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Expression of Staphylococcus aureus Virulence
Factors in Atopic Dermatitis

Si En Poh1, Winston L.C. Koh1, Shi Yu Derek Lim2, Etienne C.E. Wang2,3, Yik Weng Yew2,4,
John E.A. Common5, Hazel H. Oon2,5 and Hao Li1,6,5
Atopic dermatitis (AD) is a skin inflammatory disease in which the opportunistic pathogen Staphylococcus
aureus is prevalent and abundant. S. aureus harbors several secreted virulence factors that have well-studied
functions in infection models, but it is unclear whether these extracellular microbial factors are relevant in
the context of AD. To address this question, we designed a culture-independent method to detect and quantify
S. aureus virulence factors expressed at the skin sites. We utilized RNase-H‒dependent multiplex PCR for
preamplification of reverse-transcribed RNA extracted from tape strips of patients with AD sampled at skin sites
with differing severity and assessed the expression of a panel of S. aureus virulence factors using qPCR. We
observed an increase in viable S. aureus abundance on sites with increased severity of disease, and many
virulence factors were expressed at the AD skin sites. Surprisingly, we did not observe any significant upre-
gulation of the virulence factors at the lesional sites compared with those at the nonlesional control. Overall,
we utilized a robust assay to directly detect and quantify viable S. aureus and its associated virulence factors at
the site of AD skin lesions. This method can be extended to study the expression of skin microbial genes at the
sites of various dermatological conditions.
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INTRODUCTION
Atopic dermatitis (AD) is a chronic skin inflammatory disease
characterized by red, itchy, and dry skin (Luger et al., 2021;
Paller et al., 2019). AD is a highly prevalent skin disorder in
developed countries, affecting up to 60% of infants aged <1
year and up to 20% of adults (Cheok et al., 2018; Meylan
et al., 2017). The pathogenesis of AD is complex and
generally thought to have both underlying genetic and
environmental factors. The well-characterized genetic factors
include genes essential for skin barrier formation such as
FLG, tight junctions, and the balance between skin proteases
and protease inhibitors (Williams and Gallo, 2015). The
environmental factors are less understood, with many hy-
pothesizing an interplay of both the host microbiota and the
microbes in the environment that are important in priming
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the immune system at a young age and in the maintenance of
the epithelial barrier integrity (Paller et al., 2019).

Microbial analysis of the skin during AD has revealed clear
dysbiosis of the microbial community compared with that in
the healthy skin (Gong et al., 2006; Kong et al., 2012). In
particular, Staphylococcus aureus, an opportunistic Gram-
positive bacteria, largely dominates the bacterial commu-
nity at lesional sites of AD, leading to a dramatic decrease in
the microbial diversity (Leyden et al., 1974). The exact roles
of this bacteria in vivo are not completely understood
because its significance is highly context dependent—
ranging from skin colonization to overt sepsis (Koziel and
Potempa, 2013). Many studies using laboratory cultures and
mouse infection models have revealed that disease patho-
genesis is driven by several S. aureus virulence factors
(Amagai et al. 2002; Cho et al., 2001; Falugi et al. 2013;
Gonzalez et al. 2012; Jenkins et al. 2015; Kolar et al. 2013;
Williams et al. 2020, 2019). These virulence factors include
cell wall‒associated and ‒secreted proteins with roles in
tissue adhesion and extracellular tissue degradation, host
immune modulators, bacteria toxins, and other enzymes
responsible for bacterial metabolism (Lacey et al., 2016;
Tam and Torres, 2019). Although these S. aureus virulence
factors can be potentially involved in exacerbating AD, the
expression of most of these proteins has not been detected
on the skin sites of patients with AD. The limited number
of studies investigating S. aureus virulence factors expres-
sion have focused on wounds (Rozemeijer et al., 2015),
cutaneous abscesses (Date et al., 2014), and nasal colo-
nization (Chaves-Moreno et al., 2016). The main difficulty
when investigating the expression of microbial genes on
the skin is the low microbe bioburden (Kong et al., 2017),
compared with those of other sites where there is a dense
microbial community (i.e., the intestinal tract). Although a
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previous study in patients with AD detected several toxins
and superantigens with immune blotting (Moran et al.,
2019), this was limited to a small set of proteins in
which antibodies were readily available.

In this study, we developed a robust method to quantita-
tively assess the expression of multiple S. aureus virulence
factors. We used tape strips to directly sample control and
lesional skin sites of patients with AD, isolated the total RNA,
and utilized RNase-H‒dependent PCR (rhPCR) to preamplify
the cDNA before quantitative assessment of each transcript
using qPCR. Using this assay, we directly sampled a nonle-
sional skin site and two lesional skin sites of differing severity
on patients with AD using noninvasive tape stripping to
determine the expression of each virulence factor in situ. We
observed that although an increased relative abundance of
most virulence factors was detected at skin sites with higher
disease severity, the relative expressions of these genes were
largely unchanged compared with those of nonlesional sites
or were even downregulated at lesional sites with high
severity. Overall, we show that our technique enables robust
in situ detection of viable S. aureus and that many of the
S. aureus virulence factors are expressed on AD skin.

RESULTS
Assay development of RNase-H‒dependent
preamplification qPCR for S. aureus genes

We designed a targeted preamplification qPCR assay for 19
S. aureus genes representative of the five main categories of
virulence factors: adhesins (clfA and fnbpA), exoenzymes
comprising proteases (aur, eta, scpA, splA, sspB, and V8) and
other secreted enzymes (coa, geh, hysA, and sak), toxins and
superantigens (hla, psmA, and tsst-1), immune modulators
(cap8G, spa, and scin), and metabolic enzymes (isdA). Two
housekeeping genes gmk and gyrA were also included. The
typical skin microbial load is a mere 103‒104 bacteria/cm2

(Whitman et al., 1998), and for noninvasive sampling using
tape strips or swabs, this low amount of microbes does not
provide sufficient RNA for robust analysis of gene expression
for more than a few genes. To address this, we utilized a
multiplex preamplification step employing rhPCR to amplify
the cDNA after the first-strand synthesis of the mRNA. This is a
method that utilizes a blocked oligonucleotide incorporated
into the primer that is subsequently cleaved off by RNase-H
after specific binding of the primer to the target. This ensures
high fidelity hybridization of the primer and dramatically re-
duces the formation of primer dimers—a major side reaction
in multiplex PCR that interferes with qPCR signal (Dobosy
et al., 2011; Li et al., 2019). qPCR of this preamplified
cDNA gene library was subsequently used to assess the rela-
tive gene expression of each S. aureus virulence factor. Each of
the primer sequences was verified for their PCR efficiency
(Supplementary Table S1), and the specificity against the
common Staphylococcal skin commensal Staphylococcus
epidermidis was determined (Figure 1a). We optimized the
best rhPCR reaction mixture for the multiplex PCR to ensure
low bias in the preamplification of the cDNA (Figure 1b). We
next compared the blocked-cleavable primers (RNase-H‒
dependent primers), which are activated by RNase-H2, to
conventional primers. Using a known amount of luciferase
RNA (luc) spiked into total RNA extracted from healthy
JID Innovations (2022), Volume 2
subjects’ skin tape strips, we performed the preamplification
PCR followed by qPCR of luc (Figure 1c‒e). From melt curve
analysis, we found that RNase-H‒dependent primers signifi-
cantly reduce the formation of PCR side products (Figure 1d
and e), and this effect is especially obvious at low input
amounts (10 and 100 luc copies), which is highly relevant for
RNA isolated from skin tape strips or swabs. From the luc gene
titration, we further determined that the preamplification was
highly efficient for up to 100 gene copies (amplification
factor ¼ 1.87). Between 10 to 100 gene copies, luc can be
detected but not reliably quantified (Figure 1c).

S. aureus housekeeping gene expression as a measure of
viable bacteria population

To determine the expression of S. aureus virulence factors
expressed in situ during AD, we recruited 33 patients diag-
nosed with moderate-to-severe AD as determined by
SCORing Atopic Dermatitis (Table 1 and Supplementary
Table S2). These patients were sampled at the control (non-
lesional) site (if available), site(s) of low AD severity, and
another site(s) with high AD severity as assessed by the local
Eczema Area and Severity Index (EASI) score. Because EASI
score is assigned to score a body region (Hanifin et al., 2001)
and not a specific sampling site, the severity (low or high) of
each lesional site was assessed by the clinician. We first
determined the optimal number of tape strips for robust
S. aureus mRNA signal using the housekeeping guanylate
kinase gene gmk as a measure for bacterial abundance.
Although bacterial abundance is usually determined using
genomic DNA, we reasoned that mRNA abundance of a
housekeeping gene allows for quantification of the viable
S. aureus population. We observed that increasing the input
tape strips for skin microbiome sampling increases the rate of
gmk detection (Figure 2a). As expected, the gmk gene
abundance also increases with increasing input. Combining
four tapes provides the highest detection rate (100%), but this
reduces skin site specificity and is more tedious in the clinical
setting. To address this, we decided to proceed with the
combined materials from two tapes (detection rate ¼ 86%)
for further studies. Using extracted RNA combined from the
tape strips sampled at differing AD skin sites, we determined
that the gmk abundance was higher at both lesional sites than
at the control site and that high-severity sites have higher
expression of S. aureus gmk (Figure 2b). This suggests that
viable S. aureus increases with AD severity at specific sites.
We further observed that the gmk expression (as determined
by the CT) correlated well with the site-specific EASI score
(r ¼ ‒0.396, P ¼ 0.009) as well as with the objective
SCORing AD for the severe sites (r ¼ ‒0.762, P ¼ 0.0009)
(Figure 2c and d). Six patients with AD were resampled at the
same sites on their second visit, and we observed that
S. aureus gmk expression had reduced dramatically at all the
sites (including the control sites) (Figure 2e). This corresponds
to a reduction of EASI and SCORing AD at the second clinical
visit (Table 1 and Supplementary Table S3), indicating that
dermatitis has resolved significantly at these sites.

Detection and quantification of S. aureus virulent factors on
AD skin sites

We next determined the gene expression of the S. aureus
virulence factors at the sampled sites of each patient with AD.
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Figure 1. Optimization and validation of RNase-H‒‒dependent preamplification qPCR assay. (a) Specificity of qPCR primers used against SA and SE. (b) Three

different PCR mastermix were compared by first amplifying the reverse-transcribed RNA using the pooled primers, followed by qPCR of four SA genes.

Calculation of amplification bias is as described in Materials and Methods. (c) Amplification plot showing the titration of varying amounts of luc added to RNA

extracted from tape strips sampled from healthy individuals, which was subsequently reverse transcribed and preamplified using the pooled primers followed by

qPCR of luc. (d, e) The melt curve of qPCR with varying amounts of luciferase RNA (luc) added to RNA as in c. Preamplification was performed with either (d)

rhPrimers or (e) normal primers. All qPCR was done in technical duplicates or triplicates. a.u, arbitrary unit; rhPrimer, RNase-H‒dependent primer; SA,

Staphyloccous aureus; SE, Staphylococcus epidermidis.
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From our preliminary study, we found that samples with
undetectable gmk typically have undetectable signals for
the expression of the other virulence genes. As such, qPCR
of the virulence factor genes was only performed for sam-
ples where gmk is detected. This resulted in a total of 11
control, 16 low-severity, and 16 high-severity samples from
17 patients. From the luciferase gene titration curve, we
were further able to define a limit of quantification and
detection. Each gene is detectable if the melt curve from the
qPCR is specific to the amplicon, whereas the expression is
quantifiable only if the CT of the signal is <25 cycles. In a
pilot experiment, we observed that pmsA, tsst-1, and eta
were not detected in any of the 24 samples collected from
four patients, and these three genes were excluded from
qPCR for subsequent samples. We observed that the percent
detectable and quantifiable genes are the highest for the AD
high-severity sites (Table 2), which is unsurprising given the
higher S. aureus load as determined from gmk abundance
(Figure 2). However, the exoenzymes aur and hysA and
adhesin fnbpA were expressed at very low levels and were
only quantifiable in a few samples.
For the S. aureus virulence factor genes that are in the
quantifiable range, we observed that there is an increase in
overall relative abundance at the low- and high-severity sites
compared with that in the control sites (Figure 3a). This again
corresponds to the increase in S. aureus population at the
affected sites. scin and spa, two genes involved in immune
modulation, were the two most highly expressed virulent
factors at both the control and diseased sites (Figure 3a).
We next sought to determine whether any of the virulence
factors were differentially expressed during the disease.
Surprisingly, we did not observe any genes that were
significantly upregulated at the high-severity sites
compared with those in the low-severity or the control
sites. Instead, we observed that many genes, in particular,
the exoenzymes geh, splA, and V8 and the immune
modulator scin, were downregulated at the high-severity
site compared with those at the control site (Figure 3b
and c). Furthermore, the normalized expression of splA has
a negative correlation with disease severity (Figure 3d) as
determined by EASI (r ¼ ‒0.4659, P ¼ 0.0063). We per-
formed a separate analysis for patients with or without
www.jidinnovations.org 3
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Table 1. Patient Demographics and Clinical
Characteristics

Characteristics One Tape Two Tapes Four Tapes

Number recruited 11 17 5

Age (y), mean (SD) 35.4 (16.3) 30.0 (12.2) 27.2 (9.5)

Sex, n (%)

Female 2 3 1

Male 9 14 4

Ethnicity, n (%)

Chinese 10 13 5

Malay 1 3 0

Indian 0 1 0

Clinical severity disease

scores, mean (SD)

SCORAD visit 1 51.9 (14.1) 64.4 (14.4) 54.8 (6.9)

SCORAD visit 21 NA 51.9 (25.7) NA

EASI visit 1 13.8 (12.0) 24.4 (19.0) 16.0 (8.8)

EASI visit 21 NA 19.1 (17.3) NA

Abbreviations: EASI, Eczema Area and Severity Index; NA, not applicable;
SCORAD, SCORing Atopic Dermatitis.
1SCORAD and EASI for visit 2 were determined from 6 of the 17 patients
recruited at visit 1. Refer to Supplementary Table S3 for further details.
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steroid treatment and did not observe any clear differences
in both S. aureus abundance (as assessed by gmk expres-
sion) (Figure 4a and b) or virulence factor expression
(Figure 4c and d). However, this analysis is limited by the
low number of patients with no steroid treatment (n ¼ 2)
compared with the number of those receiving steroids (n ¼
12). In summary, although the abundance of each viru-
lence factor increases at the diseased (low- and high-
severity) sites, many of these S. aureus virulence factor
genes are unchanged or downregulated compared with
those of the control sites.
DISCUSSION
S. aureus is an opportunistic pathogen that has low skin
colonization in healthy skin but dramatically increases in
abundance at the affected skin sites of patients with AD.
Although this increase in S. aureus abundance has been
known for the last 40 years (Leyden et al., 1974), it is
unclear whether the virulence factors that have been
previously characterized using infection models are rele-
vant in the context of AD pathogenesis. Because the
expression of virulence factors is highly regulated (Gimza
et al., 2019), their expression on the skin sites should be
determined directly in situ without further microbial
culturing. In this paper, we have designed a robust assay
that enables the detection and quantification of a panel of
S. aureus virulence factors using RNA isolated from sam-
ples obtained in a noninvasive manner. This enabled us to
determine that the viable population of S. aureus increases
with disease severity and that many of the well-
characterized S. aureus virulence factors, although sur-
prisingly downregulated at the high-severity sites, were
indeed expressed at the diseased sites at a higher level
than at the control sites.
JID Innovations (2022), Volume 2
The advantage of using RNA to determine S. aureus
abundance is the ability to detect the viable population. We
determined that the viable S. aureus population increases at
the diseased site compared with that at the control sites on
patients with AD. One limitation of this study is that we were
unable to assess the S. aureus abundance and virulence factor
expression of healthy individuals. Only about one third of the
healthy population is colonized with S. aureus, and this is
typically in the nares (Parlet et al., 2019). Although a previous
study has shown that it is possible to directly profile the
metatranscriptome of samples isolated from the nare (Chaves-
Moreno et al., 2016), we reasoned that using the S. aureus
virulence factor expression profile of the stratified, non-
cornified nare surface is likely not a good control for skin
sites relevant to AD. The low abundance of S. aureus on
healthy skin sites does not allow for robust quantification
using our multiplex preamplification qPCR assay. By sam-
pling at the control and two lesional sites of varying
severity, we observed that the abundance of virulence
factors increased with disease severity. This confirms that
S. aureus virulence factors were indeed expressed on AD
skin sites and can potentially lead to exacerbation of the
disease, especially because the skin barrier is compromised
in AD. Secreted virulence factors such as proteases can
potentially reach the deeper cutaneous layers and result in
tissue destruction (Chua et al., 2022).

It was initially surprising that the expression of virulence
factors was unchanged or even downregulated at the severe
sites. Many of these genes involved in S. aureus virulence are
controlled by the quorum-sensing agr regulon and are upre-
gulated at high S. aureus density (Novick and Geisinger,
2008). Our data suggest that the S. aureus population on
even the control sites of many individuals is sufficiently dense
for agr-mediated upregulation of the virulence factors.
Furthermore, the expression of S. aureus virulence factors is
controlled by a myriad of regulatory genes (Jenul and
Horswill, 2019), which in combination may downregulate
virulence factor expression at high-severity sites owing to
reasons yet undetermined. One possible pathway is through
the transcription factor CODY, which is induced during
nutrient deprivation and is a negative regulator of the agr
regulon (Roux et al., 2014). In this manner, when a highly
dense population of S. aureus is established in the severe
lesional sites and has consumed the available resources in the
nutrient-limited skin environment, expression of many
secreted virulence factors controlled by agr decreases.
Further investigations into the expression of these global
transcription factors will be needed to confirm this.

In this study, we focused on detecting and quantifying the
expression of S. aureus virulence factors where antibodies are
not readily available because a previous study showed the
use of a dot blot approach to detect S. aureus superantigens
and exotoxins (Moran et al., 2019). We therefore did not
include delta toxins, a key S. aureus‒secreted toxin that was
shown to directly impact AD pathogenesis (Nakamura et al.,
2013). Furthermore, delta toxin was not detected at any of the
nonlesional or lesional sites in the Moran et al. (2019) study,
although this observation is limited by a small samples size of
five patients with AD.
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Another limitation of this study is the inclusion of patients
with topical and/or systemic corticosteroid treatment because
this can affect bacteria diversity (Kong et al., 2012). However,
we reasoned that because most patients with AD are under
corticosteroid treatment, this is reflective of the typical AD
skin environment. Although we did not observe any signifi-
cant difference in the virulence factor expression between
patients under corticosteroid treatment versus those without,
this analysis is limited by the small cohort number and will
require a follow-up study assessing the effect of corticosteroid
treatment on S. aureus virulence factor expression.

In conclusion, we utilized a robust assay to directly detect
and quantify viable S. aureus and its associated virulence
factors at the site of AD skin lesions. This method can be
further expanded to determine the expression of other skin
microbial genes at low input RNA amounts and used to study
other cutaneous conditions such as skin and soft tissue in-
fections to better understand the role of microbial genes in
driving these infections.
MATERIALS AND METHODS
Skin microbiome sampling of patients with AD

Skin tape strip sampling for patients with AD was approved by the

National Healthcare Group domain-specific ethics review board

(2018/01248), and all subjects provided written informed consent

before participation. Subjects were recruited during their routine

clinic appointment by the attending physician. A total of 27 male

and 6 female subjects aged >16 years were included in the study.

The overall disease severity of patients with AD was assessed using

SCORing Atopic Dermatitis, whereas site-specific severity was

assessed using EASI (local EASI). Patients on topical antibiotics for 1

week or systemic antibiotics for 2 weeks before sampling were

excluded from the study. Patients were included regardless of ther-

apy such as oral immunosuppressants and/or steroids, and no further

restrictions on the intake or application of these treatments were

given before sampling. All treatments for each patient are shown in

Supplementary Table S1. Patients were sampled at control (nonle-

sional) sites and low-severity and high-severity (lesional) sites with

D-SQUAME sampling discs (Clinical and Derm, Dallas, TX). For
www.jidinnovations.org 5
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Table 2. Percentage of Detected and Quantifiable
Staphylococcus aureus Genes from Subjects with AD

Gene

Percentage Detected Percentage Quantifiable

Control Low High Control Low High

gyrA 100 100 100 100 100 100

aur 63.64 100 93.75 0 6.25 31.25

scpA 72.73 100 100 45.46 50 62.5

spiA 63.64 93.75 93.75 54.55 87.5 81.25

sspB 72.73 93.75 100 45.46 56.25 75

V8 63.64 100 100 63.64 100 100

coa 63.64 81.25 87.5 27.27 40 40

geh 63.64 100 93.75 54.55 93.75 93.75

hysA 9.09 31.25 56.25 9.09 18.75 18.75

sak 54.55 93.75 93.75 45.46 68.75 75

cap8G 63.64 87.5 93.75 45.46 68.75 75

scin 81.82 100 100 72.73 100 100

spa 72.73 100 100 72.73 100 100

clfA 72.73 87.5 100 54.55 62.5 75

fnbpA 72.73 81.25 87.5 9.09 31.25 31.25

hla 72.73 100 100 54.55 93.75 87.5

isdA 81.82 100 100 72.73 100 100

Abbreviation: AD, atopic dermatitis.
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samplings where two or four tapes were combined for RNA

extraction, tapes sampled from an area of similar disease severity (by

EASI) were combined. Sampling was performed by pressing each

tape strip at a specific skin site a total of 50 times. Each tape was

stored at ‒80 �C separately in 2 ml bead-beating vials containing 0.5

mm Zirconia/Silica beads (Biospec Products, Bartlesville, OK). A

total of 1 ml TRIzol reagent (Thermo Fisher Scientific, Waltham, MA)

was added to each tape, and samples were frozen at ‒80 �C until

further processing. Tapes were combined at the RNA extraction step.

For patients with repeat visits, the exact same sites as the first visit

were sampled. RNAs from healthy subjects were obtained from a

previous study (Li et al., 2018).

RNA extraction

Tape strips in TRIzol were thawed and bead beaten twice on the

Mini-Beadbeater-16 (Biospec Products) for 1 minute at room

temperature, with samples cooled on ice between each bead-

beating cycle. Samples were spun down at 13,000 r.p.m. for 5

minutes, and the supernatant was transferred to fresh 2 ml tubes.

Total RNA extraction was performed with the Direct-zol RNA

Microprep Kit (Zymo Research, Irvine, CA) as per the manufac-

turer’s instructions, without on-column DNase treatment. Tapes of

the control sites were either not combined or combined at two

tapes or four tapes per column. The same was done for the

lesional sites. After elution of RNA, DNase treatment was done

with the TURBO DNA-free Kit (Invitrogen, Waltham, MA), as per

the manufacturer’s instructions.

Reverse transcription and targeted rhPCR preamplification

First-strand cDNA synthesis was performed with random hexamers

and SuperScript III Reverse Transcriptase (Thermo Fisher Scientific).

Luciferase control RNA (Promega, Madison, WI) was included in the

reverse transcription reaction at 104 copies per sample as an internal

control.

The cDNA was subsequently used for preamplification as per

SsoAdvanced PreAmp Supermix (Bio-Rad Laboratories, Hercules,
JID Innovations (2022), Volume 2
CA) instructions, with samples preamplified for 20 cycles. The GEN1

rhPCR primers were designed using PrimerBlast to contain se-

quences specific to S. aureus genes, and the 30 blocking groups were

designed according to the manufacturer’s instructions (Integrated

DNA Technologies, Coralville, IA). A total of 5 mM of pooled GEN1

rhPCR primer (Integrated DNA Technologies) mixture containing 44

primers were added to a final of 50 nM each. RNase H2 enzyme

(Integrated DNA Technologies) was included in the preamplification

mixture at 1 mU and a final concentration of 0.01% Triton X-100.

After preamplification, a PCR clean-up was done with Exonuclease I

(New England Biolabs, Ipswich, MA) as per the manufacturer’s in-

structions with some modifications. A total of 1.25 ml of exonuclease
I was added to 3 ml of exonuclease I digestion buffer and 0.75 ml of
nuclease-free water. This 5 ml reaction mixture was added to the

preamplified products, and incubation was carried out for 60 mi-

nutes at 37 �C, 15 minutes at 80 �C, and a final temperature holding

at 4 �C. All samples were then diluted 10-fold with nuclease-free

water before qPCR.

Assessing optimal PCR mastermix for preamplification

S. aureus SH1000 was cultured overnight, spun down, and the

pellet was treated with RNAprotect (Qiagen, Hilden, Germany).

TRIzol reagent was added, and the pellet was resuspended and

transferred to a bead-beating tube for lysis using the same proced-

ures as for the tape strips described earlier. Total RNA extraction was

performed with the Direct-zol RNA Miniprep Kit (Zymo Research),

and DNase treatment was done with the TURBO DNA-free Kit

(Invitrogen) as per the manufacturer’s instructions. After cDNA

synthesis, preamplification was performed using the iTaq DNA po-

lymerase (Bio-Rad Laboratories), SsoAdvanced PreAmp Supermix

(Bio-Rad Laboratories), or Platinum II Taq Hot-Start DNA polymer-

ase (Thermo Fisher Scientific) according to the manufacturer’s in-

structions for 20 cycles. qPCR was performed for gmk, gyrA, fnbpA,

and sspB. To determine the amplification bias, qPCR was performed

directly using the cDNA without further preamplification for the

same genes. The amplification bias is calculated by first subtracting

the CT value of the preamplified sample from that of the unamplified

sample and then subtracting the theoretical CT difference with ac-

counting for sample dilution.

Luciferase titration assay and optimization of
preamplification primer type

Serial dilutions of luciferase control RNA (Promega) were done

with nuclease-free water in DNA LoBind tubes (Eppendorf,

Hamburg, Germany). Luciferase RNA dilutions were spiked into

pooled skin microbiome RNA samples previously extracted from a

healthy subject study (Li et al., 2018). Luciferase RNA was added

to a final amount of 106, 105, 104, 103, 500, 102, 50, and 10

copies. The mixture was used for first-strand cDNA synthesis with

random hexamers and SuperScript III Reverse Transcriptase

(Thermo Fisher Scientific). cDNA samples were preamplified using

the SsoAdvanced PreAmp Supermix (Bio-Rad Laboratories) and

treated with exonuclease I as described earlier. qPCR was done

with primers against the luciferase gene (Integrated DNA Tech-

nologies). For comparison of preamplification with normal primers

versus the GEN1 rhPCR primers, cDNA samples were pre-

amplified using either a pool of 44 normal primers (Integrated

DNA Technologies) or GEN1 rhPCR primers (Integrated DNA

Technologies). qPCR was performed against the luciferase gene,

and the melt curve was obtained for comparison of amplified

products.
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Figure 3. Expression of Staphylococcus aureus virulent factors on skin sites of subjects with AD. (a) The abundance of each virulent factor transcript at control,

low-severity, or high-severity sites was assessed by the rhPCR preamplification, followed by qPCR. The expression of each gene was normalized to an internal

spike-in control luc. (b) Log10-normalized expression of each virulence factor relative to the housekeeping gene gmk. (c) Expression of geh, scin, splA, and V8

(normalized to gmk) for individual patients at control, low-severity, and high-severity sites. Samples from the same subject are connected by a line. (d) Spearman

correlation of log10 splA expression (normalized to gmk) with the average EASI score. The EASI score was averaged across the two sites where the samples were

collected. Error bars represent SD. Av., average; EASI, Eczema Area and Severity Index; HK, Housekeeping; rhPCR, RNase-H‒dependent PCR.
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Quantitative PCR

Quantitative PCR was performed with LUNA Universal qPCR mas-

termix (New England Biolabs) as per the manufacturer’s instructions

on the Applied Biosystem StepOne Plus Real-Time PCR System
(Thermo Fisher Scientific) for 45 cycles. S. aureus‒specific primers

(Integrated DNA Technologies) were used, designed using Primer-

Blast for S. aureus specificity. Two technical replicates were done for

each sample.
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