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Abstract.  

Colorectal cancer (CRC) is one of the most frequently occurring cancers, but 

prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this 

study, we aimed to investigate in more detail the spatial relationship between 

intratumoural T cells, cancer cells, and cancer cell hallmarks, as prognostic 

biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging 

of 56 protein markers at single cell resolution on resected fixed tissue from stage III 

CRC patients who received adjuvant 5-fluorouracil-based chemotherapy. Images 

underwent segmentation for tumour, stroma and immune cells, and cancer cell 

‘state’ protein marker expression was quantified at a cellular level. We developed a 

Python package for estimation of spatial proximity, nearest neighbour analysis 

focusing on cancer cell – T cell interactions at single-cell level. In our discovery 

cohort (MSK), we processed 462 core samples (total number of cells: 1,669,228) 

from 221 adjuvant 5FU-treated stage III patients. The validation cohort (HV) 

consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC 

patients. While there were trends for an association between percentage of cytotoxic 

T cells (across the whole cancer core), it did not reach significance (Discovery 

cohort: p = 0.07, Validation cohort: p = 0.19). We next benchmarked our region-

based nearest neighbourhood approach to determine the spatial relationships 

between cytotoxic T cells, helper T cells and cancer cell clusters. In the both cohorts, 

we found that lower distance between cytotoxic T cells, T helper cells and cancer 

cells was significantly associated with increased disease-free survival. An 

unsupervised trained model that clustered tumours based on the median distance 

between immune cells and cancer cells, as well as protein expression profiles, 

successfully classified patients into low-risk and high-risk groups (Discovery cohort: 

p = 0.01, Validation cohort: p = 0.003).  

Key Words: Colon cancer, Immune cells, Tumour infiltration, Multiplex 

immunofluorescence, Nearest neighbourhood analysis, Spatial analysis. 
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Introduction 

Colorectal cancer (CRC) shows heterogeneous clinical response, and prognostic 

biomarkers for identifying people at elevated risk of disease recurrence are still 

underdeveloped [1]. In cases where surgery (and/or neoadjuvant chemoradiation 

therapy in the rectal cancer setting) may not completely eliminate cancer cells, 

chemotherapy can be used as adjuvant therapy to reduce the risk of cancer 

recurrence [2]. The primary goal of adjuvant chemotherapy is to kill or inhibit the 

growth of micrometastatic cancer cells. Adjuvant, 5-Fluorouracil-based treatment 

regimens are standard-of-care (SOC) for the management of stage III CRC with 

lymph node involvement [3].  

The tumour microenvironment and specifically immune responses are an emerging 

component for cancer recurrence prediction. The tumour microenvironment is a 

complex milieu where interactions between cancer cells and the immune system 

play a pivotal role in shaping disease progression and therapy responses [4]. CD8+ 

or cytotoxic T cells are known for their antitumour immune response, releasing 

perforin and granzymes to create pores in the tumour cell plasma membrane and 

initiate cell death [5, 6]. However, not all CD8+ T cells are equally effective in cell 

killing, due to exhaustion, high expression of checkpoint proteins in cancer cells, and 

both cell number and distribution within the tumour can affect patient outcomes. In a 

variety of tumour types, including, CRC, breast cancer, and non-small cell lung 

cancer, high numbers of infiltrating cytotoxic T cells are correlated with good 

prognosis [5-12]. The association between increased CD8+ T cell density and a 

favourable outcome, however, does not apply to all cancer types. For instance, in the 

case of bladder cancer, high numbers of infiltrating CD8+ and TIGIT+ (marker of 

exhaustion) cells are associated with poor prognosis [13] and in renal cell cancer 
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(RCC), higher densities of CD8+ with checkpoint protein expression (PD-1, LAG-3, 

PD-L1, and PD-L2) correlated with poor prognosis [14]. Further, the proximity of 

functional CD8+ T-cells to cancer cells is essential to elicit their cytotoxic effects [15-

17].   

CD8+ T cells can recognize and target cancer cells for destruction through various 

mechanisms, including inducing apoptosis [17]. Expression of HLA-1 antigens and 

apoptosis-regulating proteins in cancer cells may influence the interaction efficacy 

between CD8+ T cells and cancer cells by regulating immune recognition and cell 

death susceptibility, respectively. It is not yet fully elucidated whether cancer cells 

that are closer to CD8+ T cells exhibit altered expression of apoptosis proteins, HLA-

1 class antigens, or other cancer cell hallmarks such as cell proliferation and cell 

metabolism markers, which may potentially impact on cancer cell recognition by 

CD8+ T cells and subsequently on patient outcomes.  

We here employed a multiplexed immunofluorescence imaging (Cell DIVE) 

technique [18] that allows for the simultaneous measurement of multiple biomarkers 

and colocalization analysis on a single fixed 5µm tissue section. These techniques 

provide spatial context, allowing us to visualize the distribution of CD8+ T cells in 

relation to tumour cells, stromal cells, and other components of the tumour 

microenvironment, and reveal the spatial and phenotypic heterogeneity of CD8+ T 

cells and cancer cells within the tumour.  
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Methods and Materials 

Figure.1 depicts the workflow for this study. We have applied the following 

approaches to evaluate the prognostic significance of the median distance between 

intratumoural T cells and cancer cells across discovery and validation cohorts.   

The total number of patients in the discovery dataset was 221 (n=121 females and 

100 males). For construction of the tissue microarray (TMA), three cores (1 mm in 

diameter) from the tumour center of formalin fixed paraffin embedded (FFPE) 

samples were selected by a pathologist (Dr. Jinru Shia, Memorial Sloan Kettering 

Cancer Center) for each patient. A total of 1627 cores were selected and 8 tissue 

blocks were constructed. The discovery dataset (MSK) consisted of 462 multiplex 

immunofluorescence images of stage III CRC patients and the total number of 

segmented cells after QC was 1,669,228 (QC workflow is presented in 

Supplemental Figure 1).  

The validation cohort was collected from the Huntsville Clearview Cancer Center 

(HV) and consisted of 272 FFPE tumour cores (three cores per patient) from 98 

stage III CRC patients with adjuvant therapy. The clinical and pathological variables 

are presented in Supplemental Table 1. The training and validation cohorts were 

comparable and no statistical differences in clinical variables were found.  

The TMA/clinical data QC exclusion criteria included: i) poor tissue quality or no 

tumour cells in tissue/adjacent normal samples; ii), heavily artefacted tissue, 

extensive tumour necrosis, extensive presence of normal adjacent tissue; iii) loss of 

follow-up or recurrence and/or death within less than two months from surgical 

resection; iv) stage II or IV disease; v) rectal or mucinous tumours. After applying 

exclusion criteria from the original patient cohort, we selected patients who were only 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577720doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577720
http://creativecommons.org/licenses/by-nc-nd/4.0/


treated with 5FU-based adjuvant chemotherapy (n discovery= 221 stage III patients 

and n validation =98). 

This study was performed in accordance with ethical guidelines for clinical research 

with the approval of the ethics committee for each institution (Memorial Sloan 

Kettering Cancer Center and Huntsville Clearview Cancer Center). Between January 

1997 and December 2008, all of the study's participants had surgery at Memorial 

Sloan Kettering Cancer Center or Huntsville Clearview Cancer Center for stage III 

CRC that was confirmed by histology. 

Multiplexed immunofluorescence imaging (MxIF) (Cell DIVE, Leica Microsystems, 

Issaquah) was used to analyze TMAs as previously described by Gerdes et al [19]. 

Briefly, TMAs were de-paraffinized and rehydrated, underwent a two-step antigen 

retrieval and were then stained for 1 hour at room temperature using a Leica Bond 

autostainer. Antibodies against DAPI, pan-cytokeratin (CK-26), ribosomal S6, and 

NaKATPase were used to separate epithelial and stromal cells. For the objective of 

this study, we focused on expression of immunological markers: CD3, CD4, CD8, 

CD20, forkhead box P3 (FOXP3), and cancer and cancer-related hallmarks: HLA 

class 1 (HLA-1), C-myc, GLUT-1, Caspase-3, caspase-8, caspase-9, BAK, BAX, 

FLIP, FADD, APAF1, GRP78, BCL2, XIAP, HK2, LDHA, PKM2, Ki67, and TIGAR. 

All antibodies were characterized per the previously described protocol [19]. After 

down-selection, each antibody was conjugated with either Cy3 or Cy5 bis-NHS-ester 

dyes using standard protocols as previously described by Gerdes et al [19].  All 

samples underwent DAPI imaging in every round, and background (inherent tissue 

autofluorescence prior to staining) imaging for the first five rounds and every three 

rounds thereafter. 
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Using Cell DIVE automated image pre-processing software, all images were 

registered to baseline using DAPI and underwent background autofluorescence 

subtraction, illumination and distortion correction. DAPI and Cy3 autofluorescence 

images were used to generate a pseudo-colored image, which visually resembles a 

hematoxylin and eosin (H&E) stained image, which we refer to as a virtual H&E 

(vH&E). This visualization format helps tissue QC review and facilitated review of 

tumour morphology and lymphocytes. All cells in the epithelial and stromal 

compartments were segmented using DAPI and CK-26, while S6, and NaKATPase 

were used for subcellular analysis of epithelial cells. Each segmented cell was 

assigned an individual ID and spatial coordinate. Post segmentation, several quality 

control (QC) steps were conducted (described in detail in Berens et al [20]), including 

visual review and manual scoring of tissue quality and segmentation for every image. 

Each image was reviewed for completeness and accuracy of segmentation masks in 

each subcellular compartment and tumour and stroma separation. Average 

biomarker intensity was calculated for each cell and the following additional cell 

filtering criteria were applied: 1) epithelial cells were required to have either 1-2 

nuclei; 2) each sub-cellular compartment (nucleus, membrane, cytoplasm) area had 

to have > 10 pixels and < 1500 pixels;  3) cells had to have excellent alignment with 

the first round of staining (round 0) ; 4) cells were at >25 pixels distance from the 

image margins; 5) cell area for nuclear segmentation mask was >100 or <3000 

pixels, 6) duplicates.  

For immune cell classification a machine learning approach with an automatically 

generated annotated training set was applied [21]. Briefly, the auto-fluorescence-

removed images were segmented at cellular level to identify cells that were 

potentially positive for each immune marker (CD3+, CD4+, CD8+, CD20+, FOXP3+ 
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and PD1+) via cellular intensity and morphological criteria. These candidate 

annotations were then correlated with segmented nuclei and segmented cells with 

no nuclei were discarded. The remaining positive cells (or “auto-annotated cells”) 

were the automatically generated training set. In the second step, a probability model 

was inferred from the auto-annotated training set. The probabilistic model captures 

staining patterns in mutually exclusive cell types (CD4+, CD8+) and builds a single 

probability model for each marker. Manual annotations of the immune cell types 

were also used to validate the algorithm performance with accuracy levels ranging 

from 70-100% for predicted vs annotated cells (150-500 cells annotated per marker, 

depending on abundance). After cell-level predictions were made for each marker, 

they were combined to generate multi-marker immune cell classification for each 

cell.   

 

Methodology: 

Analysis involved calculating the distances between immune cells and cancer cells, 

assessing their proximity to one another (Euclidean distance between the centre 

points), as the objective of this study was to determine whether spatial proximity was 

associated with prognosis in stage III CRC patients. We developed a new approach 

here referred to as region-based nearest neighbourhood analysis. We first clustered 

the cancer cells within the TMA core and then quantified the intratumoural T cells (T 

killer cells and T helper cells) within the cancer cell clusters. ‘Hot’ immune clusters 

were tumour cell clusters containing at least one CD8+ T cell and at least one CD4+ 

T cell (containing both T cells). We hypothesised that a higher number of “immune 

hot” clusters within a core correlated with better outcome and longer recurrence time.  
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This newly proposed approach consists of three steps: firstly, unsupervised machine 

learning (ML) was used to cluster tumour regions into smaller dense clusters using k-

means clustering with further determination of the optimal number of clusters based 

on internal validation metrics (elbow method).  

Second, we calculated the convex hull of the given set of points. The convex hull is 

the smallest convex polygon that encloses all the points. We used the Graham scan 

algorithm: 

1. Finding the lowest point: Consider a cluster of cancer cells as set of points 

P with n points. To find the lowest point: 

������� � ��������		�
 , ��� 

2. Sorting by the polar angle:   Given the lowest point, sorting the remaining 

points based on their polar angles with respect to this point 

������ � ���	� \���������, ��� �  tan��	�
 � ��������
 , �� � ����������� 

3. Scanning through points: checking whether a new point forms a left turn or 

a right turn with the last two points in the convex hull 

������������ , ��, ��� � ����	��� � ��� � ��� � ���� 

The output of sign operator is positive for counter-clockwise turns and 

negative for clockwise turns. 

 

Finally, after achieving the convex hulls (the closed curves or the cancer cell 

clusters), we used Point-In-Polygon test [22] to count the number at cytotoxic T cells 

and helper T cells within the cancer cluster. Although there exists no single 

thresholding approach that is universally applicable, and the choice of threshold can 

vary depending on the specific characteristics of the dataset and research question, 

we considered that the median value across the cohort as analysis threshold to be 
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the best approach considering this metric as the least affected by outliers or extreme 

values. 
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Results and Discussion 

The percentage of T-killer cells does not predict recurrence risk in stage III 

CRC patients 

We analysed 462 core samples (number of cells: 1,669,228) from 221 treated stage 

III patients in our discovery cohort (MSK). The validation cohort, HV, is comprised of 

272 samples from 98 patients with stage III CRC. As shown in Figure 2 there was a 

non-significant trend for patients whose tumours had a high percentage of CD8+ T 

cells to have a better prognosis in the discovery and validation cohort (p=0.074 and 

p=0.19, respectively). Likewise, the percentage of CD4+ T cells in tumours was not 

significantly associated with disease-free survival (DFS) in both discovery and 

validation cohorts.  

A higher percentage of ‘hot’ tumour clusters is associated with reduced 

recurrence risk.  

We hypothesised that the intratumoural T cell spatial distribution within the tumour 

rather than the absolute numbers of T cells may correlate more closely with patient 

outcomes. To discover the cell spatial organization and scrutinize T cell–cancer cell 

interactions, we calculated the percentage of “immune-hot” clusters within a tumour 

by the use of a region-based nearest neighbourhood analysis approach. The 

concept of "hot" and "cold" clusters aligns with the idea of immune infiltration 

impacting tumour cell survival.   

As described in Methods, we first clustered cancer cells within a tumour into smaller 

spatial clusters and then determined whether there was at least one CD8+ (T killer) 

cell in the presents of at least one CD4+ T (T helper) cell within each individual 
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spatial cluster thus indicating immune ‘hot’ cluster. The average number of clusters 

per core was 8.56 ± 1.59 and the average number of cells per cluster 182.8 ± 73.7. 

The percentage of 'hot' tumour clusters inside a core (cancer clusters with at least 

one CD8+ T cell and one CD4+ T cell) is used as a predictive indicator for the survival 

of stage III CRC patients. A higher percentage of hot clusters, which contain at least 

one T killer cell and T helper cell, is connected with a better prognosis (Figure 3). 

The median distance between CD8+ T cells, CD4+ T cells and the tumour cells 

serves as an independent prognostic biomarker for the DFS of patients after 

treatments   

To build on these findings, we next investigated whether the median distance 

between cancer cells and intratumoural T cells served as a prognostic factor. Here, 

we measured the Euclidean distance between cancer cells and their nearest 

neighbouring T cells (as it is described in Figure 1). The median distance between 

CD8+ T cells and cancer cells in the discovery cohort was 92.77 microns and in the 

validation cohort 79.22 microns.  

As illustrated in Figure 4, the distance between CD8+ T cells, CD4+ T cells and the 

tumour cells served as a strong, independent prognostic spatial biomarkers in both 

discovery and validation cohorts (Discovery: p = 0.015, Validation: p = 0.045). Cox 

proportional hazards models for DFS survival is presented in Supplementary Table 

2. This table presents P values from multivariable analysis adjusted for the distance 

between CD8+ T cells, CD4+ T cells, and clinical parameters. 

In contrast, the distance between CD4+ T cells and cancer cells was not prognostic 

(Discovery: p = 0.56, Validation: p = 0.269).  The distance between CD4+ FOXP3+ T 

cells and cancer cells also showed no prognostic significance based on disease free 
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survival in the discovery cohort (p=0.072).  The median distance between CD8+ T 

cells and cancer cells also did not significantly predict DFS (Supplemental Figure 

2). A statistically significant effect was also observed in the validation cohort for the 

distance between CD8+ T cells, CD4+ T cells and the tumour cells.  

Overexpression of Caspase-3, Caspase-8, Ki67 and HLA-1 in cancer cells 

situated in close proximity to CD8+ T cells  

Next, we investigated whether the protein signatures of cancer cells situated in close 

proximity to an intratumoural T cells differed from tumour cells that were not situated 

in close proximity to an intratumoural T cell. We considered that this may further help 

develop a refined model that can cluster patients into two low-risk and high-risk 

groups, based on a combination of both spatial immune and biological biomarkers.  

In the discovery cohort (Figure 5) we observed an overexpression of apoptotic 

regulators (BAK, BCL2, Caspase 3, Caspase 8, Caspase 9) in cancer cells in close 

proximity to CD8+ T cells, suggesting crosstalk between immune cell recognition and 

apoptosis susceptibility. Overexpression of C-myc, Ki67 and HLA-1 was also 

observed in cancer cells closer to cytotoxic T cells. These findings were validated for 

BAX, Caspase 3, Caspase 8, HLA-1, GLUT-1, and Ki67 in the validation cohort.   

We also detected altered levels of APAF1 in proximity to T Helper cells 

(Supplemental Figure 3) and altered levels of BCL2 in proximity to CD4+ FOXP3+ T 

cells (Supplemental Figure 4).  
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Two distinct clusters within stage III colorectal cancer tumours, with 

significant differences in HLA-1, Ki67, C-myc, GLUT1, Caspase3, and immune 

cells spatial features are highly prognostic in stage III CRC 

The relationship between cancer hallmarks expression, intratumoural T cell 

infiltration, and cancer recurrence is complex and may vary depending on many 

different parameters in the cancer microenvironment. Based on protein signature 

data and nearest neighbourhood analysis results, we used unsupervised clustering 

to perform an in-depth investigation of the tumours. We discovered two separate 

groups based on several pre-investigated factors such as the median distances 

between immune cells and cancer cells and protein expression patterns. We 

identified two key spatial biomarkers: the median distance between T Killer cells and 

cancer cells, and the median distance between T Helper Regulatory cells and cancer 

cells (Supplemental Figure 5). In addition to spatial markers, we next included five 

biological biomarkers based on our above results (expression of Caspase 3, Ki67, C-

myc, GLUT-1, and HLA-1 in cancer cells). The color-coded z-score matrix, is shown 

in Figure 6.  

 

The observation of high expression of HLA-1 and Caspase 3 in cluster 2, along with 

low expression of GLUT1 in cancer cells in this cluster, suggests important 

differences in the tumour microenvironment between the two clusters.  We observed 

low expression of HLA-1, C-myc, Caspase 3 and Ki67 in tumour cancers within 

cores belong to cluster 1 (Supplemental Figure 5). We observed significant survival 

difference among stage III CRC patients (Figure 7), demonstrating that an approach 

combining spatial and biological data delivers the most accurate prognosis 

(discovery: p-value = 0.004 and validation: p-value = 0.003).  
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In the present study we showed that the distance between CD8+ T cells, CD4+ T 

cells and the tumour cells (using a nearest neighbourhood approach) and the 

percentage of cancer clusters with CD8+ T cells and CD4+ T cells inside (using 

region-based nearest neighbourhood approach) serve as independent prognostic 

spatial biomarkers in stage III CRC. We also provide evidence that the percentage of 

intratumoural T cells within tumours may not necessarily be considered as a 

prognostic biomarker. The findings of this study also suggest that there are two 

distinct clusters within stage III CRC tumours, with significant differences in 

expression of cancer hallmarks and immune cells spatial organization between them. 

Furthermore, we have noted that these clusters exhibit improved prognostic power, 

indicating significant clinical relevance. 

We investigated the spatial arrangement of CD8+ T cells, CD4+ T cells and cancer 

cells within the tumour microenvironment in stage III CRC patients. Previous reports 

utilized spatial image analysis approaches to characterize tumour-immune 

interactions and develop prognostic biomarkers [23]. To the best of our knowledge, 

this is the first study utilising nearest neighbour approach and region-based nearest 

neighbour approach for analysing cancer cell - T cell interactions in hyperplexed 

stage III CRC tissues. Through comprehensive analysis and validation, we reveal 

that the distance between CD8+ T cells, CD4+ T cells and cancer cells is a robust 

predictor of patient prognosis. The results of nearest neighbourhood analysis can 

provide valuable information about the degree of immune infiltration, cell clustering, 

and functional associations within the tumour microenvironment. Highplexing 

techniques are powerful tools that allow us to simultaneously analyse spatial 

patterns but also the expression of multiple biomarkers in individual cancer cells. 

Using TMA and mIF, Yang et al. [24] examined the tumour immune 
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microenvironment of the tumour centre and the invasive margin in non-small cell 

lung cancer. The authors observed that the distance between immune cells and 

tumour cells may directly represent the immune system's potency against cancers 

or, alternatively, the ability of tumour cells to modify immune cells. Yin et al. [25] 

reported that the closer cytotoxic cell cluster was significantly correlated with better 

Progression-free survival (p�=�0.038).  Our results reveal that while there were 

trends for intratumoural T cell infiltration and reduced recurrence risk across all the 

CRC cohorts, they were not significant. 

The findings of the latest part of this study suggest that there are two distinct clusters 

within stage III colorectal cancer tumours, with significant differences in these spatial 

and biological biomarkers between them. The technique is based on a combination 

of spatial and biological biomarkers, enhancing our understanding of the tumour 

microenvironment and its relevance to patient outcomes. Cluster 1's 

underexpression of GLUT-1 and overexpression of HLA-1 and caspase-3 in cancer 

cells point to significant changes in the tumour microenvironment between cluster 1 

and cluster 2. Furthermore, we demonstrated the potential therapeutic importance of 

these clusters in predicting patient outcomes. The overexpression of Caspase-3 in 

cancer cells closer to CD8+ T cells can be considered as biological evidence that 

indicates that the immune system, specifically CD8+ T cells, is actively engaging with 

and targeting cancer cells for destruction. The overexpression of HLA-1 (Human 

Leukocyte Antigen 1) molecules on cancer cells can potentially lead to a better 

outcome for cancer patients. In locally advanced colorectal cancer, a high 

expression of HLA-1 is linked to a better tumour prognosis [26]. HLA-1 molecules 

play a crucial role in presenting antigens to immune cells, such as T cells [18]. Our 

data from the nearest neighbourhood study reveals that cancer cells that were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2024. ; https://doi.org/10.1101/2024.01.30.577720doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577720
http://creativecommons.org/licenses/by-nc-nd/4.0/


adjacent to intratumoural T cells overexpressed HLA-1. In our cohort of stage III 

patients treated with adjuvant chemotherapy, the overexpression of HLA-1 on cancer 

cells could potentially also enhance the immune response triggered by the treatment.   

We also demonstrate that cancer cells that are close to T cells overexpress Ki67.  

Ki67 is a marker for cellular proliferation within a tumour. The overexpression of the 

protein Ki67 in cancer cells located in proximity to CD8+ T cells could be indicative of 

an active immune response specifically against proliferating cancer cells which may 

provide additional cues for recognition to immune cells.  The increased expression of 

Ki67 in cancer cells near CD8+ T cells may also be a response to the immune 

system's attempt to eliminate the cancer. Interestingly a previous study [27] reported 

that elevated Ki67 levels were significantly associated with a better outcome in stage 

III CRC patients, but only in patients who received adjuvant chemotherapy 

(P=0.007). In this context, we observed higher Ki67 levels in cancer cells is proximity 

to CD8+ T cells in cluster ‘1’ which was associated with an improved disease-free 

survival after adjuvant chemotherapy. The under expression of GLUT1 (Glucose 

Transporter 1) in cancer cells that were close to CD8+ cells, can have several 

potential implications. CD8+ T cells are highly metabolically active, and they require 

glucose to perform their effector functions, such as killing cancer cells. If cancer cells 

near CD8+ cells under express GLUT1, they may take up less glucose, which could 

potentially create a metabolic advantage for CD8+ T cells and enhance their activity. 

In line with this hypothesis, a previous study demonstrated that positive GLUT-1 

staining after chemo radiation therapy [28] was linked to a poorer outcome. 

Additionally, lower glucose availability in cancer cells could lead to reduced glycolytic 

activity within the tumour microenvironment. This might create an environment that is 

less supportive of cancer cell survival and growth.  
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We compared the number of patients with microsatellite instability among high-risk 

and low-risk patients. In our discovery cohort, cluster 2 (Low Risk Patients) had more 

MSI patients, but the difference was not statistically significant (pvalue = 0.15) due to 

the small sample size. 

 

 

Conclusions  

We here developed a new methodology and revealed new spatial/biological 

biomarkers for the prognosis of adjuvant chemotherapy treated stage III CRC 

patients.  It underscores the importance of understanding the tumour 

microenvironment and its implications for patient outcomes in CRC. The median 

distance between CD8+ T cells, CD4+ T cells and cancer cells and the formation of 

‘hot’ clusters, rather than the proportion of intratumoural T cells, functioned as 

prognostic biomarker for patient survival following therapy. We also show that cancer 

cells in close proximity to CD8+ T cells overexpress Caspase-3, Caspase-8, Ki67, 

and HLA-1.  Integration of these signature provides novel and improved prognostic 

biomarkers for stage III CRC. 
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Figure Legends: 

 

Figure.1. Workflow:  We created an optimal panel with over 50 biomarkers using 

CELLDIVE to characterize the cancerous tissue and the neighbouring stroma. After 

testing the panel's reliability, all biomarkers showed excellent staining quality, a high 

SNR, and effective elution. With the use of the created panel, it was possible to 

identify several cell types, such as immune T cells, fibroblasts, and cancer cells, as 

well as to see the inter- and intra-tumoural heterogeneity of stained instances. We 

obtained nearest neighbourhood analysis data and tested the prognosis of the 

cancer hallmarks.  1): Mutliplexed imaging of Samples, 2): Measuring intratumoural 

T cell densities; 3): Extracting spatial features of intratumoural T cells; 4): Finding 

protein signatures associated with proximity to immune cells; 5): K-means Clustering 

of patients Six: Kaplan–Meier analysis of survival probability 

Figure.2. The percentage of Intratumoural T cells does not serve as a prognostic 

biomarker for the survival of stage III CRC patients treated with 5-FU-based adjuvant 

chemotherapy.  The fraction of CD4+ and CD4+ FOXP3+ T cells did not function as a 

prognostic indication in the discovery cohort, as shown in Figure. Figures showing 

the univariate survival analysis for intratumoural T cell densities classified on the 

median for disease-free survival (DFS) based on Kaplan-Meier curves. The Kaplan-

Meier survival curve variations are displayed as a log-rank p value. 

Figure.3. The percentage of ‘hot’ tumour clusters within a core (cancer clusters with 

at least one CD8+ T cell and one CD4+ T cell) serves as a prognostic biomarker for 

the survival of stage iii CRC patients. Higher percentage of the hot clusters - clusters 

including at least one T killer cell and T helper cell is associated with better 
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prognosis. Figures displaying the categorization of number of hot clusters according 

to the median disease-free survival (DFS) using Kaplan-Meier curves in the 

univariate survival analysis. A log-rank p value represents the variability in the 

Kaplan-Meier survival curve. 

Figure.4. The median distance between CD8+ T cells, CD4+ T cells and the tumour 

cells serves as an prognostic biomarker for the survival of patients after treatments. 

Lower distance between CD8+ T cells, CD4+ T cells and the tumour cells is 

associated with better prognosis. Figures depict the categorization of the median 

distance between CD8+ T cells, CD4+ T cells, and tumour cells based on median 

disease-free survival (DFS) using Kaplan-Meier curves in univariate survival 

analysis. We utilized the log-rank p value to depict the variability in the Kaplan-Meier 

survival curve. 

Figure.5. Discovery Dataset/Validation Dataset – Boxplots for cancer hallmarks 

(Isolated: Cores with higher median distance between cancer cells and CD8+ T cells, 

NonIsolated:  Cores with lower median distance between cancer cells and CD8+ T 

cells).  Data from the nearest neighbourhood study indicates that cancer cells that 

are adjacent to CD8+ T cells overexpress Caspase-3, cleaved Caspase-3, Caspase-

8, Ki67, and HLA-1. Each box represents the distribution of median per core, 

comparing Isolated (higher than median distance between cancer cells and CD8+ T 

cells) and Non Isolated (lower than median distance between cancer cells and CD8+ 

T cells) groups. 

Figure.6. ClusterMap – Discovery Cohort :  Expression of Caspase 3, Ki67, C-myc, 

GLUT-1, and HLA-1 in cancer cells, the median distance between T Killer cells and 

cancer cells, and the median distance between T Helper Regulatory cells and cancer 
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cells. These values quantify the average distance between cancer cells and 

cytotoxic/regulatory T cells, illuminating the spatial interactions between them and 

the immunological environment of the tumour. We have taken into consideration five 

biological indicators (expression of Caspase-3, Ki67, C-myc, GLUT-1, and HLA-1 in 

cancer cells) in addition to spatial markers. The blue-white color-code displays z-

score. 

Figure.7. The considerable survival difference among patients with cores in cluster 

two is a positive finding, indicating that these clusters may have therapeutic 

importance in predicting patient outcomes (in both the discovery and validation 

groups). Kaplan-Meier plots illustrating DFS for two distinct risk groups: Cluster 1, 

high risk patients and Cluster 2, low risk patients. Noteworthy divergence in survival 

curves highlights the prognostic significance of risk-based clustering. A log-rank p 

value represents the variability in the Kaplan-Meier survival curve.  
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Supplementary Material: 

Supplemental Figure 1. QC workflow 

Supplemental Figure 2. The median distance between T cells and the tumour cells 
does not serve as prognostic biomarker for the survival of patients after treatments. 
Figures show how Kaplan-Meier curves from univariate survival analysis are used to 
classify the median distance between intratumoural T cells and cancer cells based 
on median disease-free survival (DFS). The Kaplan-Meier survival curve's variability 
was represented by the log-rank p value. 

Supplemental Figure 3. Discovery Dataset/Validation Dataset – Boxplots for the 
cancer hallmarks (Isolated: Cores with higher median distance between cancer cells 
and CD4+ T cells, NonIsolated:  Cores with lower median distance between cancer 
cells and CD4+ T cells). Comparing the Isolated and Non-Isolated  groups, each box 
shows the distribution of median per core. 

Supplemental Figure 4. Discovery Dataset/Validation Dataset – Boxplots for the 
cancer hallmarks (Isolated: Cores with higher median distance between cancer cells 
and CD4+ FOXP3+ T cells, NonIsolated:  Cores with lower median distance between 
cancer cells and CD4+ FOXP3+ T cells). Each box displays the median distribution 
for each core when comparing the isolated and non-isolated groups. 

Supplemental Figure 5. The observation of overexpression of HLA1 and CASP3 in 
cluster 2, along with underexpression of GLUT1 in cancer cells in that cluster, 
suggests important differences in the tumour microenvironment between the two 
clusters. a- Each box represents the distribution of median per core, comparing High 
risk patients (Cluster 1) and Low risk patients (Cluster 2) groups. b- The scatter plots 
for the patient clusters at low and high risk are displayed in the figure. One median 
per subject is shown by each dot. c- The dendrogram produced by hierarchical 
clustering using the average linkage between the validation and discovery datasets 
is displayed in this figure.  In addition to spatial biomarkers, we have selected five 
biological indicators: expression of caspase 3, Ki67, C-Myc, Glut1, and HLA1 in 
cancer cells. 

Supplemental Table 1. Summary of demographics of the cohorts  

Supplementary Table 2. Cox proportional hazards models for DFS survival. P 
values from multivariable analysis adjusted for Distance between CD4+, CD8+ and 
cancer cells, age, gender, differentiation and lymphovascular invasion status 
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Supplemental Table 1. Summary of demographics of the cohorts  

 

 

 

 

 

 

 

 MSK (N=221) HV (N=98) p value 
N stage   0.184 

N1 150 (67.9%) 59 (60.2%)  
N2 71 (32.1%) 39 (39.8%)  

T stage   0.046 
N-Miss 0 1  

T1 7 (3.2%) 2 (2.1%)  
T2 19 (8.6%) 12 (12.4%)  

T3 147 (66.5%) 74 (76.3%)  

T4 48 (21.7%) 9 (9.3%)  

Age   0.120 
Mean (SD) 60.606 (13.213) 63.041 (12.107)  

Range 26.000 - 88.000 35.000 - 87.000  
Gender   0.197 
Female 121 (54.8%) 46 (46.9%)  

Male 100 (45.2%) 52 (53.1%)  
Tumour Location   0.677 

N-Miss 6 1  
Left-sided 103 (47.9%) 44 (45.4%)  

Right-sided 112 (52.1%) 53 (54.6%)  

Differentiation   < 0.001 
 1 (0.5%) 0 (0.0%)  

moderate 164 (74.2%) 66 (67.3%)  
poor 55 (24.9%) 22 (22.4%)  
well 1 (0.5%) 10 (10.2%)  

Positive nodes   0.248 
Mean (SD) 3.312 (3.360) 3.796 (3.615)  

Range 0.000 - 24.000 1.000 - 24.000  
Lymphovascular 

Invasion 
   

N-Miss 0 98  
No 57 (25.8%) 0  

Suspected 18 (8.1%) 0  
Yes 146 (66.1%) 0  

Follow up Time 
(Years) 

  0.533 

Mean (SD) 4.408 (2.770) 4.194 (2.981)  
Range 0.167 - 13.167 0.167 - 11.811  

Recurrence    
 1 (0.5%) 0 (0.0%)  

No 167 (75.6%) 64 (65.3%)  
Yes 53 (24.0%) 34 (34.7%)  
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Supplementary Table 2. Cox proportional hazards models for DFS survival. P 
values from multivariable analysis adjusted for Distance between CD4+, CD8+ and 
cancer cells, age, gender, differentiation and lymphovascular invasion status 

 

 

 

 

 N 
(Discovery 
cohort) 

P - value Univariate 
HR (95% CI) 

P - 
value 

Multivariate 
HR (95%CI) 

Age  0.71 1.13   
Less than 50 53     
More than 50 167     
Gender  0.61 0.87   
Male 100     
Female 120     
Differentiation  0.66 0.87   
Moderate 163     
Not  moderate 57     
has_lymphovascular_invasion  0.09 1.75   
Yes 145     
Other 75     
D between t helper, T killer 
and cancer cells 

 0.04 1.81 0.03 1.83 

High 110     
Low 110     
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