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Breast cancer is a disease that exhibits heterogeneity that goes from the genomic to

the clinical levels. This heterogeneity is thought to be captured (at least partially) by

the so-called breast cancer molecular subtypes. These molecular subtypes were initially

defined based on the unsupervised clustering of gene expression and its correlate with

histological, morphological, phenotypic and clinical features already known. Later, a

50-gene signature, PAM50, was defined in order to identify the biological subtype of

a given sample within the clinical setting. The PAM50 signature was obtained by the

use of unsupervised statistical methods, and therefore no limitation was set on the

biological relevance (or lack of) of the selected genes beyond its predictive capacity.

An open question that remains is what are the regulatory elements that drive the

various expression behaviors of this set of genes in the different molecular subtypes.

This question becomes more relevant as the measurement of more biological layers

of regulation becomes accessible. In this work, we analyzed the gene expression

regulation of the 50 genes in the PAM50 signature, in terms of (a) gene co-expression, (b)

transcription factors, (c) micro-RNAs, and (d) methylation. Using data from the Cancer

Genome Atlas (TCGA) for the Luminal A and B, Basal, and HER2-enriched molecular

subtypes as well as normal tumor adjacent tissue, we identified predictors for gene

expression through the use of an elastic net model. We compare and contrast the sets of

identified regulators for the gene signature in each molecular subtype, and systematically

compare them to current literature. We also identified a unique set of predictors for

the expression of genes in the PAM50 signature associated with each of the molecular

subtypes. Most selected predictors are exclusive for a PAM50 gene and predictors are

not shared across subtypes. There are only 13 coding transcripts and 2miRNAs selected

for the four subtypes. MiR-21 and miR-10b connect almost all the PAM50 genes in all

the subtypes and normal tissue, but do it in an exclusive manner, suggesting a cancer

switch from miR-10b coordination in normal tissue to miR-21. The PAM50 gene sets

of selected predictors that enrich for a function across subtypes, support that different

regulatory molecular mechanisms are taking place. With this study we aim to a wider

understanding of the regulatory mechanisms that differentiate the expression of the

PAM50 signature, which in turn could perhaps help understand the molecular basis of

the differences between the molecular subtypes.
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1. INTRODUCTION

Breast cancer is the most common cause of cancer death
among females (1). Breast tumors have been classified in
molecular subtypes with distinctive clinical characteristics and
a recognizable gene expression signature (2). Such signature
has been reduced to 50 genes that achieve the best separation
of subtypes, attaining the PAM50 classifier (3). However, the
physiological implications of the difference in gene expression,
if any, are not well-understood.

Given that gene expression is regulated by several
interconnected mechanisms (4–7), differences across subtypes
are expected for these mechanisms. Evidence of this was found
in the form of distinguishable patterns of DNA methylation,
mutation and miRNA expression that shape groups partially
equivalent to the molecular subtypes (8). These patterns imply a
link between the different omics and PAM50 gene expression, but
do not clarify which genomic, epigenetic or post transcriptional
changes drive the expression signature of such molecular
subtypes. To advance in the identification of such drivers of
molecular subtypes expression, we propose the use of a sparse
model of PAM50 gene expression.

Sparse models achieve the selection of the best predictors
of an independent variable by fitting penalized linear models.
The penalization of the regression coefficients aim is to shrink
them toward zero in such a way that predictors contributing
lowly to prediction i.e., poorly associated with the independent
variable, end up with null coefficient values and get filtered out
of the model (9). Ridge Regression, Least Absolute Shrinkage
and Selection Operator, and Elastic Network methods apply
different penalizations. The elastic network approach selects
groups of pairwise correlated variables instead of choosing a
single predictor from the group (10, 11), augmenting the space
of predictors of interest but also incrementing false positive
rates (12).

Sparse models have been proposed for multi-omic sample
classification (13, 14) and biomarker identification (15–17);
but their capacity to simplify multi-omics co-interpretation has
only been tested in the evaluation of the extent of different
omics effects over a phenotype (18, 19). Here, the predictor
selection capability of the elastic network approach is exploited
to identify the CpGs, coding transcripts, and miRNAs most
associated with the expression of the PAM50 genes in order to
outlinemolecular differences behind the gene expression patterns
characterizing breast cancer subtypes within a true multi-omic
framework. The hypothesis is that PAM50 gene expression
patterns are accompanied by distinctive regulatory elements,
reflecting the way gene expression is controlled in the different
breast cancer subtypes.

2. METHODS

2.1. Data Acquisition
Concurrent experimental samples of DNA methylation,
transcript and miRNA expression were downloaded from the
GDC (https://portal.gdc.cancer.gov/repository) at May 2019.
Only samples with Illumina Human Methylation 450, RNA-seq

and miRNA-seq measures were kept; filtering out samples
quantified with the Illumina Human Methylation 27 BeadChip,
which covers a smaller portion of the genome than the one we
wanted to target. Subtype classification was also downloaded
from the GDC trough TCGABiolinks R package (20).

After preprocessing them according to Aryee er al. (21),
Tarazona et al. (22), and Tam et al. (23), and biomaRt v95, values
of methylation for 384,575 probes and expression for 16,475
coding transcripts and 433 miRNA precursors were obtained for
45 unique samples of Her2, 395 LumA, 128 LumB, and 125 Basal
subtypes, plus 75 samples of non-tumor (normal adjacent) tissue.

2.2. Elastic Network Implementation
The three different data types were concatenated and normalized
to have mean = 0 and standard deviation = 1. Eighty percent
of the samples for each subtype were used for training,
leaving the rest for testing as in Liu et al. (13). Using the
R package glmnet (24), elastic network models were fitted
per subtype for each gene in the PAM50 classifier with
the linked script https://github.com/CSB-IG/PAM50multiomics/
blob/master/enetGLMNET.R. The mixing parameter was held
fixed at 0.5 because such value has shown a good performance
(10), but shrinkage parameter (λ) was optimized between values
from 0.001 and 1,000 through repeated cross-validation.

Cross-validation was repeated 100 times with k = 3-folds for
the subtypes with <100 training samples (Her2+ subtype and
normal tissue) and k = 5 for the more represented subtypes
(Luminal A, Luminal B, and Basal). Chosen λ parameters were
used to predict testing data and root mean squared error (RMSE)
was calculated per model. Fitting was repeated with the same
specifications, for only 40 samples per subtype to verify the effect
of data set size.

2.3. Omics Comparison
For each PAM50 gene model, RMSE was calculated for the
testing data either with (1) the complete set of selected predictors,
(2) only with selected CpGs, (3) just with selected coding
transcripts, or (4) solely with selected miRNAs. Omic’s specific
RMSE were evaluated by zeroing all coefficients not associated
to the omic of interest in the already fitted models with
the linked script https://github.com/CSB-IG/PAM50multiomics/
blob/master/RMSEperOmics.R, in an approach similar to the one
used by Setty et al. (25) to search for key regulators. Obtained
values shape RMSE distributions per omic which were compared
via Kolmorogov–Smirnov test. This was done both per subtype
per omic and mixing all the subtypes in a distribution per omic.
P-values obtained were corrected for multiple testing with the
FDR method.

2.4. Test vs. Reported Links Between
Predictors and PAM50 Genes
Enrichment for previously reported regulatory links between
PAM50 genes and CpGs, TFs, and miRNAs were tested by
simple Fisher’s Exact Test. Tests repeated by subtypes had
p-values adjusted by FDR. Regulatory targets were taken
from Illumina’s annotation in the case of CpGs and from
databases accessible through R packages in the case of TFs
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FIGURE 1 | Schematic depiction of this work. By analyzing multiomic data from the TCGA/Genome Data Commons collaboration for the different breast cancer

molecular subtypes and healthy adjacent breast tissue via a generalized elastic network modeling, we have been able to derive some insight on the way the PAM50

genes are regulated (as predicted by the model). Results may shine some new light on the way PAM50 genes are able to capture intrinsic features of these phenotypes.

and miRNAs, with the linked script https://github.com/CSB-IG/
PAM50multiomics/blob/master/validateInteractions.R. tftargets
https://github.com/slowkow/tftargets is the package used to

retrieve TF targets. It queries both predicted and validated
data from TRED(2007), ITFP(2008), ENCODE(2012), and
TRRUST(2015) databases at the date specified in parentheses
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next to each resource, plus the lists curated by Neph et al. (26) and
Marbach et al. (27).

The package used to retrieve miRNA targets is multiMiR
v2.2 (28), it queries DIANA-microT-CDS, ElMMo, MicroCosm,
miRanda, miRDB, PicTar, PITA, TargetScan, miRecords,
miRTarBase, and TarBase, also reporting both experimentally
validated and predicted results. Universe size for enrichment
tests were taken from these databases, constrained to regulators
measured in the input datasets. The hypothesis is that models
selected reported associations between a PAM50 gene and a
regulator measured in the input dataset more than expected.

2.5. Analysis of the Selected Predictors
Selected predictors and associated coefficient values were loaded
to Cytoscape to construct a network of PAM50 gene predictors
per subtype. PAM50 genes are taken as targets while predictors
are sources, this makes a directed network were out and
indegree are estimated. Predictors with the largest outdegree
were submitted to an analysis of differential expression and
their coefficient value distributions were compared to the
global miRNA distribution via Kolmorogov–Smirnov tests. The
differential analysis of miRNA expression was done per subtype
by limma’s package treat function in order to control for both
fold change and significance (29). A minimum fold change of 1.1
was used.

2.6. Gene Enrichment Analysis
Every set of predictors selected for a PAM50 gene was
submitted to functional enrichment analysis with the R
package HTSanalyzeR v2.13.1 (30) versus the GO-BP with
the linked script https://github.com/CSB-IG/PAM50multiomics/
blob/master/enrichment.R. Sets enriched across subtypes were
further tested via Fisher’s Exact Test with the alternative
hypothesis that selection in one subtype is exclusive with regards
to selection another subtype.

The code to perform all previous analyses (see Figure 1) can
be found at the following GitHub repository: https://github.com/
CSB-IG/PAM50multiomics

3. RESULTS

Elastic network models were fitted per gene, regressing
PAM50 gene expression to DNA methylation, miRNA and
coding transcript expression. Elastic networks model shrink
the regression coefficients toward 0, filtering predictors by its
strength of association with the variable of interest. This ability
for feature selection was exploited versus unfiltered omic data to
identify the CpGs, coding transcripts and miRNAs most related
to the PAM50 genes in cancer subtypes and normal tissue.

We fitted five models for each PAM50 gene, one per subtype
and one for the normal tissue, since differences are expected for
each of the 5 phenotypes. Descriptors of models per subtype and
omic are reported in Table 1.

The output of the model are lists of associations between
PAM50 genes and the selected predictors. Each selected predictor
has a coefficient of regression whose value reflects the extent of
association with the PAM50 gene. Coefficients are never zero,

TABLE 1 | Size of input and output of the models per subtype: Basal, Her2+,

Luminal A, Luminal B as well as normal (i.e. tumor-adjacent healthy tissue).

Basal Her2+ LumA LumB Normal

Samples 125 45 395 128 75

Selected CpGs 3,090 2,514 7,173 1,485 5,373

Known CpGs selected 9 0 21 12 0

Selected coding transcripts 1,525 591 3,115 888 2,340

Selected TFs 207 91 465 133 327

Selected TFs predicted by

another software

15 2 49 11 19

Selected TFs experimentally

observed

4 3 25 7 9

miRNAs 101 85 174 116 123

Selected miRNAs predicted

by another software

7 3 7 2 4

Selected miRNAs

experimentally observed

8 5 8 12 5

since this value means predictors can be filtered out of the
prediction; but can be both negative and positive indicating an
opposite effect over the predicted value. Lists of associations
shape networks like the one represented in Figure 2. Networks
for the other subtypes and the normal tissue can be found at
Figures S1–S4.

From observation of networks of selected predictors to
PAM50 genes, it is evident that CpGs are the most selected
predictors, followed by transcripts and with only a few miRNAs
selected. It can also be seen that most predictors are exclusive
of a PAM50 gene but all the PAM50 genes share predictors
whose pattern of expression or methylation links one gene to
another. This suggests the complete set of PAM50 expression
is coordinated, independently of the gene being of luminal
expression, basal, or any other signature.

3.1. Omics Contribute Differently to PAM50
Gene Expression Prediction in Normal
Tissue and Cancer
In order to test the reliability of the fitted models, we checked
the prediction error and the selection of previously reported
associations. Regulation through DNA methylation, miRNA, or
TF targeting is hence regarded as true positive and compared to
model’s results.

The proportion of selected predictors can not be explained
solely by the size of the omics taken as input (χ2, p-value <

2.2e-16, Figure 3), specifically, coding transcripts and miRNAs
are overrepresented in the models (Fisher’s Exact Test, p-value
< 2.2e-16). Concordantly, there are more true TF (Fisher’s
Exact Test, p-value ≤ 1.942846e-05) and miRNA (Fisher’s Exact
Test, p-value ≤ 7.573200e-11) relations than expected but
less CpGs (Fisher’s Exact Test, p-value ≤ 4.311267e-03). The
exception is LumB subtype which has as many true positive CpGs
as expected.

Given the difference between input and selected proportion
of omics, we hypothesized a discrepant prediction power of
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FIGURE 2 | Predictors selected per PAM50 gene for Basal subtype. (A) Topology of selected predictors and associated PAM50 genes. Brown circles are PAM50

genes. Transcripts are colored in dark green, miRNAs in blue, and CpGs in light green. Edges link each PAM50 gene with its selected predictors. The color of the line

indicates the sign of the coefficient value associated with the predictor; negative values are in brown and positive ones in green. Zoom of the gray area shows the

predictors selected for MYBL2. (B) Summary of the network. Barplot with the total representation of each omic plus heatmap of the count of predictors shared by

PAM50 genes.

FIGURE 3 | Omics differ on selection and RMSE. (A) The proportion of each omic is shown for input and selected sets. The different omics are represented by a

different color. (B) Distribution of testing RMSE per subtypes are displayed for single and multi-omics.

CpGs, coding transcripts, and miRNAs. To test this, we evaluated
models carrying the complete set of selected predictors or just the
predictors from each omic.

As RMSE is a standard measure to compare regression models
that measures how far is the model prediction from the observed
data in response variable units, then, the lower its value the better.
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Normally, the error decreases the more independent predictors
are included in the model, so we choose not to fit again with
the selected predictor per omic, but to test the exact same model
with the jointly fitted coefficient values, just zeroing predictor’s
coefficients from other than the omic of interest. This way, the
RMSE distribution of a model containing only predictors of
a given omic, represents how much of the total prediction is
contributed by the predictors from that omic.

As suggested by the difference with the input proportions,
DNA methylation is the less predictive omic for all the subtypes,
thought this difference is not always significant (CpGs vs. coding
transcripts ks. test p-value ≤ 0.03192 for LumB, Her2+, and
Basal and CpGs vs. miRNAs ks. test p-value≤ 0.02222 for Her2+
and Basal). This disagrees with the great prediction improvement
reported by Huang et al. (16) for methylation data, a fact that
could be driven by the much larger and heterogenous input
data used here, that we believe captures better the heterogeneity
of breast cancer subtypes. Meanwhile, coding transcript and
miRNAs contribute the same, with no significant difference
between their distributions for all the subtypes.

Remarkably, the error distribution obtained with the complete
set of predictors significantly outperforms CpGs and some
subtype miRNAs (ks.test p-value≤ 0.02222 for LumA and Basal)
but never outweighs coding transcripts. Single omics can not
beat multi-omics error due to the design of the test, thus the
outperforming of CpGs and miRNAs is unsurprising, what is
startling is the complete statistical agreement between multi-
omics prediction power and coding transcripts prediction power,
which supports gene expression as the current best biomarker
of molecular subtypes. We must note however that this may be
related to (1)more info on RNA and (2) PAM50was derived from
expression signatures.

Finally, there is no significant difference across subtypes
RMSE distributions for both single-omics and multi-omics, but
CpGs (ks.test p-value ≤ 0.01601952), miRNAs (ks.test p-value
≤ 0.002834981), and multi-omics (ks.test p-value ≤ 0.03919459)
distributions of normal tissue differ from the distribution of each
subtype, suggesting these omics represent a distinct amount of
PAM50 gene expression in normal tissue than in cancer, that is,
the association of DNAmethylation and miRNA expression with
PAM50 gene expression is altered in cancer.

3.2. The Association Strength Distributions
of Predictors Are Different for Each
Subtype
The difference between omics extends to coefficient values,
shown in Figure 4. Since coefficients represent the strength
of association between predictors and PAM50 expression (16),
coefficient values suggest that each omic has a specific association
with PAM50 gene expression. Coefficient value distributions are
significantly different between subtypes (ks.test p-value ≤ 2.82E-
02) and omics (ks.test p-value≤ 0.01535) with few exceptions for
coding transcripts andmiRNAs. Basal, Her2+, and LumB coding
transcripts coefficients are not significantly different. Neither are
miRNA coefficients of pairs LumA and normal tissue, LumB and
Basal subtype, and Basal and Her2.

According to these distributions, DNA methylation has a
strong but noisy association with PAM50 gene expression
while miRNA (Fisher test p-values ≤ 0.001403597) and coding
transcript (Fisher test p-values ≤ 1.086031e-29) association
tends to be positive (Figure S3) and more stable. The elevated
association between DNA methylation and PAM50 genes
expression explains why so many CpGs get selected in spite of
its low prediction power. A stronger association between DNA
methylation and gene expression than between gene and miRNA
expression had previously been found for ovarian cancer by Sohn
et al. (18) using a different penalization modeling.

3.3. miR-21 and miR-10b Are the Only
Relevant Predictors Selected Across
Subtypes
Next, we wanted to see how variable is actually the association
between one predictor and the predicted PAM50 gene, that is,
the specific coefficient values, not their distributions. For this,
we wanted to focus on the predictors selected for a PAM50
gene across subtypes, shown in Figure 5. However, as noted
before, models selected a great quantity of predictors exclusive
for each gene, 93.45% of the selected CpGs, 74.24% of the coding
transcript, and 81.37% the miRNAs are not shared between any
two genes. In consequence, there are no CpGs associated with any
gene for all the subtypes but there are 14 relations with coding
transcripts and 51 with miRNAs satisfying this.

The 13 coding transcripts selected across subtypes as
predictors of a specific PAM50 gene are trivial, since they
just portray physical linkage. ELP2 and SLC39A6 are coded
in opposite strands of the same locus while the rest of pairs
are contiguous. Most of the associations, 84.77%, connect a
PAM50 gene with a coding transcript in another chromosome,
but these are not repeatedly selected across subtypes. It is
worth mentioning that although all coefficients values are
positive, even close predictors, like YEATS4 and SLC35E3 carry
distinct coefficients.

Regarding miRNAs, there are only two miRNAs repeatedly
selected among subtypes,miR-10b andmiR-21. These are known
breast cancer markers targeting some PAM50 genes (31). Mir-
21 has been experimentally linked with BCL2, MYC, EGFR, and
ERBB2 expression (32–35) and predicted to target ESR1 and
FOXA1 (36, 37). On the other hand, miR-10b has been linked to
CDC6, EGFR, and SFRP1 (38, 39). There is no particular pattern
among validated associations or coefficients, other than miR-21
carrying mostly positive coefficient values and miR-10b selection
extending up to normal tissue (for the full set of validated
interactions please see Supplementary Table S1).

3.4. Micro-RNA miR-21 and miR-10b Are
Universal PAM50 Predictors in Cancer and
Health
Next we wanted to check the role of miR-21 and miR-10b per
subtype. With this in mind, we revisited the models derived
networks, that link PAM50 genes and predictors per subtype.

The networks show that genes overexpressed in each subtype
get larger models. About 30% of the luminal genes have models
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FIGURE 4 | Distribution of coefficient values per omic. The subtypes are represented by different colors. Plots at the (Left) column represent negative coefficients

whereas those at the (Right) column stand for positive coefficient values.

larger than average for LumA subtype, while almost 90% of
basal genes have the equivalent for Basal subtype. Her2+ subtype
and normal tissue have no clear pattern, but for LumB subtype,
half the luminal genes and 28% of the proliferative ones have
increased size models.

Predictors that bridge between PAM50 genes can proceed
from any omic, but CpGs are significantly underrepresented
(Fisher test p-values ≤ 1.81E-88). CpGs are at most, selected for
two subtypes as predictors of a specific PAM50 gene. There are
just 24 CpGs in this situation, of which 15 are shared between

Her2+ and another subtype or the normal tissue, including
nine CpGs associated with ERBB2 but placed in other loci than
chromosome 17.

Meanwhile, coding transcripts and miRNAs fulfill this role
more often (Fisher test p-values ≤ 5.84E-03) than solely input
proportions would explain. This is no surprise since both pertain
to the same level of molecular features, that of transcripts, as the
PAM50 gene expression signature; as such, coding transcript and
miRNA may be subject to the same biomolecular pressures. The
stunning observation is that one miRNA can link almost all of
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FIGURE 5 | miRNAs selected across the four cancer subtypes. miRNAs are represented by the color bar at the left. The highest positive coefficient value appears in

bright red, the lowest negative coefficient is in bright green. Near zero coefficients look black. The white cells in the column of normal tissue means the predictors was

not selected.

the PAM50 genes for all the cases (Figure 6). The outstanding
miRNAs are againmiR-21 andmiR-10b.

For normal tissue miR-10b was selected as predictor of all
PAM50 genes while miR-21 is linked to only four genes. On
the contrary, miR-21 is connected to most genes in the all the
breast cancer subtypes, whilemiR-10b is poorly linked. For LumA
subtype, shown in Figure 6B, both miR-10b and miR-10a are
highly connected, but still can not reach genes like FOXC1, which
is connected instead withmiR-21.

BothmiR-10a andmiR-10b are members of the miR-10 family
encoded within the Hox genes genomic clusters;miR-10a resides
upstream from HOXB4 and miR-10b upstream from HOXD4
(40). Due to their relatedness they will be referred asmiR-10a/b.

The hub-like behavior of these miRNAs agrees with previous

observations of our group of highly connected miRNAs per
subtype (41), which are important for network cohesion (42).

Although the coefficients networks maintain a large connected
component when removing miR-10a/b and miR-21, tens to

hundreds of predictors are needed to link all the PAM50 genes;
when only one of these miRNAs is required to achieve the same.

Given that eachmiRNA has the potential to target hundreds of
genes (43), miR-10a/b and miR-21 are not so exceptional in this
regard. However, as explained earlier, only a fraction of PAM50
genes have a regulatory relation with these miRNAs, suggesting
most of the detected associations are indirect. Indirectness is
consistent with the low values of the coefficients, which range
from −0.2938690 to 0.4333184, when miRNAs coefficient values
range within two orders of magnitude higher. Coefficient value
distributions of miR-10a/b and miR-21 are also significantly
different than the rest of miRNA coefficients (ks.test p-value
≤ 9.068e-05).

3.5. PAM50 Genes Enrich for Different
Functions per Subtype
The selection of predictors we have presented is based on
a statistical association with the pattern of expression of a
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FIGURE 6 | Predictors connecting most PAM50 genes transition from miR-10a/b in normal tissue to miR-21 in cancer subtypes. (A–E) PAM50 genes are at the sides,

colored according to their pattern of expression: green for basal expression, orange for Her2 enriched, blue for luminal expression, and pink for proliferation favorable.

Node size represents the number of predictors selected. Predictors are in the middle. Lines connect PAM50 genes to the associated predictors. Lines are in a gray

gradient to distinguish different predictors. (F) The bar chart represents the number of PAM50 genes connected to the miRNAs per subtype.

PAM50 gene. The covariation sustaining such an association may
respond to how a specific group of predictors is able to attain
some biological function. To test this, functional enrichment was
done with the set of selected predictors per gene per subtype,
versus Gene Ontology Biological Processes categories (GO-BP)
(Figure 7).

Only two PAM50 genes are enriched for some process in the
Basal subtype, FOXC1 (basal cluster) and ANLN(proliferative
cluster). Neither the ANLN enrichment for telomere protection
nor the FOXC1 linkage to transforming growth factor response
are within these genes immediate annotated processes. Though
FOXC1 is actually related with TGFβ since both are able to
regulate EMT (44).

In the case of Her2+, just ORC6 (proliferative cluster) is
enriched for the totally unexpected process of synapse assembly,
but, despite the significant p-value, we must notice that this is
based on only two genes.

LumA is the most enriched subtype. This is not surprising
since it has the largest number of selected coding transcripts,
which is the starting material for enrichment. The 20 enriched
genes are mostly linked to distinct cellular division aspects. The
exception are the three keratins, genes with basal expression,
which are connected through their normal processes, suggesting

selected predictors respond to the normal gene’s function. MYC
and UBE2T are linked to rather wide categories (45) while
MLPH associates with other than its normal processes. The
remaining 14 genes are connected through categories consistent
with their proliferative expression, which again alludes to a
selection that followed the normal function of the genes. This is
again consistent with the available evidence.

For LumB subtype,MELK and CCNB1 enrich for cell division
as would be normally expected; while MYBL2 is unintuitively
linked to negative regulation of epithelial cell proliferation, which
however, has been reported (46). Finally, the normal tissue shows
different cell division aspects coherent with the proliferative
expression of its enriched genes.

Altogether, few genes have predictors with significant
enrichment extended across subtypes. Eight genes enriched
in two subtypes, including CCNB1, MKI67, and UBE2C, that
connect with the same processes, the expected ones, for the two
subtypes. MELK also connects with its normal process for two
subtypes but in LumA and LumB subtypes plus normal tissue.
ANLN, CEP55, KRT17, MYBL2, and ORC6, enrich for different
processes across subtypes, that is, a fifth of the genes with any
kind of enrichment, but five of the nine genes enriched for more
than one subtype.
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FIGURE 7 | Functional enrichment of the predictors selected per PAM50 gene. Pink ellipses represent PAM50 genes while the gray ellipses represent biological

processes. Colored lines link genes with the processes they are significantly enriched to the corresponding subtype. Wider lines indicate a higher number of PAM50

gene predictors in the process.

To further test the functional enrichment per subtype, we
compared the sets of predictors selected per subtype for each one
of the 9 genes that enrich for several subtypes. Genes enriched for
cell division across subtypes,CCNB1,MKI67, andMELK connect
to the process via distinct sets of selected predictors. From the
beginning, these genes bear different predictors (Fisher’s Exact
Test H1: less, p-value ≤ 1.281e-09), with a small intersection
whose removal does not change the significant enrichment for
cell division. This reflects the robustness of the process, which is
so important that distinct subsets of the 603 genes annotated in
the category are enough to call it.

The other two genes enriched for the same process across
subtypes, UBE2C for mitotic cytokinesis and, MELK for
regulation of transcription involved in G1/S transition of mitotic

cell cycle, lost the functional enrichment when the predictors
selected in both LumA and normal tissue (the intersection) were
removed. This implies LumA mitotic cytokinesis and regulation
of transcription may be involved in G1/S transition of mitotic cell
cycle relying on the normal tissue mechanism.

The quantity of shared predictors between the sets selected for
CEP55, indicates that predictor selection in the LumA subtype
is exclusive for normal tissue selection (Fisher’s Exact Test H1:
less, p-value = 1.141e-10). This means that the differential
enrichment between LumA and normal tissue is sustained by
different predictors, suggesting CEP55 fulfills divergent roles in
these phenotypes. This matches differences observed between
cancer and normal tissue (47) but, to our knowledge, not reported
for LumA subtype.
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The same reasoning supports KRT17 and ORC6 divergent
roles across subtypes. It is odd that KRT17 is linked to
kinase signaling for normal tissue and not for a breast cancer
subtype, when this has been described for another cancer (48)
but this may be associated to tumor incidence over adjacent
tissue (49). For ANLN and MYBL2, selection exclusion between
subtypes is not significant, meaning that differential enrichment
of these genes could settle on the same predictors, suggesting
functional diversity.

4. DISCUSSION

Sparse penalized models have already proven useful to discover
molecular mechanisms, cluster samples, and predict outcomes
such as survival (50). Penalization permits the fitting of
models otherwise unattainable given the relatively small
sample sizes and huge number of variables measured by
the omics. Here, the elastic network approach was used
for integrated interpretation of different omics measuring
DNA methylation and expression of both coding transcripts
and miRNAs.

However, a large training set is always preferable, and not
all breast cancer subtypes have been extensively sampled, which
is reflected in the models. For Luminal A, the most frequent
and sampled subtype, the highest number of predictors were
selected by the models; while Her2+, with only 45 samples, got
the lowest number of selected predictors. To assure comparability
across subtypes we trained the models again, but now using
the same number of samples, 40 samples, for all the subtypes.
Patterns found with this subset persist in the analysis of the
whole set of data, supporting comparability (Figures S5–S8).
Nevertheless, the absence of predictors found for LumA in the
smaller subtype’s models due to a lack of representation can
not be ruled out. This could specifically affect the functional
enrichment of PAM50 neighborhoods of predictors and so, the
functional divergence between subtypes is not definitive but
should be experimentally tested.

Multi-omic modeling of PAM50 gene expression is no
better than the sole use of coding transcripts, supporting gene
expression as the best biomarker ofmolecular subtypes. However,
our point in using the sparse model was not to predict PAM50
but to identify the molecular differences associated with PAM50
signatures that may lead to functional differences.

At the global level, a reduced prediction power of DNA
methylation and miRNAs containing models was observed for
all subtypes vs. normal tissue, indicating that the influence of this
omics on PAM50 gene expression is reduced for cancer. Although
this may be born out of incomplete knowledge or incipient
technology, an alteration of these omics has been effectively
reported; specifically, a generalized hypomethylation has been
observed for breast and other cancers (51).

Different predictors were expected per cancer subtype, but
the exclusivity of predictors from all the omics was surprisingly
high. Only 13 coding transcripts and 2 miRNAs were selected
for the four subtypes. The lack of CpGs selected across subtypes
is consistent with the high strength of association it has with

PAM50 gene expression. If the pattern of expression is different
between subtypes, the highly associated CpGs should be different.

The ubiquitous selection of miR-10b and miR-21 across
subtypes suggests a central role for these miRNAs in
breast cancer, which is actually supported by the literature.
Proliferation, cell migration, and in vivo tumor growth of MCF7
and MDA-MB-231 cell lines implanted in nude mice is inhibited
through antagomiR-21 (52) demonstrating the relevance of this
miRNA, at least for luminal A and triple negative subtypes. In
turn, both sub and overexpression of miR-10 are oncogenic.
MiR-10b overexpression enhances cell migration and invasion
by targeting HOXD10; while subexpression of miR-10b-3p,
coded in the same miR-10b locus, participates in breast cancer
onset by upregulating the cell cycle regulators BUB1, PLK1, and
CCNA2 (53).

Coherent with the ubiquitous selection of miR-21 breast
cancer subtypes and its replacement by miR-10a/b in normal
tissue. MiR-21 is significantly overexpressed for all cancer
subtypes while miR-10b is underexpressed, as previous reports
say (31). Mir-10a is significantly underexpressed in Basal and
Her2+ subtypes and slightly overexpressed in luminal subtypes,
but this is not significant in LumB case. The proposal is
that when miR-10b coordinates PAM50 genes, normal tissue
expression is predicted; whenmiR-10b is sub expressed andmiR-
21 is overexpressed, this second miRNA gains miR-10b place,
coordinating cancer expression of the PAM50 genes. Since miR-
10b has a known role in metastasis (31), it would be interesting to
observe the dynamics of the networks throughout the evolution
of the disease.

Additionally, the small coefficients associated with these
miRNAs are consistent with indirect associations. Considering
all these pieces, the transition from hub miR-10a/b in normal
tissue to miR-21 in breast cancer through the luminal subtypes,
evokes a switch between twomaster regulators. Master regulators
are genes needed for the specification of a lineage by its capacity
to regulate downstream genes either directly or not, whose
missexpression can re-specify the fate of cells (54).

Nonetheless, sparse models can not select regulators naively,
they need to feed on known regulators (16, 25, 55). Then,
the regulatory capacity of selected predictor can not be stated,
leaving miR-10a/b and miR-21 just as universal predictors of
PAM50 genes.

Another limitation of the study is the absence of an estimator
of significance or accuracy intrinsic to the methodology (56).
Regressionmodels quality is described in terms of RMSE, without
an indication of how well the selected predictors describe PAM50
expression. A ROC curve is not feasible, since models would
have to be turned into the classification setting, and even this
is unreachable, because true negative regulators can not be
ascertained, as non regulators could simply be regulators yet
to discover.

Finally, it is important to mention that applying the same
shrinkage to inherently different molecular levels, like CpG
methylation and transcript expression, could shrink to zero
all the coefficients of subtler effect predictors (13). Thus, the
next implementation of sparse multiomic models on PAM50
expression should adopt multiple penalizations, which could
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even ameliorate the bias on subtype representation (57). Distinct
values for the mixing parameter should also be probed, as well as
data decomposition into latent variables (58).

Future Directions
Apart from exploration of alternative frameworks, the immediate
follow up should be the experimental assessment of the
observations described here. Specifically, silencing and
expression of miR-10a/b and miR-21 need to be tested for
each breast cancer subtype. Disection of interaction between the
miRNAs and the PAM50 genes is required too.

Then, more omics could be included in the models. Copy
number variation is the first candidate to be incorporated since
it is already available in the databases and has a proven effect
on Her2+ subtype, in particular regarding the effect of the Her2
amplicon since it has been associated to regulation of growth and
survival processes. But single nucleotide variation and chromatin
accessibility are also available for some samples.

Other phenotypes with discriminant patterns of expression
could benefit from sparse modeling. There could be significant
predictors linked to the glioblastoma subtypes as was observed
for breast cancer. Predictors represent potential regulators of
the mechanisms behind subtype heterogeneity and, as such, are
interesting markers of cancer. In this sense, predictor selection
across stages, not subtypes, could illuminate the driving forces
behind disease development. Alternative methods like A–JIVE
(59) and sPLS (60) would have also exciting outcomes in
this settings.

A relevant mid to long term future direction will be the
implementation of experimental assays to test for multi-omic
synergistic or cooperative phenomena, aiming at providing some
mechanistic clues of the biological functions behind. There is
however a strong challenge on this given the combinatorial
mixture of effects that may be complex to disentangle. Some
promissory (yet preliminary) advances are starting to arise.

5. CONCLUSION

Holistic studies of cancer are needed to dissect its complexity.
Initiatives like The Cancer Genome Atlas have delivered the
distinct molecular perspectives that need to be interpreted
as a whole. The elastic net models subject of this work,
approach such an integration in a rather simplistic linear
form. Yet, the methodology is powerful enough to prove the
intuition that PAM50 gene expression patterns are accompanied
by distinctive potentially regulatory elements. Predictors are
selected in an almost exclusive manner, heavily dictated by
the omic of origin, with CpGs strongly associated to PAM50
expression not selected across subtypes. The way miR-10a/b and
miR-21, the only relevant predictors selected for all subtypes,

are connected and differentially expressed, suggest an specific
regulatory difference between breast cancer and normal tissue
that merits further research.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the Genome
Data Commons site https://bit.ly/2Itoi2e. The code to perform
all previous analyses can be found at the following GitHub
repository: https://github.com/CSB-IG/PAM50multiomics.

AUTHOR CONTRIBUTIONS

SO organized the database, performed the statistical analysis, and
wrote the first draft of themanuscript. GA-J contributed to design
of the study, generated programming code, and contributed
to the writing of the manuscript. EH-L conceived the study,
contributed to design of the study, provided funding, discussed
findings, and reviewed the writing of the manuscript. All authors
contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

This work was supported by the Consejo Nacional de Ciencia
y Tecnología [SEP-CONACYT-2016-285544 and FRONTERAS-
2017-2115], and the National Institute of Genomic Medicine,
México. Additional support has been granted by the Laboratorio
Nacional de Ciencias de la Complejidad, from the Universidad
Nacional Autónoma de México. EH-L is recipient of the 2016
Marcos Moshinsky Fellowship in the Physical Sciences.

ACKNOWLEDGMENTS

This paper constitutes a partial fulfilment of the Graduate
Program in Biomedical Sciences of the National Autonomous
University of México (UNAM) requirements of SO (María de
la Soledad Ochoa-Méndez). She acknowledges the scholarship
and support provided by the National Council of Science and
Technology (CONACyT) and UNAM. Figure 1 was generated
using Biorender (https://biorender.com/).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00845/full#supplementary-material

Figures S1–S4 depict the topology of the networks for the
non-basal subtypes that were not shown. Table S1 contains a list
of all validated interactions.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global

cancer statistics 2018: GLOBOCAN estimates of incidence and mortality

worldwide for 36 cancers in 185 countries. Cancer J Clin. (2018) 68:394–424.

doi: 10.3322/caac.21492

2. Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L,

et al. Clinical implications of the intrinsic molecular subtypes of

Frontiers in Oncology | www.frontiersin.org 12 May 2020 | Volume 10 | Article 845

https://bit.ly/2Itoi2e
https://github.com/CSB-IG/PAM50multiomics
https://biorender.com/
https://www.frontiersin.org/articles/10.3389/fonc.2020.00845/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ochoa et al. PAM50 Multiomic Regulation

breast cancer. Breast. (2015) 24:S26–35. doi: 10.1016/j.breast.2015.

07.008

3. Perou CM, Søørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA,

et al. Molecular portraits of human breast tumours. Nature. (2000) 406:747.

doi: 10.1038/35021093

4. Cheng C, Alexander R, Min R, Leng J, Yip KY, Rozowsky J, et al.

Understanding transcriptional regulation by integrative analysis of

transcription factor binding data. Genome Res. (2012) 22:1658–67.

doi: 10.1101/gr.136838.111

5. Vimalraj S, Miranda P, Ramyakrishna B, Selvamurugan N. Regulation

of breast cancer and bone metastasis by microRNAs. Dis Mark. (2013)

35:369–87. doi: 10.1155/2013/451248

6. Cao J, Luo Z, Cheng Q, Xu Q, Zhang Y, Wang F, et al. Three-

dimensional regulation of transcription. Protein Cell. (2015) 6:241–53.

doi: 10.1007/s13238-015-0135-7

7. Liu X, Chen X, Yu X, Tao Y, Bode AM,Dong Z, et al. Regulation of microRNAs

by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res.

(2013) 32:96. doi: 10.1186/1756-9966-32-96

8. Cancer Genome Atlas Network. Comprehensive molecular portraits of

human breast tumours. Nature. (2012) 490:61–70. doi: 10.1038/nature11412

9. James G, Witten D, Hastie T, Tibshirani R. An Introduction to

Statistical Learning. Vol. 112. New York, NY: Springer (2013).

doi: 10.1007/978-1-4614-7138-7

10. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R

Stat Soc Ser B. (2005) 67:301–20. doi: 10.1111/j.1467-9868.2005.00503.x

11. Neto EC, Bare JC, Margolin AA. Simulation studies as designed experiments:

the comparison of penalized regressionmodels in the “large p, small n” setting.

PLoS ONE. (2014) 9:e107957. doi: 10.1371/journal.pone.0107957

12. Kirpich A, Ainsworth EA, Wedow JM, Newman JR, Michailidis G, McIntyre

LM. Variable selection in omics data: a practical evaluation of small

sample sizes. PLoS ONE. (2018) 13:e0197910. doi: 10.1371/journal.pone.

0197910

13. Liu J, Liang G, Siegmund KD, Lewinger JP. Data integration by multi-

tuning parameter elastic net regression. BMC Bioinformatics. (2018) 19:369.

doi: 10.1186/s12859-018-2401-1

14. Tini G, Marchetti L, Priami C, Scott-Boyer MP. Multi-omics integration-a

comparison of unsupervised clustering methodologies. Brief Bioinformatics.

(2019) 20:1269–79. doi: 10.1093/bib/bbx167

15. Bravo-Merodio L, Williams JA, Gkoutos GV, Acharjee A. -Omics biomarker

identification pipeline for translational medicine. J Transl Med. (2019) 17:155.

doi: 10.1186/s12967-019-1912-5

16. Huang S, Xu W, Hu P, Lakowski TM. Integrative analysis reveals subtype-

specific regulatory determinants in triple negative breast cancer. Cancers.

(2019) 11:507. doi: 10.3390/cancers11040507

17. Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ,

et al. DIABLO: an integrative approach for identifying key molecular

drivers from multi-omic assays. Bioinformatics. (2019) 35:3055–62.

doi: 10.1093/bioinformatics/bty1054

18. Sohn KA, Kim D, Lim J, Kim JH. Relative impact of multi-layered genomic

data on gene expression phenotypes in serous ovarian tumors. BMC Syst Biol.

(2013) 7:S9. doi: 10.1186/1752-0509-7-S6-S9

19. Lock EF, Hoadley KA, Marron JS, Nobel AB. Joint and individual variation

explained (JIVE) for integrated analysis of multiple data types. Ann Appl Stat.

(2013) 7:523. doi: 10.1214/12-AOAS597

20. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.

TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA

data. Nucleic Acids Res. (2016) 44:e71. doi: 10.1093/nar/gkv1507

21. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen

KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the

analysis of Infinium DNA methylation microarrays. Bioinformatics. (2014)

30:1363–9. doi: 10.1093/bioinformatics/btu049

22. Tarazona S, Furió-Tarí- P, Turrà D, Pietro AD, Nueda MJ, Ferrer A, et al.

Data quality aware analysis of differential expression in RNA-seq with NOISeq

R/Bioc package. Nucleic Acids Res. (2015) 43:e140. doi: 10.1093/nar/gkv711

23. Tam S, Tsao MS, McPherson JD. Optimization of miRNA-

seq data preprocessing. Brief Bioinformatics. (2015) 16:950–63.

doi: 10.1093/bib/bbv019

24. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized

linear models via coordinate descent. J Stat Softw. (2010) 33:1–22.

doi: 10.18637/jss.v033.i01

25. Setty M, Helmy K, Khan AA, Silber J, Arvey A, Neezen F, et al.

Inferring transcriptional and microRNA-mediated regulatory programs in

glioblastoma.Mol Syst Biol. (2012) 8:605. doi: 10.1038/msb.2012.37

26. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein

E, Stamatoyannopoulos JA. Circuitry and dynamics of human

transcription factor regulatory networks. Cell. (2012) 150:1274–86.

doi: 10.1016/j.cell.2012.04.040

27. Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-

specific regulatory circuits reveal variable modular perturbations across

complex diseases. Nat Methods. (2016) 13:366–70. doi: 10.1038/nmeth.3799

28. Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, et al.

The multiMiR R package and database: integration of microRNA-target

interactions along with their disease and drug associations. Nucleic Acids Res.

(2014) 42:e133. doi: 10.1093/nar/gku631

29. McCarthy DJ, Smyth GK. Testing significance relative to a fold-

change threshold is a TREAT. Bioinformatics. (2009) 25:765–71.

doi: 10.1093/bioinformatics/btp053

30. Wang X, Terfve C, Rose JC, Markowetz F. HTSanalyzeR: an R/Bioconductor

package for integrated network analysis of high-throughput screens.

Bioinformatics. (2011) 27:879–80. doi: 10.1093/bioinformatics/btr028

31. O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer.

Breast Cancer Res. (2010) 12:201. doi: 10.1186/bcr2484

32. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth.

Oncogene. (2007) 26:2799–803. doi: 10.1038/sj.onc.1210083

33. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll

JS, et al. Estradiol-regulated microRNAs control estradiol response in breast

cancer cells. Nucleic Acids Res. (2009) 37:4850–61. doi: 10.1093/nar/gkp500

34. Barker A, Giles KM, Epis MR, Zhang PM, Kalinowski F, Leedman PJ.

Regulation of ErbB receptor signalling in cancer cells by microRNA. Curr

Opin Pharmacol. (2010) 10:655–61. doi: 10.1016/j.coph.2010.08.011

35. Huang TH, Wu F, Loeb GB, Hsu R, Heidersbach A, Brincat A, et al. Up-

regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol

Chem. (2009) 284:18515–24. doi: 10.1074/jbc.M109.006676

36. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. Inference of

miRNA targets using evolutionary conservation and pathway analysis. BMC

Bioinformatics. (2007) 8:69. doi: 10.1186/1471-2105-8-69

37. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL,

Dalamagas T, et al. DIANA-microT web server: elucidating microRNA

functions through target prediction. Nucleic Acids Res. (2009) 37:W273–6.

doi: 10.1093/nar/gkp292

38. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A

quantitative analysis of CLIP methods for identifying binding sites of RNA-

binding proteins. Nat Methods. (2011) 8:559–64. doi: 10.1038/nmeth.1608

39. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets

in Drosophila. Genome Biol. (2003) 5:R1. doi: 10.1186/gb-2003-5-1-r1

40. Lund AH. miR-10 in development and cancer. Cell Death Differ. (2010)

17:209–14. doi: 10.1038/cdd.2009.58

41. de Anda-Jáuregui G, Espinal-Enríquez J, Drago-García D, Hernández-Lemus

E. Nonredundant, highly connected microRNAs control functionality

in breast cancer networks. Int J Genomics. (2018) 2018:9585383.

doi: 10.1155/2018/9585383

42. Drago-García D, Espinal-Enríquez J, Hernández-Lemus E. Network analysis

of EMT and MET micro-RNA regulation in breast cancer. Sci Rep. (2017)

7:13534. doi: 10.1038/s41598-017-13903-1

43. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA

interactome by CLASH reveals frequent noncanonical binding. Cell. (2013)

153:654–65. doi: 10.1016/j.cell.2013.03.043

44. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating

breast tumor cells exhibit dynamic changes in epithelial and mesenchymal

composition. Science. (2013) 339:580–4. doi: 10.1126/science.1228522

45. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER

version 14: more genomes, a new PANTHER GO-slim and improvements

in enrichment analysis tools. Nucleic Acids Res. (2019) 47:D419–26.

doi: 10.1093/nar/gky1038

Frontiers in Oncology | www.frontiersin.org 13 May 2020 | Volume 10 | Article 845

https://doi.org/10.1016/j.breast.2015.07.008
https://doi.org/10.1038/35021093
https://doi.org/10.1101/gr.136838.111
https://doi.org/10.1155/2013/451248
https://doi.org/10.1007/s13238-015-0135-7
https://doi.org/10.1186/1756-9966-32-96
https://doi.org/10.1038/nature11412
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1371/journal.pone.0107957
https://doi.org/10.1371/journal.pone.0197910
https://doi.org/10.1186/s12859-018-2401-1
https://doi.org/10.1093/bib/bbx167
https://doi.org/10.1186/s12967-019-1912-5
https://doi.org/10.3390/cancers11040507
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.1186/1752-0509-7-S6-S9
https://doi.org/10.1214/12-AOAS597
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1093/nar/gkv711
https://doi.org/10.1093/bib/bbv019
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1038/msb.2012.37
https://doi.org/10.1016/j.cell.2012.04.040
https://doi.org/10.1038/nmeth.3799
https://doi.org/10.1093/nar/gku631
https://doi.org/10.1093/bioinformatics/btp053
https://doi.org/10.1093/bioinformatics/btr028
https://doi.org/10.1186/bcr2484
https://doi.org/10.1038/sj.onc.1210083
https://doi.org/10.1093/nar/gkp500
https://doi.org/10.1016/j.coph.2010.08.011
https://doi.org/10.1074/jbc.M109.006676
https://doi.org/10.1186/1471-2105-8-69
https://doi.org/10.1093/nar/gkp292
https://doi.org/10.1038/nmeth.1608
https://doi.org/10.1186/gb-2003-5-1-r1
https://doi.org/10.1038/cdd.2009.58
https://doi.org/10.1155/2018/9585383
https://doi.org/10.1038/s41598-017-13903-1
https://doi.org/10.1016/j.cell.2013.03.043
https://doi.org/10.1126/science.1228522
https://doi.org/10.1093/nar/gky1038
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ochoa et al. PAM50 Multiomic Regulation

46. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C,

et al. Potential role of mesenchymal stem cells (MSCs) in the breast

tumour microenvironment: stimulation of epithelial to mesenchymal

transition (EMT). Breast Cancer Res Treat. (2010) 124:317–26.

doi: 10.1007/s10549-010-0734-1

47. Jeffery J, Sinha D, Srihari S, Kalimutho M, Khanna KK. Beyond cytokinesis:

the emerging roles of CEP55 in tumorigenesis. Oncogene. (2016) 35:683–90.

doi: 10.1038/onc.2015.128

48. Sankar S, Tanner JM, Bell R, Chaturvedi A, Randall RL, Beckerle MC,

et al. A novel role for keratin 17 in coordinating oncogenic transformation

and cellular adhesion in Ewing sarcoma. Mol Cell Biol. (2013) 33:4448–60.

doi: 10.1128/MCB.00241-13

49. Aran D, Camarda R, Odegaard J, Paik H, Oskotsky B, Krings

G, et al. Comprehensive analysis of normal adjacent to tumor

transcriptomes. Nat Commun. (2017) 8:1077. doi: 10.1038/s41467-017-

01027-z

50. Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani

G, et al. Methods for the integration of multi-omics data: mathematical

aspects. BMCBioinformatics. (2016) 17(Suppl. 2):15. doi: 10.1186/s12859-015-

0857-9

51. Vidal Ocabo E, Sayols S, Moran S, Guillaumet-Adkins A, Schroeder MP,

Royo R, et al. A DNA methylation map of human cancer at single base-pair

resolution. Oncogene. (2017) 36:5648–57. (2017). doi: 10.1038/onc.2017.176

52. Wang SE, Lin RJ. MicroRNA and HER2-overexpressing cancer. MicroRNA.

(2013) 2:137–47. doi: 10.2174/22115366113029990011

53. Biagioni F, Bossel Ben-Moshe N, Fontemaggi G, Yarden Y, Domany

E, Blandino G. The locus of microRNA-10b: a critical target for

breast cancer insurgence and dissemination. Cell Cycle. (2013) 12:2371–5.

doi: 10.4161/cc.25380

54. Chan SSK, Kyba M. What is a master regulator? J Stem Cell Res Ther. (2013)

3:114. doi: 10.4172/2157-7633.1000e114

55. Li W, Zhang S, Liu CC, Zhou XJ. Identifying multi-layer gene regulatory

modules from multi-dimensional genomic data. Bioinformatics. (2012)

28:2458–66. doi: 10.1093/bioinformatics/bts476

56. Pineda S, Real FX, Kogevinas M, Carrato A, Chanock SJ, Malats N,

et al. Integration analysis of three omics data using penalized regression

methods: an application to bladder cancer. PLoS Genet. (2015) 11:e1005689.

doi: 10.1371/journal.pgen.1005689

57. Lee G, Bang L, Kim SY, Kim D, Sohn KA. Identifying subtype-specific

associations between gene expression and DNAmethylation profiles in breast

cancer. BMCMed Genomics. (2017) 10:28. doi: 10.1186/s12920-017-0268-z

58. Lê Cao KA, Martin PGP, Robert-Granié C, Besse P. Sparse canonical methods

for biological data integration: application to a cross-platform study. BMC

Bioinformatics. (2009) 10:34. doi: 10.1186/1471-2105-10-34

59. Feng Q, Jiang M, Hannig J, Marron J. Angle-based joint and

individual variation explained. J Multivar Anal. (2018) 166:241–65.

doi: 10.1016/j.jmva.2018.03.008

60. Rohart F, Gautier B, Singh A, Le Cao KA. mixOmics: An R package for-omics

feature selection and multiple data integration. PLoS Comput Biol. (2017)

13:e1005752. doi: 10.1371/journal.pcbi.1005752

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ochoa, de Anda-Jáuregui and Hernández-Lemus. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Oncology | www.frontiersin.org 14 May 2020 | Volume 10 | Article 845

https://doi.org/10.1007/s10549-010-0734-1
https://doi.org/10.1038/onc.2015.128
https://doi.org/10.1128/MCB.00241-13
https://doi.org/10.1038/s41467-017-01027-z
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1038/onc.2017.176
https://doi.org/10.2174/22115366113029990011
https://doi.org/10.4161/cc.25380
https://doi.org/10.4172/2157-7633.1000e114
https://doi.org/10.1093/bioinformatics/bts476
https://doi.org/10.1371/journal.pgen.1005689
https://doi.org/10.1186/s12920-017-0268-z
https://doi.org/10.1186/1471-2105-10-34
https://doi.org/10.1016/j.jmva.2018.03.008
https://doi.org/10.1371/journal.pcbi.1005752
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Multi-Omic Regulation of the PAM50 Gene Signature in Breast Cancer Molecular Subtypes
	1. Introduction
	2. Methods
	2.1. Data Acquisition
	2.2. Elastic Network Implementation
	2.3. Omics Comparison
	2.4. Test vs. Reported Links Between Predictors and PAM50 Genes
	2.5. Analysis of the Selected Predictors
	2.6. Gene Enrichment Analysis

	3. Results
	3.1. Omics Contribute Differently to PAM50 Gene Expression Prediction in Normal Tissue and Cancer
	3.2. The Association Strength Distributions of Predictors Are Different for Each Subtype
	3.3. miR-21 and miR-10b Are the Only Relevant Predictors Selected Across Subtypes
	3.4. Micro-RNA miR-21 and miR-10b Are Universal PAM50 Predictors in Cancer and Health
	3.5. PAM50 Genes Enrich for Different Functions per Subtype

	4. Discussion
	Future Directions

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


