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Abstract: Background: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and
is accompanied by a complex regulatory network. Increasing evidence suggests that an abnormal
gene expression of EZH2 is associated with HCC progression. However, the molecular mechanism by
which non-coding RNAs (ncRNAs) regulate EZH2 remains elusive. Methods: The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to perform differential expres-
sion analysis and prognostic analysis. We used the Encyclopedia of RNA Interactomes (ENCORI)
database to predict candidate miRNAs and lncRNAs that may bind to EZH2. Subsequently, the
comprehensive analysis (including expression analysis, correlation analysis, and survival analysis)
identified ncRNAs that contribute to EZH2 overexpression. Results: EZH2 was found to be upreg-
ulated in the majority of tumor types and associated with a poor prognosis. Hsa-miR-101-3p was
identified as a target miRNA of EZH2. Additionally, SNHG6 and MALAT1 were identified as up-
stream lncRNAs of hsa-miR-101-3p. Meanwhile, correlation analysis revealed that EZH2 expression
was significantly associated with the infiltration of several immune cell types in HCC. Conclusion:
SNHG6 or MALAT1/hsa-miR-101-3p/EZH2 axis were identified as potential regulatory pathways in
the progression of HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ac-
counting for 90% of primary liver cancer cases, and is the leading cause of cancer-associated
death worldwide [1,2]. Infection by hepatitis B virus (HBV) and hepatitis C virus (HCV),
as well as alcohol consumption, is the predominant causative agent of HCC development,
although non-alcoholic steatohepatitis associated with metabolic syndrome or diabetes mel-
litus is becoming a more frequent risk factor in the West [3,4]. Currently, the main methods
for treating HCC are surgery, chemotherapy, radiotherapy, and liver transplantation [5]. In
recent years, despite remarkable progress in immunotherapy, such as PD1-targeted therapy,
there have still been a considerable number of HCC patients who cannot benefit from
immunotherapy, which may be related to the immunosuppressive environment of tumors,
resulting in the primary cause of mortality [6,7]. Therefore, elucidating the molecular mech-
anisms, especially the immune-related cellular mechanism, underlying the pathogenesis of
HCC is essential for the development of effective anti-cancer therapies.

Enhancer of Zeste Homolog 2 (EZH2) is a member of the Polycomb group (PcG) family
that forms multimeric protein complexes; the PcG family is involved in maintaining the
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transcriptional repressive state of genes over successive cell generations and in controlling
the progression of the cell cycle, and it participates in the maintenance of cell differen-
tiation [8,9]. As EZH2 regulates cell cycle progression, its dysregulation accelerates cell
proliferation and prolongs cell survival, which may lead to carcinogenesis and cancer
development [10]. An increasing number of studies have revealed that EZH2 is abnormally
expressed in numerous tumors, including liver cancer, gastric cancer, and breast cancer,
and correlates with tumor progression, metastasis, and drug resistance in prostate cancer
cells [11–13]. In recent years, an increasing number of studies have suggested that EZH2
may be a novel molecule involved in HCC progression, as well as a potential prognostic
biomarker and therapeutic target [14,15]. Liu et al. [16] suggested EZH2/miR-622/CXCR4
as a potential adverse prognostic factor and therapeutic target for HCC patients. Similarly,
Bae et al. shared the same view that overexpression of EZH2 was an independent biomarker
for poor outcomes of HCC, and that EZH2 may be used as a therapeutic target in patients
with HCC [17]. However, comprehensive studies on the expression, prognosis, mutation,
and biological mechanisms of EZH2 are still lacking in HCC. In addition, the relevance of
EZH2 to tumor immune infiltration is uncertain in HCC.

In the present study, we first analyzed EZH2 expression and its prognostic value in
a series of TCGA clinical samples of human cancers. Next, the molecular mechanisms
underlying EZH2-mediated oncogenesis effects were explored in HCC. Subsequently,
the relationships between EZH2 expression and tumor-related immune cell infiltration,
immune checkpoint blockade, and the immunotherapy response were explored in HCC.

2. Materials and Methods
2.1. Omics Analysis of EZH2

In this study, we aimed to explore the oncogenic role and potential biological mech-
anism of human EZH2 in HCC. Firstly, we obtained the chromosome location, number
of exons, and other biological information from the “gene” and “protein” modules of the
National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/,
accessed on 22 October 2021), U.S. National Library of Medicine. Secondly, the protein
structure and conserved domains were explored via the Uniprot database (https://www.
uniprot.org/, accessed on 22 October 2021). Thirdly, conserved amino acid sequences
encoded by EZH2 and the phylogenetic tree of the EZH2 family were explored via the
Constraint-based Multiple Alignment Tool (https://www.ncbi.nlm.nih.gov/tools/cobalt/,
accessed on 22 October 2021) in NCBI. Finally, the distribution of the EZH2 protein was
obtained from the Human Protein Atlas (HPA, https://www.proteinatlas.org/, accessed
on 25 October 2021) database.

2.2. Expression Analysis of EZH2

To evaluate the expression of EZH2, TIMER [18] (https://cistrome.shinyapps.io/
timer/, accessed on 26 October 2021) was utilized to compare the differential expres-
sion levels of EZH2 between tumor and normal tissues in various tumor types, includ-
ing bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma
(CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), pheochromocytoma
and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma
(READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine cor-
pus endometrial carcinoma (UCEC). Subsequently, we used the GEPIA2 database [19]
(http://gepia2.cancer-pku.cn/#index, accessed on 2 November 2021) to validate the mRNA
expression of the EZH2 gene with data from The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) project. Two-tailed Student’s t-tests were used to ana-
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lyze the data, and a difference was considered to be statistically significant when p < 0.01
and |log2 FC (fold change)| ≥ 1.

2.3. Prognostic Analysis of EZH2

We used the “Survival Map” module of GEPIA2 to obtain the overall survival (OS)
and disease-free survival (DFS) significance map of EZH2 across all TCGA tumors. HCC pa-
tients from TCGA datasets were classified into high-risk and low-risk subgroups according
to high (50%) and low (50%) cutoff values. The log-rank test was used as the hypothesis test,
and the Kaplan-Meier (K-M) curves were also obtained through the “Survival Analysis”
module of GEPIA2. The Sangerbox (http://sangerbox.com/, accessed on 4 November
2021) database was used to investigate how EZH2 expression influenced tumor prognosis,
including disease-specific survival (DSS) and progression-free interval (PFI).

2.4. Prediction of Upstream miRNAs and lncRNAs of EZH2

The Encyclopedia of RNA Interactomes (ENCORI, https://starbase.sysu.edu.cn/
index.php, accessed on 8 November 2021) database [20] is an open-source platform for
exploring miRNA-target interactions. We used ENCORI to predict candidate miRNAs
and lncRNAs that may bind to EZH2 and corresponding miRNAs. The upstream-binding
miRNAs of EZH2 were selected based on the following criterion: present in at least five of
the following databases, consisting of PITA, RNA22, miRmap, microT, miRanda, PicTar,
and TargetScan. The “pan cancer” module of ENCORI was used to perform the miRNA
differential expression and survival analysis, miRNA-target co-expression, and RNA-RNA
co-expression analysis.

2.5. Immune Cell Infiltration, Chemotactic Activities, Immune Cell Biomarkers, and Immune
Checkpoint Analysis of EZH2

The “SCNA” module of TIMER (https://cistrome.shinyapps.io/timer/, accessed on
12 November 2021) was used to provide the comparison of tumor infiltration levels among
tumors with different somatic copy number alterations for the EZH2 gene. In addition, the
“Gene” module of TIMER was also used to visualize the correlation of EZH2 expression
with the immune infiltration level in HCC tissues. We assessed the relationships among
EZH2 expression and immune cell chemotaxis, immune cell biomarkers, and immune
checkpoints based on the “Correlation” module of TIMER. GEPIA2 was used to verify the
correlation between EZH2 expression and immune cell biomarkers.

2.6. Functional Analysis of EZH2

To explore the potential biological function and pathway relationships of EZH2, gene
set enrichment analysis (GSEA) was performed using the Sangerbox (http://sangerbox.
com/, accessed on 22 November 2021) online service. The top terms of the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and HALLMARK analyses were exhibited.

3. Results
3.1. Omics Analysis of EZH2

The goal of this study was to investigate the oncogenic role of EZH2 in HCC. EZH2
(Gene ID: 2146) is encoded on chromosome 7q36.1 and contains twenty-five exons (Figure 1A).
The secondary structure of the EZH2 protein sequence is shown (Figure 1A). The EZH2 onco-
genic gene encodes five main protein isoforms consisting of histone-lysine N-methyltransferase
EZH2 isoforms a–e, which are mainly distributed in the nucleoplasm (Figure 1B). To better
understand the oncogenic role of EZH2, structure–function analysis was conducted, and
the protein domains are displayed (Figure 1C). EZH2 contains an EZH2_WD binding
(pfam11616) domain and a SET (cl02566) domain and is highly conserved in multiple
species (Figure 1E). The phylogenetic tree of the EZH2 protein was produced using fast
minimum evolution, and it presents the evolutionary relationships among different species
(Figure 1D).
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https://starbase.sysu.edu.cn/index.php
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difference in EZH2 in KICH, PAAD, and PCPG was observed. To further validate the ex-
pression levels of EZH2 in 21 types of human cancer, the GEPIA2 database, including the 
TCGA and GTEx datasets, was employed. Compared with normal tissues, EZH2 was sig-
nificantly upregulated in 16 cancer types, including BLCA, BRCA, CESC, CHOL, COAD, 

Figure 1. Chromosome localization, protein localization, and conservation analysis of EZH2. (A) Chro-
mosome localization and protein secondary structure of EZH2 in humans. (B) The main location of
the EZH2 protein in cells. (C) The conserved domain of EZH2 in the amino acid sequence. (D) The
phylogenetic tree of EZH2 in different species. (E) Conservation of the EZH2 protein among different
species.

3.2. Pan-Cancer Analysis of EZH2 Expression

To explore the possible carcinogenic roles of EZH2, differential expression analyses
were conducted in 21 types of human cancer. As shown in Figure 2A, the expression
level of EZH2 in tumor tissues was significantly higher than in the corresponding normal
tissues, including BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP,
LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, and UCEC. However, no significant
difference in EZH2 in KICH, PAAD, and PCPG was observed. To further validate the
expression levels of EZH2 in 21 types of human cancer, the GEPIA2 database, including
the TCGA and GTEx datasets, was employed. Compared with normal tissues, EZH2 was
significantly upregulated in 16 cancer types, including BLCA, BRCA, CESC, CHOL, COAD,
GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, READ, STAD, and UCEC, but not
in others (Figure 2B). These results demonstrate that upregulated EZH2 can support tumor
growth and further imply that it is a crucial regulator in carcinogenesis for 15 types of
cancer, including BLCA, BRCA, CESC, CHOL, COAD, GBM, HNSC, KIRC, KIRP, LIHC,
LUAD, LUSC, READ, STAD, and UCEC.
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Figure 2. The differential expression of EZH2 in different tumor types. (A) The expression status of
the EZH2 gene in different cancer types was analyzed through TIMER2 (data from TCGA). ** p < 0.01;
*** p < 0.001. (B) The expression status of the EZH2 gene in different cancer types was analyzed
through GEPIA2 (data from TCGA and GTEx). * p < 0.05.

3.3. Prognostic Analysis of EZH2 in Human Cancers

To determine whether EZH2 expression levels are correlated with the prognosis of
cancer patients, we evaluated the prognostic value of EZH2 in cancer using the GEPIA2
database. For these 15 cancers, four prognosis-related indicators, including OS, DFS,
PFI, and DSS, were used to evaluate the prognostic value of EZH2. In OS analysis, high
expression of EZH2 predicted worse survival in patients with LIHC or KIRC (Figure 3A).
DFS analysis showed that high EZH2 expression is correlated with poor prognosis for the
TCGA cases of BLCA, KIRP, and LIHC (Figure 3B). In PFI analysis, high expression of EZH2
was found to serve as an indicator of worse prognosis in KICH, KIRC, KIRP, LIHC, STAD,
and UCEC (Figure 4A–F). In addition, high expression of EZH2 was also associated with a
shorter DFI in patients with KIRC, KIRP, LIHC, STAD, STAD, and UCEC (Figure 4G–K).
Through the combination of the four prognosis-related indicators, upregulated EZH2 may
be utilized as an unfavorable prognostic biomarker in patients with HCC.
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3.4. Prediction of Upstream miRNAs of EZH2

Non-coding RNA (ncRNA) comprises RNA molecules that do not encode a protein
but regulate gene expression at multiple levels, including RNA splicing, editing, chro-
matin structure, and transcription [21]. To determine whether EZH2 was regulated by
some ncRNAs, the ENCORI database was used to predict upstream miRNAs that could
potentially bind to EZH2. As shown in Figure 5A, 12 miRNAs were identified, namely,
hsa-miR-137, hsa-miR-217, hsa-miR-32-5p, hsa-miR-363-3p, hsa-miR-367-3p, hsa-miR-92a-
3p, hsa-miR-92b-3p, hsa-miR-101-3p, hsa-miR-1297, hsa-miR-138-5p, hsa-miR-26a-5p, and
hsa-miR-26b-5p, which might be involved in regulating the expression of the regulators
by targeting EZH2. The results also show that hsa-miR-137 (R = 0.319, p = 3.36 × 10−10),
hsa-miR-363-3p (R = 0.164, p = 1.52 × 10−3), hsa-miR-92b-3p (R = 0.271, p = 1.19 × 10−7),
and hsa-miR-138-5p (R = 0.147, p = 4.57 × 10−3) positively regulated EZH2 expression
(Figure 5B). However, hsa-miR-101-3p (R = −0.328, p = 9.68 × 10−11) and hsa-miR-26b-5p
(R = −0.114, p = 2.83 × 10−2) negatively regulated EZH2 expression (Figure 5B). The general
idea of the combined analysis of miRNA and mRNA is to find the target gene and target
miRNA according to the negative correlation between miRNA expression and target gene
expression given the targeted relationship between miRNA and mRNA [22]. Ultimately,
hsa-miR-101-3p and hsa-miR-26b-5p were identified as the upstream miRNAs that could
potentially bind to EZH2. We further examined whether hsa-miR-101-3p and hsa-miR-26b-
5p were involved in the regulation of the expression of EZH2 in HCC based on expression
and survival analysis. The results demonstrate that hsa-miR-101-3p (p = 6.80 × 10−31)
was markedly downregulated in HCC and its upregulation was positively linked to pa-
tients’ prognosis (HR = 0.57, p = 1.70 × 10−3) (Figure 5C,E). Furthermore, hsa-miR-26b-5p
(p = 2.90 × 10−22) was markedly downregulated in HCC (Figure 5D). However, the result
indicates that hsa-miR-26b-5p overexpression was not associated with LIHC prognosis
(HR = 1.16, p = 0.41) (Figure 5F). Meanwhile, the pairing information of hsa-miR-101-3p and
EZH2 is displayed (Figure 5G). Taken together, these results indicate that hsa-miR-101-3p
regulation of EZH2 expression might be involved in LIHC progression.

3.5. Prediction of Upstream lncRNAs of hsa-miR-101-3p

Here, we explored upstream lncRNAs of hsa-miR-101-3p based on the ENCORI
database. The results reveal that 63 possible lncRNAs were identified as upstream lncRNAs
of hsa-miR-101-3p. We assessed these lncRNAs’ differential expression levels between
tumor and normal tissues using data from the TCGA and GTEx databases. Among the
selected lncRNAs, we only identified three lncRNAs, namely, AC239868.3, SNHG6, and
MALAT1, whose expression was significantly upregulated in HCC compared with normal
controls (Figure 6A–C). Additionally, the pairing information of hsa-miR-101-3p–SNHG6,
hsa-miR-101-3p–MALAT1, and hsa-miR-101-3p–AC239868.3 is displayed (Figure 6D–F).
Meanwhile, we found that different pathological stages of HCC showed higher SNHG6 or
MALAT1 expression compared with normal tissues (Figure 6G,H). Unfortunately, none
of the data could be used to assess the correlation of AC239868.3 between different patho-
logical stages of HCC and normal tissues. According to the competing endogenous RNA
(ceRNA) theory, lncRNAs can act as endogenous RNAs and thereby regulate target gene
transcripts by competing with shared miRNAs [23]. Thus, the correlation of expression
values between the miRNA and the lncRNAs must be negative, and the correlation values
between the lncRNAs and the mRNA must be positive. Subsequently, pairwise correlations
between mRNA, miRNAs, and lncRNAs were explored to identify collinearity using the
ENCORI database (Figure 7A–F). Eventually, SNHG6 and MALAT1 were determined to be
directly targeted by hsa-miR-101-3p, and AC239868.3 was ultimately not identified as a
potential upstream lncRNA of hsa-miR-101-3p.



Genes 2022, 13, 876 9 of 20

Genes 2022, 13, x FOR PEER REVIEW 8 of 22 
 

 

Non-coding RNA (ncRNA) comprises RNA molecules that do not encode a protein 
but regulate gene expression at multiple levels, including RNA splicing, editing, chroma-
tin structure, and transcription [21]. To determine whether EZH2 was regulated by some 
ncRNAs, the ENCORI database was used to predict upstream miRNAs that could poten-
tially bind to EZH2. As shown in Figure 5A, 12 miRNAs were identified, namely, hsa-
miR-137, hsa-miR-217, hsa-miR-32-5p, hsa-miR-363-3p, hsa-miR-367-3p, hsa-miR-92a-3p, 
hsa-miR-92b-3p, hsa-miR-101-3p, hsa-miR-1297, hsa-miR-138-5p, hsa-miR-26a-5p, and 
hsa-miR-26b-5p, which might be involved in regulating the expression of the regulators 
by targeting EZH2. The results also show that hsa-miR-137 (R = 0.319, p = 3.36 × 10−10), hsa-
miR-363-3p (R = 0.164, p = 1.52 × 10−3), hsa-miR-92b-3p (R = 0.271, p = 1.19 × 10−7), and hsa-
miR-138-5p (R = 0.147, p = 4.57 × 10−3) positively regulated EZH2 expression (Figure 5B). 
However, hsa-miR-101-3p (R = −0.328, p = 9.68 × 10−11) and hsa-miR-26b-5p (R = −0.114, p = 
2.83 × 10−2) negatively regulated EZH2 expression (Figure 5B). The general idea of the 
combined analysis of miRNA and mRNA is to find the target gene and target miRNA 
according to the negative correlation between miRNA expression and target gene expres-
sion given the targeted relationship between miRNA and mRNA [22]. Ultimately, hsa-
miR-101-3p and hsa-miR-26b-5p were identified as the upstream miRNAs that could po-
tentially bind to EZH2. We further examined whether hsa-miR-101-3p and hsa-miR-26b-
5p were involved in the regulation of the expression of EZH2 in HCC based on expression 
and survival analysis. The results demonstrate that hsa-miR-101-3p (p = 6.80 × 10−31) was 
markedly downregulated in HCC and its upregulation was positively linked to patients’ 
prognosis (HR = 0.57, p = 1.70 × 10−3) (Figure 5C,E). Furthermore, hsa-miR-26b-5p (p = 2.90 
× 10−22) was markedly downregulated in HCC (Figure 5D). However, the result indicates 
that hsa-miR-26b-5p overexpression was not associated with LIHC prognosis (HR = 1.16, 
p = 0.41) (Figure 5F). Meanwhile, the pairing information of hsa-miR-101-3p and EZH2 is 
displayed (Figure 5G). Taken together, these results indicate that hsa-miR-101-3p regula-
tion of EZH2 expression might be involved in LIHC progression. 

 
Figure 5. Prediction and identification the potential upstream regulatory miRNAs of EZH2 in HCC. 
(A) The predicted miRNA-EZH2 network. (B) The correlation between the candidate miRNAs and 
EZH2 in HCC, where red represents a positive correlation and blue represents a negative correla-
tion. (C–D) Differential expression analysis of hsa-miR-101-3p and hsa-miR-26b-5p in HCC tissues 

Figure 5. Prediction and identification the potential upstream regulatory miRNAs of EZH2 in HCC.
(A) The predicted miRNA-EZH2 network. (B) The correlation between the candidate miRNAs and
EZH2 in HCC, where red represents a positive correlation and blue represents a negative correlation.
(C,D) Differential expression analysis of hsa-miR-101-3p and hsa-miR-26b-5p in HCC tissues and
normal tissues. (E,F) Prognostic analysis of hsa-miR-101-3p and hsa-miR-26b-5p in HCC. (G) Pairing
information of hsa-miR-101-3p and EZH2.
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tumors and pathological stages. (A–C) The expression of SNHG6, MALAT1, and AC239868.3 in
TCGA HCC compared with “TCGA and (or) GTEx normal” data. (D–F) Pairing information of hsa-
miR-101-3p–SNHG6, hsa-miR-101-3p–MALAT1, and hsa-miR-101-3p–AC239868.3. (G,H) SNHG6
and MALAT1 differential expression in HCC with individual cancer stages. * p < 0.05; ** p < 0.01;
*** p < 0.001.
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3.6. Immune Cell Infiltration and Chemotactic Activity Analysis of EZH2 in LIHC

Given the known role of immune cells in tumor pathogenesis and the involvement
of EZH2 in immune cell development, differentiation, and function [24], the identification
of EZH2 expression associated with tumor-related immune cell infiltration will facilitate
the monitoring of the HCC immunotherapy response and the exploration of the immune
infiltration mechanism. We investigated the relationship between EZH2 and immune cell
infiltration in HCC and found that the high copy number amplification in B cells, CD8+
T cells, macrophages, neutrophils, and dendritic cells indicated significantly downregu-
lated expression in HCC (Figure 8A). Immune infiltration analysis revealed a significant
correlation between the expression of EZH2 and the abundance of immune cell infiltration,
including B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, dendritic cells,
and cancer-associated fibroblasts (CAFs), in LIHC tissues (Figure 8B,C). Many of these
factors, including CXCL chemokines and CCL chemokines, are important for the regulation
and chemotaxis of immune cells, especially monocytes/macrophages, T lymphocytes, and
eosinophils [25]. As listed in Table 1, EZH2 expression was significantly positively corre-
lated with monocyte-/macrophage-related chemokines (CCL5, CCL7, CCL8, and CCL13),
T lymphocyte-related chemokines (CCL1), mast cell-related chemokines (CCR1, CCR2,
CCR3, CCR4, CCR5, CXCR2, and CXCR4), eosinophil-related chemokines (CCL26, CCL5,
CCL13, and CCL5), and neutrophil-related chemokines (CXCL8). Collectively, these results
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are in line with expectations and strongly suggest that EZH2 is positively linked to immune
cell infiltration and chemotactic activities and plays a vital role in LIHC immunity.
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CD8+ T cell, and macrophage infiltration levels in HCC.

Table 1. The correlation between EZH2 expression and chemotactic activity for immune cells.

Immune Cells Chemokine Cor p Value

Monocytes/macrophages CCL2 0.054 2.98 × 10−1

CCL3 0.07 1.79 × 10−1

CCL5 0.12 2.06 × 10−2

CCL7 0.161 1.86 × 10−3

CCL8 0.144 5.54 × 10−3

CCL13 0.137 8.24 × 10−3

CCL17 0.034 5.19 × 10−1

CCL22 0.102 5.04 × 10−2

T lymphocytes CCL2 0.054 2.98 × 10−1



Genes 2022, 13, 876 12 of 20

Table 1. Cont.

Immune Cells Chemokine Cor p Value

CCL1 0.166 1.31 × 10−3

CCL22 0.102 5.04 × 10−2

CCL17 0.034 5.19 × 10−1

Mast cells CCR1 0.25 1.06 × 10−6

CCR2 0.142 6.20 × 10−3

CCR3 0.247 1.48 × 10−6

CCR4 0.196 1.42 × 10−4

CCR5 0.249 1.20 × 10−6

CXCR2 0.133 1.03 × 10−2

CXCR4 0.297 5.58 × 10−9

Eosinophils CCL11 0.069 1.82 × 10−1

CCL24 −0.006 9.07 × 10−1

CCL26 0.283 2.85 × 10−8

CCL5 0.12 2.06 × 10−2

CCL7 0.161 1.86 × 10−3

CCL13 0.137 8.24 × 10−3

CCL3 0.07 1.79 × 10−1

Neutrophils CXCL8 0.38 6.12 × 10−4

EZH2: Enhancer of Zeste Homolog 2; p values less than 0.05 are shown in bold.

3.7. Expression Correlation of EZH2 and Biomarkers of Immune Cells in HCC

To further validate the notion that EZH2 is positively associated with immune cell
infiltration in HCC, we investigated the relationship between EZH2 expression and the
representative immune markers of several immune cells, including B cells, CD8+ T cells,
CD4+ T cells, M1 macrophages, M2 macrophages, neutrophils, and dendritic cells (Table 2).
In the GEPIA2 database, the expression levels of EZH2 were found to be strongly correlated
with most immune markers, including B cells (CD19), CD8+ T cells (CD8A and CD8B), CD4+
T cells (CD4), M1 macrophages (IRF5), M2 macrophages (CD163, VSIG4, and MS4A4A),
neutrophils (ITGAM), and dendritic cells (HLA-DPB1, HLA-DRA, HLA-DPA1, CD1C,
NRP1, and ITGAX). Similar results were observed in the TIMER database. Taken together,
the findings indicate that these immune marker genes play a key role in immune cell
infiltration, indicating that EZH2 may be involved in immune surveillance and immune
escape.

Table 2. Correlation analysis between EZH2 and biomarkers of immune cells in HCC determined
using the GEPIA and TIMER databases.

GEPIA TIMER

R p R p

B cells CD19 0.110 1.10 × 10−1 0.244 1.92 × 10−6

CD79A 0.083 7.90 × 10−5 0.131 1.18 × 10−2

CD8+ T cells CD8A 0.200 1.40 × 10−5 0.180 5.05 × 10−4

CD8B 0.220 7.70 × 10−3 0.168 1.17 × 10−3

CD4+ T cells CD4 0.140 8.20 × 10−1 0.217 2.44 × 10−5

M1 macrophages NOS2 −0.012 0.00 × 10−0 0.003 9.48 × 10−1

IRF5 0.440 5.00 × 10−1 0.482 5.97 × 10−23

PTGS2 0.035 2.80 × 10−3 0.088 9.22 × 10−2

M2 macrophages CD163 0.160 2.40 × 10−4 0.101 5.21 × 10−2

VSIG4 0.190 2.00 × 10−3 0.100 5.41 × 10−2

MS4A4A 0.160 8.30 × 10−1 0.102 5.07 × 10−2

Neutrophils CEACAM8 0.011 2.40 × 10−11 0.094 6.95 × 10−2

ITGAM 0.340 2.20 × 10−1 0.289 1.44 × 10−8

CCR7 0.064 2.40 × 10−5 0.083 1.10 × 10−1
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Table 2. Cont.

GEPIA TIMER

R p R p

Dendritic cells HLA-DPB1 0.220 9.00 × 10−2 0.154 2.91 × 10−3

HLA-DQB1 0.088 1.70 × 10−5 0.146 4.87 × 10−3

HLA-DRA 0.220 1.20 × 10−4 0.167 1.22 × 10−3

HLA-DPA1 0.200 7.40 × 10−4 0.158 2.28 × 10−3

CD1C 0.170 6.50 × 10−8 0.114 2.85 × 10−2

NRP1 0.280 1.10 × 10−6 0.263 2.67 × 10−7

ITGAX 0.250 1.10 × 10−1 0.348 5.15 × 10−12

HCC: hepatocellular carcinoma; EZH2: Enhancer of Zeste Homolog 2; p values less than 0.05 are shown in bold.

3.8. Correlation between EZH2 Expression and Immune Checkpoints in HCC

Immunotherapy based on PD-1/PDL1 and CTLA-4 has emerged as a new pillar of
cancer treatment for patients with HCC [26]. To determine the influence that EZH2 expres-
sion had on immunotherapy in patients with LIHC, we next evaluated the relationship
between EZH2 expression and PD-1, PD-L1, or CTLA-4 based on two different databases.
For TIMER, the expression of EZH2 in HCC was significantly positively correlated with
PD-1, PD-L1, and CTLA-4 (Figure 9A–C). We observed the same positive correlation in
GEPIA (Figure 9D–F). Thus, these results imply that positive EZH2 expression may predict
a better response to immunotherapy than negative expression.

3.9. Functional Analysis of EZH2 by GSEA

GSEA was performed to explore the biological role of EZH2. The KEGG enrichment
terms indicated that high expression of EZH2 is mainly associated with the cell cycle,
homologous recombination, and nucleotide excision repair, while low expression is mainly
associated with asthma, complement and coagulation cascades, primary bile acid biosyn-
thesis, and arachidonic acid metabolism (Figure 10A,B). HALLMARK terms indicated that
high expression of EZH2 is associated with the G2M checkpoint, E2F targets, and mtorc1
signaling, while low expression of EZH2 is associated with the p53 pathway, myogenesis,
bile acid metabolism, and coagulation (Figure 10C,D). These results suggest the possible
signaling pathway and mechanism associated with EZH2’s role in immune and metabolic
functioning.
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4. Discussion 

Figure 10. GSEA for samples with high and low EZH2 expression. (A) Enriched gene sets in the
KEGG collection by samples with high EZH2 expression. (B) Enriched gene sets in KEGG by samples
with low EZH2 expression. (C) Enriched gene sets in the HALLMARK collection by samples with
high EZH2 expression. (D) Enriched gene sets in HALLMARK by samples with low EZH2 expression.

4. Discussion

Liver cancer ranks sixth in terms of incidence among malignancies and is the fourth
leading cause of tumor-related death worldwide [1]. HCC is a highly heterogeneous
disease that has been documented at the interpatient, intertumoral, and intratumoral levels,
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which makes its effective treatment challenging [27,28]. Though some progress has been
made in the treatment of HCC, such as surgical resection, microwave ablation, and liver
transplantation, the prognosis of HCC patients remains poor. Therefore, exploring the
pathogenesis of HCC and identifying new targets to combat HCC are urgently needed and
possess great significance for its clinical treatment.

EZH2 encodes a member of the PcG family, which is involved in maintaining the
transcriptional repressive state of genes over successive cell generations [29]. Existing
studies have recognized the critical roles played by EZH2 in tumor angiogenesis and cell
proliferation, as well as cell differentiation and apoptosis [30]. Some investigations have
demonstrated ncRNA to be closely associated with the occurrence of HCC and its dysfunc-
tion to inhibit tumor growth and metastasis [31]. The importance of the immune status in
the tumor microenvironment (TME) has been gradually recognized in recent years [32,33].
In HCC, the TME is immunosuppressive and promotes immune tolerance and evasion
by various mechanisms, promoting tumor proliferation, invasion, and metastasis [34].
Indeed, either EZH2 or ncRNA can regulate inflammation and participate in immune gene
expression, thus affecting the TME [24,35]. Thus, to determine the factor that influences the
immunosuppression of the TME and the clinical response of immunotherapy, we need to
explore some immunological genes affecting the abundance of immune cells in the TME.
Targeted research may significantly change the clinical outcome of HCC.

Increasing evidence has addressed the role of EZH2 in different human malignancies,
including ovarian cancer, pancreatic cancer, gastric cancer, and even HCC [36–39]. EZH2
has been reported to promote the recurrence and progression of HCC and thus is an
important factor for tumor growth [36,40]. Previous studies have revealed that high EZH2
expression may represent a novel indicator of poor prognosis in patients with HCC [40,41].
These results are consistent with our present study. In the present study, pan-cancer
expression and survival analyses were performed on EZH2 using TCGA datasets, and
we found that EZH2 was abnormally expressed in 15 types of cancer, including BLCA,
BRCA, CESC, CHOL, COAD, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, READ,
STAD, and UCEC. In particular, high EZH2 expression in HCC tissues was associated with
poor prognosis. The expression results were validated in GEPIA2 using the TCGA and
GTEx datasets. Furthermore, we found that the EZH2 expression levels in liver cancers at
advanced clinicopathological stages were significantly higher than those in tumors at early
stages, implying that increased EZH2 expression may indicate tumor progression in these
patients. These reports, together with our analytic results, show the oncogenic role of EZH2
in HCC.

The published literature has largely focused on the role of these regulatory ncRNAs in
cancer initiation and progression [42]. Firstly, to explore the upstream regulatory miRNAs
of EZH2, we introduced seven prediction programs, namely, PITA, RNA22, miRmap,
microT, miRanda, PicTar, and TargetScan, to predict possible miRNAs that could potentially
bind to EZH2. At the end, twelve upstream miRNAs of EZH2 were confirmed using
bioinformatics database prediction. Subsequently, differential expression analysis and
mRNA–miRNA correlation analysis were performed to determine hsa-miR-101-3p as the
upstream miRNA of EZH2 affecting the progression of patients with HCC. Next, upstream
lncRNAs of the hsa-miR-101-3p/EZH2 axis were also predicted, and 63 possible lncRNAs
were found. By conducting expression analysis and correlation analysis, two of the most
potential upregulated lncRNAs, namely, SNHG6 and MALAT1, were identified as the
upstream lncRNAs of hsa-miR-101-3p. In our study, hsa-miR-101-3p was shown to be
downregulated in HCC tissues compared to normal tissues, and low hsa-miR-101-3p
indicated a poor prognosis for HCC patients. SNHG6 and MALAT1 also demonstrated
differential expression between normal tissues and tumor tissues. The in vitro experiments
confirmed that HBV downregulated hsa-miR-101-3p expression by inhibiting its promoter
activity, which resulted in the upregulation of Rap1b, and the downregulation of hsa-
miR-101-3p or upregulation of Rap1b promoted the proliferation and migration of HCC
cells [43]. SNHG6 may act as a competing endogenous RNA, effectively becoming a sink
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for hsa-miR-101-3p and thereby modulating the de-repression of zinc finger E-box binding
homeobox 1, imposing an additional level of post-transcriptional regulation [44]. Likewise,
dysregulation of MALAT1 has been found to participate in HCC progression [45,46]. Taken
together, SNHG6 or MALAT1/hsa-miR-101-3p/EZH2 axis were identified as potential
regulatory pathways in HCC (Figure 11).
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HCC.

Immunotherapies have emerged as promising therapeutic strategies in HCC. Tumor-
infiltrating immune cells in the TME affect responsiveness to such therapies, as well as
outcomes [47,48]. Thus, we further characterized the relationship between EZH2 expression
and the infiltration levels of tumor-infiltrating immune cells in HCC tissues. We found
that EZH2 expression was significantly positively correlated with various immune cells,
including B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, dendritic cells, and
CAFs, in HCC tissues. Meanwhile, EZH2 showed a positive correlation with biomarkers
of immune cells and the chemotactic activity of tumor-related immune cells. From these
findings, we speculated that immune cell infiltration might partially account for EZH2-
mediated oncogenic roles and participate in the proliferation, migration, and immune
response in HCC. However, the function of EZH2 and its roles in hepatocarcinogenesis and
progression need to be explored through further clinical and experimental studies.

Currently, immune checkpoint inhibitors (ICB), such as anti-CTLA-4 and anti-PD-
L1/PD-1 antibodies, elicit durable and effective responses in some solid tumors [49].
However, the efficacy and side effects for each patient during treatment show individual
differences [50]. Therefore, it is necessary to identify patients who might benefit from ICB
therapy. In our study, the expression level of EZH2 was significantly positively correlated
with PD-1, PD-L1, and CTLA-4, which provided potential immunotherapy targets and
indicated a better response to the immune-inhibiting reagents in patients with high EZH2
expression. The underlying mechanism of the relationship between EZH2 and ICB requires
further exploration.

5. Conclusions

In summary, we found that EZH2 was highly expressed in multiple types of human
cancer (including HCC) and was associated with a poor prognosis in HCC. We constructed
an ncRNA-mediated regulatory mechanism of EZH2 in hepatocarcinogenesis and progres-
sion, namely, EZH2-hsa-miR-101-3p-SNHG6/MALAT1. Additionally, we found that EZH2
expression was not only associated with immune cell infiltration but also correlated with
the expression of immune checkpoint genes.
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HCC Hepatocellular carcinoma
miRNAs MicroRNAs
KEGG Kyoto Encyclopedia of Genes and Genomes
ncRNAs Non-coding RNA
TCGA The Cancer Genome Atlas
GTEx Genotype-Tissue Expression
BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and Endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and neck squamous cell carcinoma
KICH Kidney chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
STAD Stomach adenocarcinoma
THCA Thyroid carcinoma
UCEC Uterine corpus endometrial carcinoma
HBV Hepatitis B virus
HCV Hepatitis C virus
EZH2 Enhancer of Zeste Homolog 2
PcG Polycomb group
NCBI National Center for Biotechnology Information
HPA Human Protein Atlas
FC Fold change
OS Overall survival
DFS Disease-free survival
K-M Kaplan-Meier
DSS Disease-specific survival
PFI Progression-free interval
GSEA Gene set enrichment analysis
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CAFs Cancer-associated fibroblasts
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