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Since osteosarcoma (OS) is an aggressive bone cancer with unknown molecular
pathways of etiology and pathophysiology, improving patient survival has long been a
challenge. The conventional therapy is a complex multidisciplinary management that
include radiotherapy, chemotherapy which followed by surgery and then post-operative
adjuvant chemotherapy. However, they have severe side effects because the majority of
the medicines used have just a minor selectivity for malignant tissue. As a result, treating
tumor cells specifically without damaging healthy tissue is currently a primary goal in OS
therapy. The coupling of chemotherapeutic drugs with targeting ligands is a unique
therapy method for OS that, by active targeting, can overcome the aforementioned
hurdles. This review focuses on advances in ligands and chemotherapeutic agents
employed in targeted delivery to improve the capacity of active targeting and provide
some insight into future therapeutic research for OS.
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INTRODUCTION

Osteosarcoma (OS) is a relatively rare malignant mesenchymal origin bone cancer that 70%–80% of
OS patients are adolescents and young adults and is distinguished by the formation of immature
osteoid extracellular matrix (1). The disease has a 1–3 case per 1,000,000 population incidence and
accounts for 20% of all primary malignant bone tumors in the world (2). OS is most common in the
metaphysis of long, tubular bones like the proximal humerus, distal femur, and proximal tibia. It is
very rare in the spine, pelvis, and sacrum, but it can be found in the metaphysis of some other bones
(3). More than 85% of individuals with localized illness will develop a local or distant recurrence,
most commonly in the lungs (85-90%) (4). Clinically, the development of disease is marked
primarily by local discomfort and swelling, with occasional joint dysfunction (5) (Figure 1).
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Chemotherapy, followed by total surgical resection and then
post-operative adjuvant chemotherapy as well as radiotherapy, is
currently the standard treatment strategy for OS. Methotrexate
(MTX), doxorubicin (DOX), cisplatin (CDDP), ifosfamide
(IFO), and etoposide are commonly used chemotherapeutic
agents recommended by The National Comprehensive Cancer
Network guidelines, which increased the survival rate in patients
with localized resectable tumors by up to 60-70% (1); However,
most clinical applications of chemotherapeutics for patients with
advanced and metastatic OS have been limited due to a lack of
selectivity and sensitivity to tumor cells, toxicity towards normal
cells, multidrug resistance (MDR), poor pharmacokinetic
performance (6), and other factors that limit treatment efficacy
and result in severe adverse effects on vital organs (7). With these
combination therapy, the overall 5-year survival percentage for
individuals with primary metastatic or relapsed cancer is less
than 20% (8). Despite numerous clinical trials over the last three
decades, cure rates for those with OS have not considerably
improved, and survival for patients with metastatic or recurrent
disease remains bleak (9). In the meantime, there are many NCT
clinical trials in progress, pending follow-up (Table 1).

As a result, the development of some new anticancer medicines
with reduced toxicity and higher tumor-killing effectiveness is
desirable in order to increase patient survival and quality of life
(10). A potent treatment with rational delivery vehicle and a
surface ligand are often included in a ligand-based drug delivery
system (11). Drugs might be delivered to tumor sites by receptor-
mediated endocytosis once the individual ligands have contacted
the corresponding tissue in vivo, allowing for tailored distribution
of unique effector molecules while reducing adverse effects (12).
Ligands such as antibodies, aptamers, peptides (13), saccharide,
vitamin, bisphosphonates (BP) (14, 15), hyaluronic acid (HA) (16)
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and folate (17) have been reported to be used in the development
of OS targeted drug delivery systems that mediate delivery vehicle
and drug interactions with and internalization into OS cells with
high specificity and efficiency (7). Some of them have a strong
affinity for hydroxyapatite and can be employed as ligand in bone
(7). In terms of drug carrier, liposomes which Alec D. Bangham
developed in 1965, served as the first therapeutic nanoparticles to
receive FDA approval, are now the most widely used (18).
Liposomes have been extensively explored since they are capable
of holding both hydrophilic and lipophilic pharmaceuticals (19).
Mepact–liposomal mifamurtide which had been commercialized
by Takeda Pharmaceuticals in 2004, is indicated for the treatment
of high-grade, nonmetastasizing, resectable osteosarcoma
following complete surgical removal in children, adolescents,
and young adults (20). For further development in the similar
line of thought, liposomes combined with chitooligosaccharides
with a disulphide linker were developed by Yin et al. (21);
Similarly, a reduction-responsive liposome decorated with COS
and functionalised with oestrogen has been synthesised to
preferentially target MG63 cells (22); Haghiralsadat et al.
synthesised a thermo- and pH- sensitive liposome for
nanoformulation of DOX which could inhibit the proliferation
of MG63 cells and reduce cytotoxicity to healthy bone cells (23).
As above mentioned, the advantages of traditional anti-OS
chemotherapy are expected to be overcome by these drug
delivery systems. In this review, we will look at the different
types of ligands that can specifically bind to the matching
receptors in OS and cause receptor-mediated endocytosis.
Furthermore, the drug conjugates produced by chemically
conjugating drugs were explained using studies that were
available. This will spark new ideas for the development of more
effective therapeutic options.
A

B

FIGURE 1 | Osteogenesis and Osteosarcoma genesis. (A) Initiation of osteogenic differentiation from mesenchymal stem cells (MSCs). MSCs are multipotent bone
marrow cells that are capable of differentiating to bone (osteoblast/osteocyte), fat (adipocyte), and cartilage (chondrocyte) tissues. (B) Defects in osteogenesis lead to
osteosarcoma genesis. Genetic alterations probably interfere with the normal osteogenic process, resulting in incompletely differentiated osteoblasts or osteocytes in
bone. These defects disrupt the balance between proliferation and differentiation, and may cause a group of cells to display uncontrolled cell proliferation.
Osteosarcoma progenitors may arise from these cells and expand to form osteosarcoma. This figure was created with BioRender.com.
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MAIN CONTENT

Antibodies as Targeting Ligands
Antibody-drug conjugates (ADCs) are monoclonal antibodies
(mAbs) that have been chemically linked to cytotoxic
medications and are directed onto a cancer cell surface antigen,
delivering and releasing cytotoxic chemicals at the tumor site with
low systemic toxicity (24, 25). The FDA has currently approved a
number ofADCs for clinical use in cancer therapy (26). In addition,
the ADCs are well equipped for pharmacological agents in OS.

Microtubules are dynamic filamentous cytoskeletal proteins.
For decades, until the advent of targeted therapy, microtubules
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were the only alternative to DNA as a therapeutic target in cancer
(27). The most widely used pharmacological agents conjugated
to antibodies are DNA-targeting and tubulin-targeting
medicines, which cause DNA alkylation or double-strand break
and prevent tubulin depolymerization, respectively (28).

The cytotoxic component of the dimeric protein ricin, one of
the most potent and deadliest plant poisons generated from
Ricinus communis seeds, is A chain (RTA). RTA has been
investigated as a potential option for cancer treatment in the
form of immunotoxins, as well as an approach for in vivo
macrophage depletion (29). Gp72 is a cell surface antigen
discovered on the surface of tumors such as osteogenic
TABLE 1 | Ongoing NCT clinical trials of OS.

Clinical Trial
NCT No.

Phase Title No. of
patients

Status; Estimated
completion date

Cancer Type Sponsor

NCT01459484 II ABCB1/P-glycoprotein Expression as Biologic
Stratification Factor for Patients with non metastatic
Osteosarcoma (ISG/OS-2)

225 Active, not recruiting;
October 30, 2021

Non-metastatic extremity
high-grade osteosarcoma

Italian Sarcoma
Group

NCT03006848 II A Phase II Trial of Avelumab in Patients with Recurrent
or Progressive Osteosarcoma

19 Active, not recruiting;
January 31, 2023

Recurrent/Refractory
osteosarcoma

St. Jude
Children’s
Research
Hospital

NCT04154189 II A Study to Compare the Efficacy and Safety of
Ifosfamide and Etoposide with or Without Lenvatinib in
Children, Adolescents and Young Adults with Relapsed
and Refractory Osteosarcoma

72 Active, not recruiting;
December 31, 2022

Relapsed or Refractory
Osteosarcoma.

Eisai Inc.

NCT02484443 II Dinutuximab in Combination with Sargramostim in
Treating Patients with Recurrent Osteosarcoma

41 Active, not recruiting;
N.A.

Metastatic Malignant
Neoplasm in the Lung
Metastatic/Recurrent
Osteosarcoma

National Cancer
Institute (NCI)

NCT02470091 II Denosumab in Treating Patients with Recurrent or
Refractory Osteosarcoma

56 Active, not recruiting;
September 30, 2022

Metastatic/Recurrent/
Refractory Osteosarcoma
Stage IV/IVA/IVB
Osteosarcoma AJCC v7

Children’s
Oncology Group

NCT02432274 I/II Study of Lenvatinib in Children and Adolescents with
Refractory or Relapsed Solid Malignancies and Young
Adults with Osteosarcoma

117 Active, not recruiting;
March 31, 2022

Tumors
Solid Malignant Tumors
Osteosarcoma
Differentiated Thyroid
Cancer (DTC)

Eisai Limited

NCT02243605 II Cabozantinib S-malate in Treating Patients with
Relapsed Osteosarcoma or Ewing Sarcoma

90 Active, not recruiting;
N.A.

Metastatic/Recurrent/
Unresectable Ewing
Sarcoma
Recurrent/Metastatic/
Unresectable
Osteosarcoma
Stage III/Stage IV/Stage
IVA/Stage IVB
Osteosarcoma AJCC v7

National Cancer
Institute (NCI)

NCT04690231 N.A. Apatinib + Ifosfamide and Etoposide for Relapsed or
Refractory Osteosarcoma

79 Active, not recruiting;
June 1, 2021

Relapsed or Refractory
Osteosarcoma

Peking
University
People’s
Hospital

NCT00470223 III Combined Chemotherapy With or Without Zoledronic
Acid for Patients With Osteosarcoma (OS2006)

318 Active, not recruiting;
December 2025

Osteosarcoma UNICANCER

NCT01953900 I iC9-GD2-CAR-VZV-CTLs/Refractory or Metastatic GD2-
positive Sarcoma and Neuroblastoma (VEGAS)

26 Active, not recruiting;
October 31, 2034

Osteosarcoma
Neuroblastoma

Baylor College of
Medicine

NCT02357810 II Pazopanib Hydrochloride and Topotecan Hydrochloride
in Treating Patients With Metastatic Soft Tissue and
Bone Sarcomas

178 Active, not recruiting;
June 2022

Adult/Metastatic/Recurrent
Liposarcoma
Metastatic/Recurrent
Osteosarcoma
Recurrent
/Stage IV Adult Soft Tissue
Sarcoma

Northwestern
University
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sarcomas (30). The anti-gp72 mAb 79IT/36 conjugates with
MTX or RTA as therapeutic moieties demonstrate substantial
results in treating OS (30), and better results were obtained with
79IT/36-RTA. Mice treated with the 79IT/36-RTA immunotoxin
for five days, tumor growth was significantly suppressed
in vivo.MM

The transmembrane protein glycoprotein non-metastatic b
(gpNMB) plays a physiological role in bone differentiation and
remodeling. gpNMB was found to be abundant in OS samples,
implying that gpNMB could be a suitable target for antibody-
mediated drug delivery in OS (31). Glembatumumab vedotin is
an ADC that combines the anti-gpNMB mAb targeting
characteristics with the payload of the antimitotic microtube
inhibitor MMAE. The glembatumumab vedotin has shown
strong preclinical activity in in vitro and in vivo studies (32),
whereas in a phase II clinical trial, it shows limited efficacy in
relapsed and/or refractory OS (31).

CD184 (CXCR4) is a G-protein coupled receptor discovered
on the surface of metastatic tumor cells. In patients, CXCR4
expression is a poor predictor of survival and a high predictor of
tumor relapse (33). It could be efficiently absorbed when the
ligand binds. A recombinant anti-CD184 mAb coupled to
MMAE demonstrated significant toxicity in vitro on metastatic
OS cells derived from lung metastasis (34). Similarly, an anti-
CXCR4 IgG–auristatin ADC demonstrated superior activity
against metastatic SJSA-1-met-luc cells (OS lung metastasized
cells from mouse) (35). This ADC is capable of eradicating
tumors in mice receiving the immunoconjugate in a tumor
xenograft lung-seeding model.

The CD248 (endosialin/TEM1) receptor is a transmembrane
glycoprotein found on pericytes and fibroblasts during
embryogenesis. It has been associated to tumor angiogenesis and
inflammation, making it a molecular and therapeutic target for OS
(36, 37). Two anti-endosialin ADCswere investigated in preclinical
OS models (28). The anti-endosialin-MC-VC-PABC-MMAE was
investigated for antitumor effectiveness in two endosialin-positive
human cell lines and one sarcoma xenograft model. In vitro, a
completely human anti-CD248 mAb coupled to MMAE inhibited
the development of CD248 overexpressing OS cells (37).

TGF induces leucine-rich repeat containing 15 (LRRC15), a
member of the Leucine-Rich Repeat superfamily, on activated
fibroblasts (SMA+) and mesenchymal stem cells (MSC), which is
associated with cell adhesion, invasion, and immunological
responses. LRRC15 is a new cancer-associated fibroblast and
mesenchymal marker that is overexpressed in OS tissue samples
and is being investigated as a potential therapeutic target for
ADC-based sarcoma treatment (38, 39). Samrotamab vedotin
(ABBV-085) is an ADC made up of an anti-LRRC15 humanized
IgG1 antibody (Ab1) linked to the anti-mitotic medication
MMAE via a protease cleavable valine-citrulline (vc) linker. In
preclinical studies, samrotamab vedotin extended event-free life
in patient-derived xenograft (PDX) models (40), which may
target cancer cells over LRRC15-positive cancer-associated
fibroblasts due to the cell-permeable characteristics of MMAE.
However, data from this unique stromal-targeting ADC’s phase 1
clinical trial are mixed (38).
Frontiers in Oncology | www.frontiersin.org 4
CD13, also known as aminopeptidase-N (APN) and alanyl
aminopeptidase (ANPEP), is a metallopeptidase that was initially
discovered to be a myeloid-specific hematological marker (41). A
number of studies have found that CD13 plays a role in tumor
growth, metastasis, and angiogenesis. By conjugating anti-CD13
monoclonal antibody (mAb) TEA1/8 to the marine chemical
PM050489, a novel ADC, MI130110, was created. The MI130004
shown exceptional effectiveness in numerous murine xenograft
models for OS (42).

Endothelial growth factor (VEGF) antibody was chosen as the
targeted agent for the elevated production of VEGF antigen in
OS cells (43), which plays a significant role in tumor angiogenesis
processes. For the treatment of OS, an iron oxide nanoparticle
complex conjugated to VEGF antibody and the ligand cluster of
differentiation 80 (CD80) was developed (44). This combination
approach would be able to target not just the extensively
expressed VEGF antigen in OS cells, but also the increased
expression of the surface cell receptor cytotoxic T lymphocyte-
associated antigen-4 (CTLA4) (44).

The anti-CD11c mAb interacted with the CD11c receptor,
which is abundant in OS cell lines. The functionalized
nanoparticles of mesoporous silica nanoparticles (MSNPs)
loaded with DOX and coupled with the anti-CD 11c mAb may
considerably boost cellular absorption, resulting in an increased
toxic and antiproliferative potential (45).

A transmembrane glycoprotein from the immunoglobulin
family, activated leukocyte cell adhesion molecule (CD166/
ALCAM), can be employed as a cell surface receptor for
targeting OS. In SCID mouse xenograft models, the anticancer
efficacy of a mAb anti-CD166 conjugation to DOX-loaded
liposomal nanoparticles targeting CD166 in OS cell lines was
investigated in vivo. When compared to non-targeted medicines,
these antibody-targeted medications demonstrated an increase in
cytotoxicity for OS cells (7, 13).

The B7-H3 receptor was significantly overexpressed in OS
specimens, implying the possibility of targeting this receptor for
therapeutic purposes (46). ADCs targeting B7-H3 are also being
developed, such m276-PBD (47). This drug carries a PBD
payload containing a DNA-damaging agent and elicited full
responses in two of five OS PDX models (47). MGC018 is
another ADC targeting B7-H3 that has a DNA alkylating
payload (duocarmycin) that is now being tested in OS PDX
models (48). Preliminary data showed a controllable safety
profile and signs of action in four of the twenty OS patients
included. (Table 2 and Figure 2)

Aptamers as Targeting Ligands
Aptamers are single-stranded, synthetic DNA or RNA molecules
that may fold into unique three-dimensional conformations to
attach to specific target molecules with great affinity (51).
Through SELEX, a repetitive in vitro process of sequential
selection and amplification steps, aptamers could be selected
from DNA or RNA libraries and function like “chemical
antibodies”. They are excellent candidates for targeted delivery
of therapeutic agents due to their high selectivity and specificity,
low immunogenicity, ease of synthesis with low cost and high
March 2022 | Volume 12 | Article 843345
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TABLE 2 | Targeted delivery based on antibody as ligands.

Ligands Targets Therapeutic agents References

gp72 mAb gp72 MTX/RTA (30, 49)
gpNMB mAb gpPNMB MMAE (32)
anti-CD184 mAb CXCR4 MMAE/auristatin (35, 50)
anti-endosialin Ab CD248 MMAE (28, 37)
anti-LRRC15 humanized IgG1 kappa antibody Ab1 LRRC15 MMAE (38, 40)
anti-CD13 mAb CD13 PM050489 (42)
anti-VEGF mAb VEGF N/A (44)
anti-CD11c mAb CD11c DOX (45)
anti-CD166 mAb CD166 DOX (7, 13)
B7-H3 mAb CD276 PBD/duocarmycin (47, 48)
Frontiers in Oncology | www.frontiersin.org
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gpNMB, glycoprotein non-metastatic b; CD, cluster of differentiation; LRRC15, Leucine-rich repeat containing 15; VEGF, Vascular endothelial growth factor; MTX, Methotrexate; RTA, ricin
toxin A chain; MMAE, monomethyl auristatin E; DOX, Doxorubicin; PBD, pyrrolobenzodiazepine.
A

B

FIGURE 2 | Antibody-Drug Conjugate Mechanism of Action. A chemodrug is coupled to an antibody that specifically targets a certain OS antigen. Antibodies attach
themselves to the antigens on the surface of cancerous cells. The biochemical reaction between the antibody and the target protein (antigen) triggers a signal in the
OS cell, which then inhibits OS cell growth, or internalizes the antibody together with the linked chemo drug and eliminates the OS cell. This figure was created with
BioRender.com.
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reproducibility, relatively rapid tissue penetration with no
toxicity (52, 53); As a result, they are typically utilized in
conjunction with anticancer medications to target tumor cell
surfaces (7), which may result in more promising outcomes
when compared to aptamer-free competitors. Aptamer-drug
conjugates (ApDCs) are an efficient technique of reducing OS
growth in vitro and in vivo due to advances in technology (54).

Vascular Endothelial Development Factor A (VEGF A)
overexpression was linked to tumor growth and angiogenesis.
Our research has created an OS cell-targeted aptamer (LC09)
that binds to VEGFA-positive K7M2 OS cells but not to mice
normal hepatocytes (AML12) or peripheral blood mononuclear
cells (PBMCs). After in vivo delivery, this aptamer may reduce
non-specific liver and PBMC uptake. LC09-modified
lipopolymers that were loaded with CRISPR/Cas9 plasmids
containing VEGFA gRNA and Cas9 showed that they were
only found in OS and lung metastasis. This led to a decrease in
VEGFA expression and secretion, as well as a decrease in OS
malignancy and lung metastasis (55, 56).

CD133 is a transmembrane glycoprotein that is thought to be
a cancer stem cell (CSC) marker in OS and other cancers (57–
59). As a result, CD133 aptamers have been employed as targeted
ligands for OS CSC monitoring (60, 61). CD133-functionalized
polymeric nanoparticles loaded with salinomycin could precisely
and efficiently transport anticancer medicines to CD133 positive
OS CSCs, greatly inhibiting OS development by eliminating
CD133+ OS CSCs (62).

Due to the fact that amplification of the epidermal growth factor
receptor (EGFR) is a frequent genetic aberration in OS, EGFR
became a feasible target in the disease. EGFR aptamers were used to
create OS-targeted medication delivery vehicles. Yu et al. (63)
found that EGFR-SNPs, which are aptamer-conjugated polymer-
lipid hybrid NPs that are loaded with salinomycin, effectively
stopped the formation of tumorspheres and reduced the number
of CD133-positive OS CSCs. This led to an even stronger cytotoxic
Frontiers in Oncology | www.frontiersin.org 6
effect than with non-targeted SNPs and salinomycin. Chen et al.
(60) engineered salinomycin-entrapped lipid-polymer
nanoparticles (CESP) with CD133 and EGFR aptamers to
specifically target OS cells and CSCs. CESP demonstrated
superior cytotoxicity to single-targeted or untargeted
salinomycin-loaded nanoparticles in OS cells and CSCs. In OS-
bearing mice, in vivo administration of CESP inhibited tumor
growth more than other controls (Table 3 and Figure 3).

Peptides as Targeting Ligands
Peptides are short chains of amino acids linked by peptide bonds
that are typically thought to be harmless due to their low
immunogenicity and non-toxic metabolites (85). Peptides are
thought to be swiftly broken by proteolytic enzymes and
removed from the bloodstream by the liver and kidney.
Different ways to modification and stabilization can be used to
alter these pharmacodynamic features (86). Lipidation, which
involves the incorporation of fatty acids into the peptide, is one of
the most well-known principles in peptide stabilization. Fatty
acids attachment could induce a more extended circulation
period (87). As carrier molecules, peptide-drug conjugates
(PDCs) have various advantages. The straightforward synthesis
allows for reasonable optimization of side chains and backbone
structures, which might result in improved binding affinities and
direct influence of physicochemical attributes (88). Furthermore,
their low molecular weight allows for greater penetration into
solid tissues, leading in a more effective anti-tumor impact
(89, 90).

Conventional chemotherapeutic medicines linked with
peptides present greater pharmacokinetics and reduced
cytotoxic. Chemotherapeutic drugs utilized in PDCs are
divided into three types. The chemicals first bind to and
interact with cellular DNA or DNA-protein complexes. As a
result, transcription and DNA replication are disrupted, resulting
in the activation of apoptosis. The cytotoxicity of the second class
TABLE 3 | Targeted delivery based on aptamers, peptides, saccharide, vitamin or bisphosphonates as ligands.

Ligands Targets Therapeutic agents References

LC09 aptamer VEGFA plasmids encoding VEGFA gRNA and Cas9 (56)
CD133 aptamer CD133 salinomycin (60–62)
EGFR aptamer EGFR salinomycin (60, 63)
YSA peptide EphA2 DOX (64)
VIP peptide VPAC1R and VPAC2R DOX (65)
RGD peptide Integrins DOX (13, 66, 67)
iRGD peptide NRP-1 N/A (68, 69)
KRP RPS6KA2 DOX (70, 71)
HA CD44 DOX (16, 16, 72)
FA FRs MTX and/or DOX (73–76)
Alendronate / DOX or PTX (77–79)
Bisphosphonate prodrug / DOX (80)
Phospholipid / MDP (81)
Bisphosphonate / DOX (56, 82)
Pamidronate hydroxyapatite DOX (83)
Medronate / DOX (77, 82)
pamidronate / DOX (84)
March 2022 | Volume 12 | A
VEGFA, Vascular Endothelial Growth Factor A; EGFR, epidermal growth factor receptor; EphA2, ephrin type-A receptor 2; VIP; vasoactive intestinal peptide; RGD, Arg-Gly-Asp;
CD, cluster of differentiation, DOX; doxorubicin; iRGD, Internalizing Arg-Gly-Asp; NRP-1, av integrins and neuropilin-1; HA, Hyaluronic acid; FA, Folate or folic acid; FRs, folate receptors;
MTX, methotrexate; MDP, Methylene diphosphonate.
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of commonly used toxophores is conveyed through blocking
DNA biosynthesis. These antimetabolites include the folate
derivative MTX, which inhibits the dihydrofolate reductase
enzyme. Anti-mitotic drugs, which operate on microtubules,
comprise the third class of chemotherapeutics (91).

By loading the same medication DOX, several new peptide-
based targeted delivery systems were produced. The 12-amino
acid peptide YSA (YSAYPDSVPMMS) is an ephrin A1 mimic
and ligand for ephrin type-A receptor 2. (EphA2). Ephrins are a
large family of tyrosine kinase receptors with well-documented
roles in cancer proliferation and metastasis. They are emerging as
intriguing prospective targets for cancer therapeutic methods
(92, 93). Surface molecule EphA2a is extensively expressed in
both primary and metastatic OS cells (94). In comparison to
doxorubicin-free and non-targeted L-doxorubicin, DOX-loaded
liposomes modified with the YSA peptide may more effectively
target human Saos2 OS cells, hence increasing toxicity and
cellular absorption (64). When D-aspartic acid octapeptide
conjugate to micelles includes the medication DOX, it
effectively promotes DOX accumulation in OS while having
minimal side effects (65). The vasoactive intestinal peptide
(VIP) receptors (VPAC1R and VPAC2R) are significantly
expressed in Saos2. To treat OS cells, a new lipid analog
(lipopeptide) coupled with VIP was created. It was proposed
that the lipopeptide could be a good molecule for OS (65).

RGD, an integrin selectivity and affinity tripeptide, can be
employed as an effective cancer therapeutic ligands as it can
accomplish dual targeting for angiogenic endothelial cells and
various tumor cells via the receptors integrin v3 and v5,
respectively (95, 96). Integrins, which are abundantly expressed
in OS cell lines, connect the extracellular matrix to the
intracellular cytoskeleton to mediate cell adhesion, migration,
and proliferation (97). RGD peptides have the advantage of
having a low risk of immunological reactivity, being simple
Frontiers in Oncology | www.frontiersin.org 7
and affordable to synthesize, and having tight control over
ligand presentation (66), as well as active OS cell targeting
capacity (13, 67). A study by Fang et al. (13) found that RGD-
DOX polymeric micelles were more effective in eliminating
osteoblasts than nontargeted micelles, demonstrating their
ability to target and kill OS cells in vitro. Beyond RGD,
internalizing Arg-Gly-Asp peptide (iRGD) combines RGD’s
tumor-homing ability with C-end Rule’s tissue penetrating
characteristic, allowing for the targeting of extravascular tumor
parenchyma (68). The iRGD mechanism consists of three steps:
The RGD motif binds to v integrins on tumor endothelial cells,
and subsequently iRGD is proteolytically cleaved, gaining the
ability to bind to neurophilin-1 and so achieving tissue
penetration (68). Malignancies overexpressing v integrins and
neuropilin-1 that internalize RGD (iRGD) may have increased
vascular and tissue permeability (NRP-1). Increased expression
of v integrins and NRP-1 in OS may serve as a predictor for
therapeutic treatment optimization through the discovery of
these two genes (69).

It was found that when KRP-DOX was combined with
doxorubicin, it had multiple synergistic functions in vitro and
in vivo, including good biocompatibility and biodistribution,
selective accumulation of tumor tissues, and an ability to
remain in tumor tissues and be internalized by cancer cells in
the presence of KRP. KRP-DOX complex also evaded lysosomal
breakdown and exhibited cytotoxicity in OS cells (70). OS mice
were given KRP-DOX, which was shown to be more effective
than either saline or DOX alone in controlling RPS6KA2
expression (71) (Table 3 and Figure 3).

Saccharide as Targeting Ligands
Proteoglycans, such as glycoproteins, are typically found on the
outer surface of cancer cells, making saccharides or
polysaccharides ideal ligands for OS-targeted drug delivery (98).
FIGURE 3 | Targeted delivery systems of OS. Different delivery systems have ideal properties for chemodrugs transport and delivery. Targeting ligands may be
attached to the surface allowing an active targeting strategy and an increase in efficiency of the therapeutic payloads in OS therapy. After internalization, dissociation
occurs at a proper microenvironment due to different stimuli (enzyme, redox, etc.), drug payloads are released into the cytosol of cancer cells. This figure was
created with BioRender.com.
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Biodegradable and biocompatible linear polysaccharides,
such as hyaluronic acid (HA), are naturally biodegradable and
biocompatible linear polysaccharides composed of glucuronic
acid and N-acetyl d-glucosamine linked by alternating -1,4 and
-1,3 glycosidic connections (99–102). The cluster determinant 44
(CD44) HA receptor is substantially expressed on MG-63 cells
(103, 104), implying that HA could be a promising targeting
agent for drug delivery in OS treatment. Nanocarriers with HA-
CD44 interactions have recently been employed for tumor-
targeted medicine delivery due to the obvious leaky vasculature
of solid tumors (105, 106). Redox-sensitive, HA-functionalized
liposomal nanocarriers have been developed by Chi et al. (16) to
improve OS therapy. It was shown that HA-modified liposomes
were more able to penetrate OS MG63 cells than regular human
hepatocytes. Non-HA-coated nanoparticles, on the other hand,
showed a decrease in tumor formation and an increase in tumor
suppression. Dox administration in OS therapy can be improved
by using a CDDP-crosslinked HA nanogel (CDDPHANG) (72).
Redox-sensitive and CD44-targeted liposomes were developed in
another study (Chol-SS-mPEG/HA-L). Liposomes loaded with
DOX were coated with noncovalent HA, showing that the easily
manufactured Chol-SS-mPEG/HA-L was demonstrated to be an
efficient intracellular drug delivery system that may circulate for
long periods of time and release GSH-triggered cytoplasmic drug
(16). Beyond HA, recently a study demonstrated that
chitooligosaccharides modified liposome loaded with DOX
presented a good therapeutic effect in MG63 cell-bearing nude
mice (21) (Table 3 and Figure 3).

Vitamin as Targeting Ligands
Vitamins are a group of chemical molecules and nutrients that
are essential for the survival of all living cells. Rapid
multiplication of tumor cells, in particular, need an excess of
specific vitamins, such as folate and retinoic acid (RA), in order
to support their rapid development. On the tumor cell surface,
the receptors involved in vitamin absorption are consequently
increased when compared to normal cells. As a result, these
vitamin receptors are useful target substrates for tumor-targeted
medication delivery.

Coenzymes that assist the transfer of one-carbon units from
donor molecules into essential biosynthetic pathways such as
methionine, purine, and pyrimidine biosynthesis require folic
acid (FA), also known as water-soluble vitamin B9, vitamin M
and vitamin Bc (107, 108). Furthermore, it is involved in the
interconversion of serine and glycine, as well as histidine
catabolism (108). The principal method of cellular
internalization via high affinity folate receptors (FRs) is
receptor-mediated endocytosis. For ligand-based targeted
treatment, folate receptor-targeted drug delivery vehicles have
been revealed to transport anticancer medications into cells via
receptor-mediated endocytosis, making FA an ideal alternative
(109, 110). Through receptor-mediated endocytosis, high-affinity
folate receptors (FRs) are involved in the cellular uptake of these
nutrients (73). As a result, folate-functionalized nanocarriers were
employed in OS-targeted treatment (17, 74, 111). Through the
interaction of FA-FRs, these nanosystems may preferentially
aggregate in tumor masses and suppress tumor development.
Frontiers in Oncology | www.frontiersin.org 8
Nanocrystalline apatite substrates coupled with FA and MTX
were employed in the human SAOS-2 OS cell line (75). For OS
treatment, Ai et al. (112) produced FA surface modified-titanium
dioxide NPs (FA-TiNP) that displayed a superior anticancer
impact compared to TiNP.

Folate-targeted gold nanorods (GNRs) are being developed as
an OS treatment. To act as coating agents for GNRs, an
amphiphilic polysaccharide-based graft-copolymer (INU-LA-
PEG-FA) and an amino derivative of the, poly(N-2-
hydroxyethyl)-D,L-aspartamide functionalized with folic acid
(PHEA-EDA-FA) were produced. In tridimensional (3-D) OS
models, the role of folate-targeted GNRs is investigated (111).
Another study looked at the anticancer potential of curcumin
and C6 ceramide (C6) when both were enclosed in a bilayer of
liposomal nanoparticles. With C6-curcumin-FA liposomes, a
substantial reduction in tumor size was reported using
pegylated liposomes to enhance plasma half-life and tagging
with folate (FA) for targeted distribution in vivo (17). A hybrid
nanoporous microparticle (hNP) carrier based on calcium
carbonate and biopolymers derivatized with FA and carrying
DOX as a chemotherapeutic drug model was created and
evaluated on the human OS MG-63 cell line, which
demonstrated reduced cell viability (76) (Table 3 and Figure 3).

Bisphosphonates as Targeting Ligands
Hydroxyapatite is a mineral needed for bone formation. BP have
a high affinity for the hydroxyapatite matrix of bone because they
chelate with the divalent calcium ions (Ca2+) in it (15, 113, 114).
BP may be a promising targeted drug for treating bone cancer
since it accumulates in bone and helps to limit osteoclast
recruitment and adherence to the bone matrix, which
diminishes osteoclast half-life and directly suppresses its activity.

Multifunctional alendronate-drug conjugates delivery systems
are an emerging notion for successful OS targeted therapy.
Morton et al. (77) demonstrated that alendronate-coated
nanoparticles bind and internalize fast in human OS 143B cells.
Pull-(GGPNle—PTX) was created by covalently conjugating PTX
with pullulan and alendronate. This pullulan-alendronate-coated
medication delivery method significantly reduced breast cancer
growth, migration, and angiogenesis, as well as OS bone
metastases (78). Zhao et al. created a new PTX NP coated with
polydopamine and grafted with alendronate as a ligand for OS
targeted therapy. In vitro experiments demonstrated that targeting
NPs were more hazardous to K7M2 WT OS cells than non-
targeting NPs (79). In another study, alendronate (ALN) was
conjugated with hyaluronic acid and DSPEPEG2000COOH via a
bioreducible disulfide linker (SS) to produce an ALNHASSL
loaded with DOX. In vitro, ALNHASSLL/DOX shown increased
cytotoxicity to human OS MG-63 cells, as well as high and quick
cellular uptake; in vivo, ALNHASSLL/DOX demonstrated
excellent tumor growth suppression and prolonged survival time
for orthotopic OS nude mouse models. This work showed that
ALNHASSLL/DOX, which has bone-and CD44-dual-targeting
properties as well as redox sensitivity, could be a potential OS-
targeted treatment (14).

Several BP-conjugated polymeric nanocarriers were created
to carry chemotherapeutic medicines to OS, and their tumor-
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targeting and anticancer activities were tested in vivo. With the
exception of free DOX or nontargeted DOX nanocarriers, these
functionalized, DOX-loaded nanoparticles showed increased,
longer tumor accumulation and dramatically better anticancer
effectiveness (77, 82). Katrin et al. (80) created a DOX BP
prodrug to target bone metastases. In human plasma, the
prodrug exhibits rapid DOX release and appropriate stability
over many hours. For about the first time, researchers found that
using DOX-conjugated BP NPs reduced tumor growth 40%
more effectively than using free DOX in a xenograft mouse
model of human Saos-2 OS (82). It has been widely employed in
the detection of bone formation and remodeling diseases,
including bone cancers, using Methylene diphosphonate
(MDP), a significant radiopharmaceutical agent (115). Wu
et al. (81) created a phospholipid liposome coupled with MDP
for in vivo targeting of OS and single photon emission computed
tomography trace. By targeting OS, this method reduces toxicity
to normal tissue while increasing cancer uptake (116). Recently,
hydroxyapatite NPs functionalized with medronate (the smallest
BP) as a bone-targeting moiety in OS focused treatment have
been reported. In vitro studies revealed that JQ1-loaded
hydroxyapatite NPs effectively suppressed OS cell migration
and invasion while being less hazardous to primary fibroblasts
(15). Bone-targeted rather than OS targeted, BP may have the
capacity to suppress osteoclasts and bone homeostasis
throughout their extended stay in bone tissue (113, 117).

OS tumors are more likely to accumulate DOX-loaded NPs
when a combination of pamidronate and NP EPR is used to
target bone (83). Yin et al. (84) demonstrated the use of
pamidronate-functionalized nanoparticles to transport DOX to
the bone microenvironment for the targeted treatment of OS.
(Table 3 and Figure 3).
CONCLUSION

OS treatment is hindered by its unknown origin, high genetic
instability, large histological heterogeneity, lack of diagnostic
biomarkers, high local aggressiveness, and potential for rapid
spread. Certain negative effects, including tissue damage,
medication resistance, and rapid blood clearance are associated
with chemical treatments for OS. It is possible to improve the
capacity of medications to target cancer by using active targeting
strategies, such as ligand-mediated tumor targeting. An eligible
ligand is critical in this progression. We reviewed commonly
utilized ligands as well as other compounds in this review; these
conjugates are used as emerging tools for the treatment of OS.
Although significant advances in the creation of new
multifunctional ligand-chemical platforms may hold enormous
promise for the treatment of OS in the future, these conjugates
are not yet well-developed for usage in OS patients. The majority
of them are still in the cellular and animal experimental stages,
and there is a lengthy transition period before they can be used in
humans. However, due to improved therapeutic effects and
reduced side effects, as well as the growing use of next-
generation sequencing and emerging technologies such as
single-cell sequencing, which has resulted in the discovery of a
Frontiers in Oncology | www.frontiersin.org 9
large number of OS heterogeneity and novel targets, the active
targeting strategy of ligand-based chemicals is doomed to play an
important role in the treatment of OS.
FUTURE PERSPECTIVES

Beyond targeted ligand-chemodrug conjugates, surgery is a
significant component in the treatment of OS. OS resection is
tough due to the varied placement of tumors and its closeness with
adjacent tissues. It also carries a considerable risk of postoperative
complications. According toMa et al., to overcome the difficulty of
precise OS resection, computer-aided design was employed to
create patient-specific guidance templates for OS resection based
on CT scans and magnetic resonance imaging of human OS. The
guiding templates were then created using a 3D printing
technology. The OS surgery was directed by the guiding
templates, which occurred in more exact removal of the
tumorous bone and placement of the bone implants, less blood
loss, a shorter operation duration, and less radiation exposure
throughout the procedure. Patients recovered sufficiently enough
to achieve a mean Musculoskeletal Tumor Society score,
according to follow-up investigations (118). Bone grafts, which
can be autogenous (from the own body of patient), homogeneous
(from other individuals), or xenografts (from other species), are
currently used to replace bone after surgery. Because each of these
techniques has its own set of limitations, research has
concentrated on the use of synthetic grafts that are both safer
and more cost-effective (119). To be acceptable for bone
regeneration, synthetic osteo-regenerative scaffolds must be
biocompatible and have the requisite porosity, degradability,
compositional, and mechanical qualities (120). The above
conditions are achieved by 3D printing. 3D printed scaffolds can
be precisely designed to mimic bone tissue morphologically (120)
and provide control over scaffold pore shape and size (121), as well
as facilitate the incorporation of other functional agents within the
scaffold, making them an advantageous method for fabricating
implantable scaffolds for bone regeneration (120). According to
Jing et al., cisplatin/hydrogel-loaded 3D-printed titanium alloy
implants are safe and effective for treating OS-related bone defects
and should be explored for clinical application.

However, treating bone abnormalities caused by surgical
resection may not be enough. There is still a chance that some
tumor cells are left over, which could lead to OS recurrence. To
address this, Fu et al. 3D printed a bioceramic free carbon-
embedding larnite (larnite/C). The free carbon was added to aid
a photothermal effect when an NIR laser was used to excite it.
In vivo, the scaffold was able to kill human OS cells, slow tumor
growth in naked mice, and encourage new bone production.
In vitro, expression of rat bone mesenchymal stem cells may be
aided by the scaffolds (122). Scaffolds made of different carbon
sources, such as graphene oxide, may also have photothermal
conversion characteristics. Ma et al. created graphene oxide
(GO)-modified-tricalcium phosphate (GO-TCP) composite
scaffolds with photothermal properties. In vitro, photothermal
impacts caused considerable MG-63 OS cell death and reduced
tumor growth in mice. Furthermore, as compared to plain-TCP
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scaffolds, the GO-TCP scaffolds showed superior osteogenic
differentiation and new bone production (123).

Drug-loaded implants currently combine active pharmaceuticals
with a biocompatible carrier and slowly release the drug after being
implanted, allowing for local treatment (124). As a result, high drug
concentrations at the location of interest are achieved while
systemic drug exposure is reduced, avoiding undesired side effects
in OS treatment (125). In this circumstance, the high degree of
flexibility and controllability of 3D printing technique allows for the
creation of complex forms with individualized dosages with variable
release profiles, which improves local treatment. Fahimipour et al.
recently developed a 3D printed gelatin/alginate/-TCP scaffold. The
scaffold was subsequently coated with poly (D,L-lactic-co-glycolic
acid), which encapsulated VEGF for long-term release (126). Wang
et al. also created a unique technique based on 3D printed poly L-
lactic acid drug carriers that has the ability to realize the potential of
tailored local chemotherapy in the treatment of OS and could serve
as a universal platform for anti-OS therapy (124).

Among these emerging insights to facilitate OS therapies, it
should be noted that 3D printed scaffolds pose an opportunity
with high potential. They may be used to provide templates in
order to achieve precise OS resection, to enhance bone
regeneration, to target residual OS cells after surgical resection,
and to induce sustained release platforms for drugs (Figure 4).
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