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Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can
cause systemic tuberculosis-like infections in ectotherms and skin infections in humans.
Sliding motility correlates with biofilm formation and virulence in most bacteria. In
this study, we used a sliding motility assay to screen 2,304 transposon mutants of
M. marinum NTUH-M6885 and identified five transposon mutants with decreased
sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-
related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were
present in 3 mutants. We performed reverse-transcription polymerase chain reaction
to verify genes from mmar_5438 to mmar_5450, which were found to belong to a
single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and
espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm
formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system.
However, deletion of espG or espH resulted in slightly decreased secretion of EsxB
(which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system
mediates sliding motility and is crucial for biofilm formation. These data provide new
insight into M. marinum biofilm formation.

Keywords: type VII secretion system, Mycobacterium marinum, ESX-1, sliding motility, biofilm formation

INTRODUCTION

Mycobacterium marinum is a non-tuberculous photochromogenic mycobacterium. It is a close
relative of Mycobacterium tuberculosis, and also causes systemic tuberculosis-like infections in
ectotherms (Solomon et al., 2003; Hagedorn and Soldati, 2007; Alibaud et al., 2011). Researchers
first isolated M. marinum from saltwater fish in the 1920s and identified it as a human pathogen
in the 1950s (Riera et al., 2015). This species usually occurs in warm saltwater, freshwater, and
poikilothermic animals; fish, frogs, and amphibians are its main natural hosts. It grows best at
a temperature of 25–35◦C (McArdle et al., 2016). The prevalence of M. marinum infections in
humans has risen in recent years because of the increasing popularity of home aquariums (Riera
et al., 2015). M. marinum infections most commonly occur on the skin, especially the extremities,
because of the low-temperature requirements of the bacteria for growth (Oh et al., 2015). An
M. marinum skin infection is referred to as an aquarium granuloma, swimming pool granuloma,
or fish tank granuloma (Solomon et al., 2003; Meijer, 2015; Sette et al., 2015).

M. marinum infection usually occurs following contact with an infected animal or handling
of contaminated aquariums or water. It can also occur as an opportunistic infection, primarily in
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immune-deficient patients, such as those with human
immunodeficiency virus (HIV)/acquired immunodeficiency
syndrome (AIDS) (Ren et al., 2007; Rombouts et al., 2010).
Clinicians characterize the stages of M. marinum infections as
the initial stage (type I), in which there are single or multiple
skin papules or nodules; advanced stage (type II), in which
there are granulomas; and severe stage (type III), in which
immunosuppressed patients experience tenosynovitis, arthritis,
or osteomyelitis (Riera et al., 2015). The diagnosis of M. marinum
infection is often delayed, due to its low prevalence or because
there are few specific clinical signs and symptoms. Thus, many
patients initially receive incorrect diagnoses and inappropriate
treatments.

Many mycobacteria can spread on a surface by sliding
(also called “growth-powered passive surface translocation”),
which is driven by the outward pressure of cell growth.
This process, which does not require flagella (Martínez et al.,
1999), occurs due to surfactants, which decrease the surface
tension and allow the spread of cells from their origin (Kearns,
2010). Several studies have indicated that lipooligosaccharides
(LOSs), glycolpeptidolipids (GPLs), phthiocerol dimycocerosates
(PDIMs), and phenolic glycolipids (PGLs) on the outer surface of
mycobacteria have important functions in sliding motility (Ren
et al., 2007; Tatham et al., 2012; Pang et al., 2013; Mohandas et al.,
2016).

Sliding motility allows the colony diameter of non-swarming
bacteria to increase during prolonged incubation (Kearns, 2010).
Mycobacteria are prototypical non-flagellated microorganisms
that spread slowly in a uniform monolayer due to sliding
motility (Shi et al., 2011; Maya-Hoyos et al., 2015). Furthermore,
sliding movements and biofilm formation facilitate diffusion and
colonization by mycobacteria (Pang et al., 2013).

A biofilm is a thin and slimy film of one or more species of
bacteria that adhere to each other and/or a solid surface and it
can help to increase the virulence of the bacterial species. Biofilm
formation may be considered a survival “strategy” for bacteria.
There are several consecutive stages of biofilm formation:
reversible attachment, irreversible attachment, mature biofilm
formation, and dispersion. A biofilm consists of bacteria
and matrix material, which includes extracellular polymeric
substances, such as polysaccharides, lipids, membrane vesicles,
and nucleic acids (Sousa et al., 2015; Toyofuku et al., 2015).
Bacteria in biofilms have significantly enhanced resistance to
antibiotics and the human immune system (Shi et al., 2011).
Biofilm formation is highly related to sliding motility in
Mycobacterium spp. (Nessar et al., 2011; Mohandas et al.,
2016). Previous studies indicated that Mycobacterium smegmatis
with defects in biofilm formation also have impaired sliding
motility (Recht and Kolter, 2001). In addition, Ghosh et al.
(2013) reported that the ability of M. smegmatis to form
biofilms declined as sliding motility declined. Many other
species of mycobacteria, including Mycobacterium avium and
Mycobacterium fortuitum, are well-known to produce biofilms,
although the ability of M. marinum to form biofilms remains
largely unknown (Ren et al., 2007).

There has been an increased number of cases of M. marinum
infection due to the increasing popularity of home aquariums.

However, there is little knowledge about the pathogenic
mechanism of this species in humans. Moreover, sliding motility
is highly associated with biofilm formation in mycobacteria. In
this study, we aimed to identify genes that have roles in sliding
motility in M. marinum.

MATERIALS AND METHODS

Bacteria Strains
M. marinum NTUH-M6885 is a strain that was clinically
isolated at the National Taiwan University Hospital. It was
cultured in 7H9 medium supplemented with 10% oleic
acid/albumin/dextrose/catalase (OADC), 0.5% glycerol, and
0.05% Tween-80 at 32◦C (Tan et al., 2006; Chen et al., 2015).
Escherichia coli DH10B was grown in Luria broth (LB). When
required for the experiments, the antibiotic hygromycin was used
at a concentration of 50 mg/L for M. marinum and 100 mg/L for
E. coli.

Generation of M. marinum Transposon
Mutant Library
M. smegmatis mc2155 was used to propagate the TM4-derived
conditionally replicating phage phAE94 [which was a kind
gift from Dr. William R. Jacobs, Jr., Howard Hughes Medical
Institute, New York, NY, United States (Bardarov et al., 1997)].
This phage carries the kanamycin-resistance transposon Tn5367
(Shin et al., 2006). We followed the procedures used in
previous studies (Rybniker et al., 2003; Chen et al., 2015)
to promote phAE94 infection of M. marinum NTUH-M6885
cells.

Screening for M. marinum Transposon
Mutants With Decreased Sliding Motility
Sliding motility mutations were screened for using a sliding agar
plate (7H9, 6% glycerol and 0.3% agarose) (Mohandas et al.,
2016). An aliquot of 1 µL bacteria culture (in the stationary
phase) was dropped onto these agar plates (24- or 6-wells) and
cultured at 32◦C for 9–11 days. To confirm the sliding defect in
transposon and deletion mutants, 1 µL bacteria culture adjusted
to an optical density at 600 nm (OD600) of 1 was dropped onto
6-well plates and cultured at 32◦C for 7 days. The diameters of
the sliding areas were then measured.

Identification of Transposon Mutants by
Semi-Random Polymerase Chain
Reaction (PCR)
The insertion sites of Tn5367 in the transposon mutants
were identified by semi-random PCR and DNA sequencing as
previously described (Chun et al., 1997; Choi et al., 2001; Shin
et al., 2006; Chen et al., 2015). Supplementary Table 1 shows the
primers used in these experiments.

Construction of Deletion Mutants
Gene-deleted fragments were constructed using primers listed
in Supplementary Table 1. The Hygr-lacZ-sacB cassette of the
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pGOAL19 plasmid (Addgene plasmid #20190, Cambridge, MA,
United States) was digested with ScaI and the gene-deleted
fragments were then cloned into the ScaI site of the digested
plasmid. We then transformed the constructed plasmid into
M. marinum NTUH-M6885 by electroporation (BTX R©, ECM
630 Electroporation System, MA, United States) under the
following conditions: 2500 mV, 1,000 �, and 25 µF (Larsen
et al., 2007). Following the procedure of Parish and Stoker
(2000) and Chen et al. (2015), M. marinum unmarked deletion
mutants (with in-frame deletions) were obtained after two
rounds of homologous recombination. After recovering from
the electroporation, each transformed M. marinum mutant was
cultured on 7H11 with 50 mg/L hygromycin for 2 weeks. The
single colony was then subcultured on 7H11 with 100 mg/L
X-gal and 50 mg/L hygromycin for 1 week to select the single
cross-over transformants (blue colonies). The blue colonies
were selected and cultured on 7H11 with 2% sucrose and 100
mg/L X-gal for 1 week to obtain the deletion mutants (white
colonies).

5′-Rapid Amplification of cDNA Ends
(RACE)
The 5′-RACE procedure was performed using a SMARTerTM

RACE cDNA Amplification Kit1 (CA, United States). This kit
includes SMARTer II A oligonucleotides and SMARTScribe
Reverse Transcriptase. This allowed isolation of the complete 5′
sequence of our target transcript from the total RNA.

Construction of Complemented Strains
After isolating the complete 5′ sequence of the target operon,
we amplified and connected the promoter region and target
genes using overlap- or inverse-PCR, with primers listed in
Supplementary Table 1. The complementation fragments were
then cloned into a blunted HindIII-site of pMN437 (which was
a kind gift from Dr. Michael Niederweis, University of Alabama
at Birmingham, Birmingham, AL, United States) (Steinhauer
et al., 2010). Subsequently, we transformed the complementation
plasmid into deletion mutants.

Growth Curve
Cultures were inoculated with fresh precultures to an OD600nm of
0.1. Bacterial growth was monitored spectrophotometrically, and
colony counts were determined every day.

Biofilm Formation
M. marinum was cultured in 7H9 medium (without Tween-80)
with OADC, and with shaking at 100 rpm (Pang et al.,
2012; Mohandas et al., 2016). The cell concentration was
adjusted to an OD600nm of 0.01 in round-bottom 96-well
polypropylene cell culture plates (costar R© 3879, New York, NY,
United States) at 32◦C, and the cells were then cultured for 3
weeks. After 3 weeks, the medium was removed. We stained
the biofilm with 200 µL 1% crystal violet (CV) for 10 min
(Trivedi et al., 2016). We then removed the CV and washed

1www.clontech.com

the biofilm twice with 1× phosphate-buffered saline (PBS).
Subsequently, we extracted the CV from the biofilm using
99.5% EtOH and assessed the biofilm formation by measuring
OD490nm.

Confocal Laser Scanning Microscopy
M. marinum was cultured on cover slides with 7H9 medium
(without Tween-80) with OADC, and with shaking at 100
rpm for 2 weeks. The bacteria were then washed with
PBS before fixing in formalin. The biofilm was observed
with a Leica TCS SP5 confocal laser scanning microscope
(Leica, Wetzlar, Germany) and three-dimensional images
were analyzed using Volocity software (version 6.0.1, MA,
United States).

Western Blotting
Bacteria were cultured in 7H9 medium for 4 days (to mid-log
phase). We then removed the culture medium and washed
the bacteria with Sauton’s medium. The bacteria were then
cultured for 4 days at 32◦C (Gao et al., 2004). Culture
filtrates collected by centrifugation and filtration through 0.22
µm-pore-size polyethersulfone filter were condensed using a
concentrator (Amicon, NJ, United States) with a 3-kDa cut-off.
Next, 10 µg proteins were loaded on 15% sodium dodecyl
sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) gel.
The proteins were detected using antibodies against 10 kDa
culture filtrate protein (CFP-10; which is also known as EsxB),
Ag85B (Ag85B protein levels was used for normalization), and
heat-shock protein 65 (Hsp-65; also called grOEL; Hsp-65 protein
levels was used for normalization). The details regarding the
antibodies were are follows: anti-CFP-10 antibody (Abcam,
ab45074, 1:5000), anti-Ag85B antibody (Abcam, ab43019,
1:3000), and anti-Hsp-65 antibody (grOEL; Abcam, ab20519,
1:200).

Two-Dimensional Thin-Layer
Chromatography (2D-TLC)
The extraction and 2D-TLC analysis of polar lipids was based
on established procedures used in our previous study (Chen
et al., 2015) and in a study by Burguiere et al. (2005). First,
the polar lipids were extracted from M. marinum grown on
7H11 agar plates. Second, lipids were examined using TLC
aluminum sheets (Merck, Summit, NJ, United States). Third,
the LOS signals were visualized by spraying the plates with
ceric ammonium molybdate [CAM; 24 g (NH4)6Mo7O24·4H2O,
0.5 g ammonium cerium nitrate, 500 mL H2O, and 28 mL
H2SO4], followed by gentle charring of the plates (Chen et al.,
2015).

Statistical Analysis
All the data were from three independent experiments and
they are presented as means ± standard deviations (SDs). We
estimated the statistical significance of the differences using
one-way analysis of variance (ANOVA) or two-tailed Student’s
t-tests using GraphPad Prism software (version 5.01, La Jolla, CA,
United States).
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RESULTS

Screening an M. marinum Transposon
Library for Sliding Motility
We first constructed a transposon library of M. marinum
NTUH-M6885 containing 2,304 mutants to screen for genes
associated with sliding motility. We then randomly selected 16
of these mutants and used semi-random PCR and sequencing
to characterize them. The results showed that these 16 mutants
had unique transposon insertion sites (Supplementary Table 2),
indicating that the library had good diversity.

Next, we screened the 2,304 mutants for sliding motility
using 24-well sliding agar plates. We then re-examined and
identified 13 mutants with defects in sliding motility using 6-well
sliding agar plates. The wild-type strain slid to the edges of the
culture well (3.5 cm in diameter), whereas the 13 mutants had
sliding distances <2 cm (Supplementary Figure 1). Finally, we
reperformed the same experiment using an equal quantity of
bacteria cultured for 7 days (OD600 = 1), and we found that
only five mutants had sliding motility defects (Supplementary
Figure 2).

Role of the Early Secreted Antigen 6 kDa
(ESAT-6) Secretion System 1 (ESX-1)
Genes in Sliding Motility
We identified the disrupted genes of the five transposon mutants
with sliding motility defects using semi-random PCR and DNA
sequencing (Table 1). Two mutants harbored insertions within
tetR and phoU, which both belong to putative regulators.
The other three transposon mutants—23-B1 (mmar_5439),
8-C7 (upstream of mmar_5440), and 22-B5 (mmar_5443)—
had disruptions in the gene cluster encoding the type VII
secretion system ESX-1 (Figures 1A,B). Previous studies named
mmar_5439 as espE, mmar_5440 as espF, and mmar_5443 as
eccA1 (Bitter et al., 2009; Sani et al., 2010). Among these
gene candidates, we focused on the ESX-1 cluster containing
espE, espF, and eccA1. The products of all three of these genes
are supposed to be displayed at the cell surface but their
functions regarding sliding motility have not been characterized
in M. marinum. These initial results suggested that ESX-1-related
genes could be involved in sliding motility.

TABLE 1 | Transposon mutants with reduced sliding motility.

Mutant
(library no.)

Genes inserted
by transposon

Putative function

12-B1 mmar_4631 TetR family transcriptional
regulator

14-A7 mmar_4859 Phosphate transport system
regulatory protein PhoU

23-B1 mmar_5439 Secretion protein EspE

8-C7 upstream of
mmar_5440

Secretion protein EspF

22-B5 mmar_5443 Type VII secretion AAA-ATPase
EccA1

Detection of Growth Rates in Transposon
Mutants With Sliding Defects
The presence of a surfactant in the culture medium and a high
bacterial growth rate can increase sliding motility (Kearns, 2010).
Thus, it is necessary to determine whether the impaired sliding of
the transposon mutants resulted from a growth defect. Recovery
of bacterial counts (data not shown) and monitoring changes in
OD600nm over time was carried out to measure the growth rates
of the wild-type strain and its three transposon mutants (23-B1,
8-C7, and 22-B5). Based on assays in general culture medium
(7H9 with 10% OADC, 0.5% glycerol, and 0.05% Tween-80) or
sliding broth medium (7H9 with 0.5% glycerol), the growth rates
of the three transposon mutants showed no significant differences
compared to the corresponding growth of the wild-type strain
(Figure 1C and Supplementary Figure 3A). Thus, the sliding
defects of these three mutants were not due to defects in growth.

Transcriptional Units and Sequence
Alignments of the ESX-1 Gene Cluster
Reverse-transcription (RT)-PCR to determine the transcriptional
units of the ESX-1 gene cluster was performed with total RNA
from M. marinum NTUH-M6885 as the template and primer
pairs that hybridize within two consecutive genes. Total RNA
without RT was used as the negative control, to exclude genomic
DNA contamination. Figures 2A,B showed positive results for
the junctions of genes from mmar_5438 to mmar_5450. In
addition, Supplementary Figures 4A,B show the longer amplified
PCR products containing two or three adjacent genes. The PCR
products with expected sizes were also confirmed by sequencing.
These results indicate that the ESX-1 gene cluster contains 13
genes that belong to a single transcriptional unit. This operon
starts with mmar_5438 and ends with mmar_5450.

Next, we identified the 5′ start site of this operon using a
SMARTerTM RACE cDNA Amplification Kit. The result showed
that the transcriptional start site of the ESX-1 operon was located
120 bp upstream of mmar_5438 (Figure 2C). Furthermore, we
determined the full DNA sequence of this operon in M. marinum
NTUH-M6885 using next-generation sequencing. Analysis of the
nucleotide sequences of the ESX-1 cluster from M. marinum
NTUH-M6885 (National Center for Biotechnology Information
[NCBI] accession number: MF034931) revealed 99% sequence
similarity compared with the cluster from the M. marinum M
strain.

Roles of espE, espF, espG, and espH
Genes in Sliding Motility
The genes, espE (mmar_5439), espF (mmar_5440), and eccA1
(mmar_5443) are all located in the same operon. To further
characterize whether the specific genes of the ESX-1 cluster
play roles in sliding motility, unmarked deletion mutants of
espE, espF, and eccA1 and also of espG (mmar_5441) and espH
(mmar_5442), were constructed. The deletions of espE, espF,
espG, espH, and eccA1 were validated by PCR using two primer
pairs targeted to the deleted genes and their flanking regions
(Supplementary Figure 5). Figures 3A,B show that the sliding
motility of each unmarked deletion mutant, except for the eccA1
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FIGURE 1 | Transposon disruption of three ESX-1-related genes significantly impairs sliding motility but not growth. (A) Transposon insertion sites within the ESX-1
locus. The three disrupted genes (gray) were espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443). The bold vertical lines indicate the transposon
insertion sites. (B) Sliding motility of the three transposon mutants (8-C7, 22-B5, and 23-B1). Aliquots of 1 µL bacteria culture (OD600 = 1) were added to 6-well
sliding agar plates and cultured at 32◦C for 1 week. (C) Bacteria were cultured in 7H9 medium supplemented with 10% oleic acid/albumin/dextrose/catalase
(OADC), 0.5% glycerol, and 0.05% Tween-80. The growth of different strains was assessed based on OD600nm. Here and below, all data are from three independent
experiments and presented as means ± SDs with one-way ANOVA.

mutant (MeccA1), was dramatically reduced compared with the
sliding motility of the wild-type strain. The motility defects
of the gene deletion mutants were significantly restored by
complementation with the corresponding gene (Figures 3C,D).
The growth rates of these deletion mutants were not significantly
different compared to the growth rate of the wild-type strain
(Supplementary Figure 3B). However, the sliding motility of
the espG-complemented strain was only partially restored by
complementation with the plasmid containing the espG gene.
As the ESX-1 operon contains the promoter for 13 genes, the
results imply that proper regulation of espG gene expression
might require cis-elements within the operon. Thus, these results
suggest that espE, espF, espG, and espH have important roles in
sliding motility in M. marinum NTUH-M6885.

Roles of espE, espF, espG, and espH
Genes in Biofilm Formation
Previous studies indicated that sliding motility correlates with
biofilm formation in Mycobacterium spp. (Nessar et al., 2011;
Sousa et al., 2015; Mohandas et al., 2016). To discern whether

the ESX-1-related genes contribute to biofilm formation, we
compared the biofilm formation of the deletion mutants with
that of the wild-type strain. After 3 weeks of culturing in
general culture medium without Tween-80, the deletion mutants
exhibited decreased biofilm formation compared with the
wild-type strain. All complemented strains produced biofilms
similar to that of the wild-type strain (Figure 4). To further
confirm the role of these ESX-1 genes in biofilm formation,
three-dimensional biofilms were formed on cover slides and
they were analyzed using confocal laser scanning microscopy
(Figure 5). The biofilms of these deletion mutants were thinner
and more scattered than those of the wild-type strain, and
complementation significantly restored biofilm formation. These
data indicate that espE, espF, espG, and espH are required for
biofilm formation in M. marinum.

EsxB Secretion in 1 espE, 1 espF,
1 espG, and 1 espH Mutants
According to previous studies, both EsxA (ESAT-6) and EsxB
(CFP-10) are indispensable components of the ESX-1 secretion
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FIGURE 2 | The sliding-related operon involves mmar_5438 to mmar_5450, and its 5′start site is 120 bp upstream of mmar_5438. The primer pairs were: 1,
5437-38 gap-F/5437-38 gap-R; 2, 5438-39 gap-F/5438-39 gap-R; 3, 5439-40 gap-F/5439-40 gap-R; 4, 5439-40 gap-F/5440-41 gap R; 5, 5441-42
gap-F/5441-42 gap-R; 6, 5442-43 gap-F/5442-43 gap-R; 7, 5443-44 gap-F/5443-44 gap-R; 8, 5444-45 gap-F/5444-45 gap-R; 9, 5445-46 gap-F/5445-46
gap-R; 10, 5446-47 gap-F/5447-48 gap-R; 11, 5448-49 gap-F/5449-50 gap-R; 12, 5450-51 gap-F/5450-51 gap-R2. The primer list is shown in Supplementary
Table 1. (A) Primer recognition sites. The bold horizontal lines indicate amplified gene fragments, and arrows indicate primers. (B) Data showing that the
sliding-related operon involves mmar_5438 to mmar_5450. Each gel is independent and not cropped from different parts of the same gel. cDNA: cDNA of
M. marinum NTUH-M6885 (template); DNA: DNA of M. marinum NTUH-M6885 (positive control); mRNA: mRNA of M. marinum NTUH-M6885 (negative control, to
exclude genomic DNA contamination). (C) The 5′ start site begins 120 bp upstream of mmar_5438 (gray). The bold vertical line indicates the 5′ start site, detected
using a SMARTerTM RACE cDNA Amplification Kit.
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FIGURE 3 | Four mutants (espE, espF, espG, and espH) have significantly impaired sliding motility. (A) Sliding motility of M. marinum deletion mutants (MespE,
MespF, MespG, MespH, and MeccA1) and M. marinum NTUH-M6885 (wild-type) on sliding agar plates. (B) Quantification of sliding diameters of the 6 strains shown
in (A). (C) Sliding motility of complemented strains relative to M. marinum NTUH-M6885 harboring pMN437 on sliding plates. (D) Quantification of sliding diameters
of the nine strains in (C). The quantification of the sliding diameters was used for normalization, with the wild-type diameter being assigned a value of 1. Means and
SDs from three independent experiments were calculated with one-way ANOVA (∗∗p < 0.01, ∗∗∗p < 0.001).

system (Ates et al., 2016; Wong, 2017) and they are considered
to be indicators of the ESX-1 system with secretion function
(Gao et al., 2004; Brodin et al., 2006; Champion et al., 2014). To
investigate whether M. marinum NTUH-M6885 had a functional
ESX-1 system, EsxB secretion from the wild-type strain was

detected by western blotting. Cell filtrate of M. tuberculosis
H37Rv was used as a positive control (Supplementary Figure 6).
The M. marinum NTUH-M6885 wild-type strain and also all of
the Esx-1 gene deletion mutants accumulated EsxB protein in
their cell lysates. However, deletion of espE, espF, espG, and espH
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FIGURE 4 | The espE, espF, espG, and espH genes also function in biofilm formation. Cells were stained with 1% CV and OD490nm was measured after 10 min.
(A) Biofilm formation by the deletion mutants (MespE, MespF, MespG, and MespH) and M. marinum NTUH-M6885 (wild-type), and quantitation of these results in all
four strains (right). The quantification of biofilm was used for normalization, with the wild-type diameter being assigned a value of 1. All deletion mutants were
compared with the wild-type strain. Means and SDs from three independent experiments from triplicates were calculated with one-way ANOVA (∗∗∗p < 0.001).
(B) Biofilm formation in complemented strains, and quantification of these results in all 9 strains (right). The quantification of biofilm was used for normalization, with
the wild-type diameter being assigned a value of 1. All deletion mutants were compared with the wild-type strain and their corresponding complemented strain.
Means and SDs from three independent experiments from triplicates were calculated with one-way ANOVA (∗∗∗p < 0.001).

led to 0.35-, 0.59-, 0.82-, and 0.73-fold lower secretion of EsxB
protein than the secretion of the wild-type strain. These results
indicate that wild-type M. marinum NTUH-M6885 could secrete
EsxB protein. There was a substantial decrease in secretion for
espG and espH deletion mutants, and a slight decrease for espE
and espF deletion mutants.

DISCUSSION

The M. marinum NTUH-M6885 transposon mutant library
was screened, and 5 mutants (8-C7, 12-B1, 14-A7, 22-B5, and
23-B1) that had defective sliding motility were identified. 12-B1

and 14-A7 had an interruption in tetR and phoU, respectively.
Both genes are putative regulators and they might regulate the
other downstream effector genes for sliding motility directly or
indirectly. Further studies are needed to understand whether
the regulation of tetR or phoU is critical for sliding motility
in M. marinum. 22-B5 had a transposon insertion in the
eccA1 gene and showed significantly decreased sliding motility;
however, the sliding motility of the eccA1 gene deletion strain
was similar to that of the wild-type strain. Several studies have
reported that the insertion of transposable elements influences
the expression of nearby genes (Wei and Cao, 2016) (which
is known as the polar effect). The expression levels of genes
both upstream and downstream of insertion sites can be affected
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FIGURE 5 | Visualization of biofilm formation on cover slides with confocal laser scanning microscopy (CLSM). To further analyze the structure of the biofilms, CLSM
was performed using bacteria carrying pMN437, which harbors gfp. (A) Microscopic image at 20× magnification. Scale bar = 100 µm. (B) 3D imaging with a
Z-stack of biofilm structure.1 unit = 12.34 µm.

Frontiers in Microbiology | www.frontiersin.org 9 May 2018 | Volume 9 | Article 1160

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01160 May 28, 2018 Time: 15:52 # 10

Lai et al. ESX-1 in Mycobacterium marinum

(Cheng et al., 2015). Quantification of mRNA indicated that the
expression of neighboring genes (espE, espF, and espG) was
reduced in strain 22-B5 (Supplementary Figure 7). Thus, the
sliding defect in strain 22-B5 was due to a polar effect. The
virulence of the eccA1 transposon mutants in previous studies
could be fully complemented (Gao et al., 2004; Joshi et al., 2012),
indicating that eccA1 affects virulence through a mechanism
unrelated to the effect on sliding ability. The discrepancy might be
due to the virulence of M. marinum not being caused by sliding
ability.

A previous study showed that EccA1 plays a regulatory role
in mycolic acid synthesis in M. marinum (Joshi et al., 2012). In
addition, alterations in mycolic acid synthesis and composition
can affect biofilm formation in M. smegmatis (Ojha et al., 2005).
In the present study, the deletion of eccA1 in M. marinum did
not significantly affect sliding motility and biofilm formation
(data not shown), indicating that alterations in the mycolic acid
synthesis in the eccA1 mutant do not correlate with sliding
motility and biofilm formation in M. marinum.

The mmar_5438-mmar_5450 gene cluster of M. marinum
and the Rv3863-Rv3875 gene cluster of M. tuberculosis share
79% identity based on nucleotide sequence analysis. Bottai et al.
(2011) previously revealed the operon structures of the ESX-1
gene cluster in M. tuberculosis, showing that espE, espF-espG, and
espH-eccA1 belong to three independent operons. However, our
results demonstrated that the operon structure of the ESX-1 loci
in M. marinum involves a single operon. Therefore, we speculate
that the ESX-1 gene cluster in different mycobacteria species
might have different sequence alignments and operon structures.

Previous research indicated that EspE and EspF are major
cell surface proteins in M. marinum (Sani et al., 2010; van der
Woude et al., 2012). EspG proteins are cytosolic chaperones
that specifically interact with heterodimeric PE-PPE substrates
(Ates et al., 2016) and EspH is required for substrate export
(EsxA and EsxB) (Gao et al., 2004; McLaughlin et al., 2007;
Champion et al., 2014). In addition, a previous study showed
that a defect in M. marinum espE led to the formation of smooth
colonies (Carlsson et al., 2009). In agreement with this finding,
we also found morphological changes in MespE, MespF, MespG,
andMespH mutants and smooth colonies were observed (data not
shown). Several studies have reported that morphological change
correlates with reduced sliding motility (Maya-Hoyos et al., 2015;
Lee et al., 2017). These might be the reasons why the MespE and
MespF mutants had more severe defects in sliding motility and
biofilm formation.

espE encodes the major surface-associated protein in
M. marinum (Sani et al., 2010). The deletion of espE resulted
in the most profoundly reduced sliding motility and biofilm
formation abilities. To further investigate whether the surface
properties of the espE mutant were changed, the surface charge
and hydrophobicity of the wild-type and MespE strains were
determined by using a Zetasizer Nano ZS (Malvern, Malvern,
United Kingdom) (Kundu et al., 2017) and a bacterial adhesion
to solvent assay (Miyamoto et al., 2004; Xu et al., 2009). Our
results showed that the surface charge and hydrophobicity of
the espE mutant were not significantly different compared with
the wild-type values (data not shown). The LOS biosynthesis of

MespE was assessed by 2D-TLC and was similar to that of the
wild-type strain (Supplementary Figure 8). Thus, we suppose
that the decreased sliding ability and biofilm formation of the
espE mutant were not due to the alterations of the surface charge,
hydrophobicity, or LOS biosynthesis.

Our results indicate that the deletion of espE, espF, espG,
and espH resulted in extremely decreased sliding motility and
biofilm formation. The incomplete restoration exhibited by
complemented strains might be due to different expression levels
of complemented genes carried by the plasmids, which was
reported previously (Karnholz et al., 2006; Lin et al., 2006).
M. marinum NTUH-M6885 could secrete EsxB protein and had
a functional ESX-1 system. In addition, our data show that espE,
espF, espG, and espH mutants accumulated EsxB protein in the
cytosol and had reduced EsxB protein in the cell filtrates when
compared with the wild-type strain (Supplementary Figure 6B).
These results are consistent with those of a previous study that
indicated that an M. marinum espE transposon mutant could
not secrete EsxB protein and accumulated it in the cytosol
(Carlsson et al., 2009). EsxB plays roles in cell membrane lysis and
virulence (Unnikrishnan et al., 2017). Several previous studies
showed that the secretion of the EsxA-EsxB heterodimer is
co-dependent on the secretion of the EspA-EspC heterodimer,
suggesting that the EspA-EspC heterodimer has an important
function in ESX-1 secretion (Abdallah et al., 2007; Ates and
Brosch, 2017; Wong, 2017). Additionally, the signal motifs of
EspE and EspF were similar to those of EspA and EspC based
on an analysis using the structural homology server PHYRE2
(Solomonson et al., 2015). Sliding motility and biofilm formation
correlate with virulence in Mycobacterium spp. (Schorey and
Sweet, 2008; Pang et al., 2013). Esp proteins regulate substrate
export, which might be involved in sliding motility and biofilm
formation.

The ESX-1 system is one of the major groups of T7SS (Bottai
et al., 2011; Korotkova et al., 2014) and its role in pathogenesis
has been reported in M. tuberculosis (Unnikrishnan et al., 2017;
Wong, 2017) and M. marinum (Gao et al., 2004; Cardenal-
Munoz et al., 2017; Unnikrishnan et al., 2017). Previous studies
reported that espG and espH affect M. marinum virulence by
influencing cytolysis, cytotoxicity, growth in macrophages, and
spreading (Gao et al., 2004; McLaughlin et al., 2007). Bottai
et al. (2011) indicated that espF and espG1 were associated
with virulence during M. tuberculosis infection (Brodin et al.,
2006) and M. tuberculosis can survive in bone marrow-derived
macrophages. The present study is the first study to demonstrate
the contribution of the ESX-1 system to sliding motility and
biofilm formation in M. marinum.

In summary, we demonstrated that espE, espF, espG, and espH
genes are critical for sliding motility and biofilm formation in
M. marinum. These genes, which are located in the T7SS ESX-1
operon, are important virulence factors in M. marinum.
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