The intervention models
were hybrid for tuberculosis, mumps, scarlet fever,
dysentery, OID, HFMD, and hepatitis E; neural
network for influenza; and SARIMA for hepatitis A.
(Supplementary Table S1, available at https://weekly.
chinacdc.cn/)

Predicted Yearly Notification Rates for
2020-2023 Based on Counterfactual
Models

The actual yearly notification rates for 9 infectious
diseases from 2020 to 2022 were lower than the rates
predicted by the counterfactual models. The total
relative change rates for the 9 infectious diseases,
respiratory infections, and intestinal infections were
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FIGURE 1. The observed notification rate versus the predicted notification rate based on 2020-2023 according to the
counterfactual model. (A) Tuberculosis; (B) Influenza; (C) Mumps; (D) Scarlet fever; (E) Hepatitis A; (F) Dysentery; (G) OID;

(H) HFMD; (1) Hepatitis E.

Note: The blue line represents the fitted values, the black line represents the actual values, and the red line along with the
pink area represents the predicted values and the 95% confidence interval, respectively.

Abbreviation: OlD=infectious diarrhoeal diseases other than
mouth disease.

-44.24%, -55.41%, and -26.59%, respectively. The
three diseases with the highest relative change rates
were scarlet fever (-75.90%), mumps (-73.35%), and
influenza (-61.00%). (Figure 1 and Table 1)

The total notification rates for 9 infectious diseases
in 2023 predicted by the COVID-19 intervention
model and the counterfactual model were similar

(P=0.796).

Predicted Yearly Notification Rates for
2023 Based on COVID-19

Intervention Models

The actual yearly notification rate of 9 infectious
diseases in 2023 was higher than the rate predicted by
the COVID-19 model,  which
incorporates the overall government response index to
reflect changes in non-pharmaceutical interventions
(NPIs). The total relative change rate for the 9
infectious diseases was +247.98%, with respiratory
infections (+389.59%) and intestinal infections

intervention
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cholera, dysentery, and typhoid/paratyphoid; HFMD=hand-foot-

(+50.46%) showing increases. Three infectious diseases
— influenza (+499.98%), HFEMD (+70.97%), and
hepatitis A (+7.04%) — showed a relative increase,
while the remaining 6 infectious diseases showed a
relative reduction (Figure 2 and Table 1).

DISCUSSION

COVID-19 intervention measures effectively curbed
the spread of respiratory and enteric infectious diseases
in Jiangsu. We observed that the incidence of 9
infectious diseases declined compared to model
predictions during 2020-2022, and the reduction in
respiratory infectious diseases was greater than that in
intestinal infectious diseases.

The lifting of NPIs did not result in a rebound of all
infectious diseases; only influenza and HFMD
infections were significantly higher than predicted by
the intervention model. Similar observations have been
reported in other countries. In late 2022, a surge in
influenza and respiratory syncytial virus infections in
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FIGURE 2. The observed notification rate versus the predicted notification rate based on 2023 according to the intervention
model. (A) Tuberculosis; (B) Influenza; (C) Mumps; (D) Scarlet fever; (E) Hepatitis A; (F) Dysentery; (G) OID;(H) HFMD; (I)

Hepatitis E.

Note: The blue line represents the fitted values, the black line represents the actual values, and the red line along with the
pink area represents the predicted values and the 95% confidence interval, respectively.
Abbreviation: OlD=infectious diarrhoeal diseases other than cholera, dysentery, and typhoid/paratyphoid; HFMD=hand-foot-

mouth disease.

the U.S. led to numerous reports (7). This wave of
respiratory infections among children coincided with
the easing of COVID-19 restrictions. Similarly, the
incidence of HFMD rebounded in Japan as NPIs were
relaxed (8). Based on current data, the observed
rebounds or outbreaks following the easing of NPIs
initially appeared in children and were all attributed to
non-vaccine preventable diseases (non-VPDs) (9).
However, given the potential decline in community
immunity due to disruptions in vaccination programs
during the COVID-19 pandemic (10),
rebound trends observed for non-VPDs might also be
anticipated for VPDs.

Some medical professionals and media outlets use
the term “immune debt” to explain the surge in
influenza and HFMD cases in 2023 (71), referring to
the lack of pathogen exposure that leaves immune
systems less prepared to fight these diseases. However,

similar

opponents argue that the immune system does not
operate on a “use it or lose it” mechanism; even

without exposure to pathogens, the human immune
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system maintains normal natural immunity (72).
Indeed, proposed
explanations for this phenomenon: the severe acute
respiratorysyndrome virus 2 (SARS-CoV-2) virus
damages the immune system through T-cell responses,
weakening resistance to common infectious diseases
(13). Immune dysfunction can persist for up to 8
months, even in patients with mild to moderate SARS-
CoV-2 infection (14). However, further evidence is
needed to confirm this viewpoint.

Most related studies have focused on assessing the
impact of COVID-19 outbreaks and control measures
on other infectious diseases during the early stages of
lockdown or specific periods. This study encompasses
the entire COVID-19 period and considers the
dynamic changes in NIPs. We selected optimal models
to improve prediction accuracy, retrospectively
analyzed and compared case reports, and addressed
inquiries regarding the magnitude of changes in
respiratory and intestinal infectious diseases after the
cancellation of the zero-clearing policy in a timely

several scholars have new
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TABLE 1. The predicted yearly notification rate based on the counterfactual model and the intervention model from 2020 to

2023.
Counterfactual model Intervention model
2020-2022 2023 2023
gtseega:ril Diseases Average ::i::;g Annual ::1'::‘9’2 Annual ::::;:
cases ar_mual rate of Cases incidence rate of Cases incidence rate of
() ('1"/'1"0%‘*333) incidence (11100,000) incidence ™ (1/100,000) incidence
’ (%) (%) (%)
Tuberculosis 69,823 27.87 -7.79 22,229 26.10 -32.46 20,661 24.26 -27.34
Influenza 304,717 121.64 -61.00 83,959 98.60 649.72 104,913 123.20 499.98
Respiratory ~ Mumps 67,543 26.96 -73.35 25,371 29.79 -84.35 4,738 5.56 -16.19
Scarlet fever 19,979 7.98 -75.90 7,577 8.90 -84.51 2,373 2.79 -50.53
Total 462,062 184.46 -55.41 139,136 163.39 366.89 132,685 155.82 389.59
Hepatitis A 1,796 0.72 -18.44 517 0.61 -14.89 411 0.48 7.04
Dysentery 5,262 2.10 -34.49 1,452 1.71 -55.03 1,184 1.39 -44.85
. OoID 85,067 33.96 -32.22 31,469 36.96 -49.39 18,250 21.43 -12.73
intestinal HFMD 192,943 77.02 -24.95 58,830 69.09 110.24 72,341 84.95 70.97
Hepatitis E 7,348 2.93 -0.75 2,225 2.61 9.48 2,947 3.46 -17.34
Total 292,416 116.73 -26.59 94,493 110.97 51.48 95,133 111.72 50.46
Total 754,478 301.19 -44.24 233,629 274.36 239.32 227,818 267.54 247.98

Note: relative change rate of incidence=(actual incidence-predicted incidence)/predicited incidence.

manner.

Our study has certain limitations. First, the lower
number of reported cases of certain infectious diseases
than predicted during the three-year COVID-19
intervention may reflect underreporting due to
reluctance to seek medical care, potentially biasing
reporting data and underestimating the actual
incidence. Second, most OxCGRT data indicators are
based on the

implemented in a single country, which may limit the

strictest ~ government  policies
generalizability of our findings to other countries or
regions with less stringent measures.
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SUPPLEMENTARY MATERIAL

The monthly cases

The intervention
series (overall government
response index)

Train database: 2004.1-2021.12 Construct SARIMA, NNAR Construct SARIMA, NNAR Train database: 2004.1-2017.12
Test database: 2022.1-12 and hybrid models and hybrid models Test database: 2018.1-2019.12

Select the best model based on Select the best model based on
the minimum MAPE value of the minimum MAPE value of
the test set the test set

Retrain database: 2004.1-2022.12 Retrain using the Retrain using the Retrain database: 2004.1-2019.12
best model best model Construct counterfactual model

Calculate incidence

Counterfactual cases after Counterfactual cases during
COVID-19 pandemlc COVID-19 pandemic
2023.1-12 2020.1-2022.12

Forecast “reopening”period Forecast Counterfactual cases
2023.1-12 2020.1-2023.12

Actual notification rate o
2023.1-12 Calculate incidence Calculate incidence

Actual notification rate
2020.1-2022.12

SUPPLEMENTARY FIGURE S1. Research design and model training diagram.
Abbreviation: SARIMA=seasonal autoregressive integrated moving average; NNAR=neural network autoregression;
MAPE=mean absolute percentage error; COVID-19=coronavirus disease 2019.

SUPPLEMENTARY TABLE S1. Selection of optimal model.

Counterfactual model Intervention model
Disease category Di (The first step) (The second step)
Final model Model parameter Final model Model parameter
Tuberculosis Neural Network NNAR(3,1,2)[12] Hybrid -
Influenza Neural Network NNAR(13,1,7)[12] Neural Network NNAR(13,1,8)[12]
Respiratory
Mumps SARIMA SARIMA(3,0,1)(2,1,0)[12] Hybrid -
Scarlet fever SARIMA SARIMA(2,0,0)(0,1,1)[12] Hybrid -
Hepatitis A Hybrid = SARIMA SARIMA(0,1,3)(0,0,2)[12]
Dysentery Hybrid = Hybrid =
Intestinal OID Neural Network NNAR(15,1,8)[12] Hybrid =
HFMD SARIMA SARIMA(3,1,0)(0,1,1)[12] Hybrid =
Hepatitis E Hybrid = Hybrid =

Note: “~” means SARIMA-NNAR (SARIMA with weight 0.5, NNAR with weight 0.5).
Abbreviation: SARIMA=seasonal autoregressive integrated moving average; NNAR=neural network autoregression; OlD=infectious
diarrhoeal diseases other than cholera, dysentery, and typhoid/paratyphoid; HFMD=hand-foot-mouth disease
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