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Abstract 
Context: Ovarian and adrenal steroidogenesis underlie endocrine-metabolic dysfunction in polycystic ovary syndrome (PCOS). Adipocytes 
express aldo-keto reductase 1C3 and type 1 11β-hydroxysteroid dehydrogenase, which modulate peripheral androgen and cortisol production.
Objectives: To compare serum adrenal steroids, including 11-oxygenated androgens (11-oxyandrogens), cortisol, and cortisone between 
normal-weight women with PCOS and body mass index- and age-matched ovulatory women with normal-androgenic profiles (controls), and 
assess whether adrenal steroids associate with abdominal adipose deposition.
Design: Prospective, cross-sectional, cohort study.
Setting: Academic medical center.
Patients: Twenty normal-weight women with PCOS and 20 body mass index-/age-matched controls.
Intervention(s): Blood sampling, IV glucose tolerance testing, and total-body dual-energy x-ray absorptiometry.
Main Outcome Measure(s): Clinical characteristics, hormonal concentrations, and body fat distribution.
Results: Women with PCOS had higher serum total/free testosterone (T) and androstenedione (A4) levels and a greater android/gynoid fat mass 
than controls (androgens P < .001; android/gynoid fat mass ratio, P = .026). Serum total/free T and A4 levels correlated positively with android/ 
gynoid fat mass ratio in all women combined (P < .025, all values). Serum 11ß-hydroxyA4, 11-ketoA4, 11ß-hydroxyT, 11-ketoT, cortisol, and 
cortisone levels were comparable between female types and unrelated to body fat distribution. Serum 11-oxyandrogens correlated negatively 
with % total body fat, but lost significance adjusting for cortisol. Serum cortisol levels, however, correlated inversely with android fat mass 
(P = .021), with a trend toward reduced serum cortisol to cortisone ratio in women with PCOS vs controls (P = .075), suggesting diminished 
11β-hydroxysteroid dehydrogenase activity.
Conclusion: Reduced cortisol may protect against preferential abdominal fat mass in normal-weight PCOS women with normal serum 11- 
oxyandrogens.
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Ovarian and adrenal steroidogenesis are interwoven into the 
endocrine-metabolic pathophysiology of polycystic ovary syn-
drome (PCOS) [1-5]. Within the adrenal, cytochrome P450 
11ß-hydroxylase catalyzes the hydroxylation of androstenedione 
(A4) and testosterone (T) to 11ß-hydroxyandrostendione 
(11OHA4) and 11ß-hydroxytestosterone (11OHT), respectively 
[4-6]. 11β-hydroxysteroid dehydrogenase type 2 then converts 
11OHA4 and 11OHT to their respective ketosteroids, 

11-ketoandrostendione (11KA4) and 11-ketotestosterone 
(11KT), with 11KT also originating from reduction of 11KA4 
via aldo-keto reductase 1C3 (AKR1C3; also known as 17β- 
hydroxysteroid dehydrogenase type 5). Although 11OHA4 
is quantitatively the dominant 11-oxygenated androgen 
(11-oxyandrogen), its bioactivity is negligible, but it serves as 
substrate for 11KT, a potent androgen with bioactivity com-
parable to that of T [4-6].
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Elevated serum 11OHA4 levels have been reported in one- 
half of National Institutes of Health (NIH)-defined women 
with PCOS who are overweight [1]. More recently, serum 
11-oxyandrogen levels have been shown to be elevated in 40% 
of PCOS women by Rotterdam criteria, and to positively correl-
ate with body mass index (BMI), fasting circulating insulin levels, 
and insulin resistance in some [7, 8], but not all [9], studies.

We have previously shown that normal-weight hyperandro-
genic women with PCOS exhibit low-normal insulin sensitiv-
ity and metabolic alterations that accompany preferential 
abdominal fat accumulation [10-14]. It is unclear, however, 
whether adrenal steroidogenesis interacts with an elevated an-
drogens pathway in normal-weight women with PCOS to fur-
ther affect endocrine-metabolic pathophysiology related to 
altered body fat distribution [15]. It is also unclear whether 
adipocyte expression of AKR1C3 and types 1 or 2 11βHSD 
in these women with PCOS modulate peripheral androgen and 
cortisol activation/inactivation. Therefore, the present study 
compares serum adrenal steroids, including 11-oxyandrogens, 
cortisol, and cortisone, between normal-weight women with 
PCOS and BMI- and age-matched ovulatory women with 
normal-androgenic profiles (controls), and assesses whether 
adrenal steroids associate with preferential abdominal adi-
pose accumulation.

Materials and Methods
Study Participants
Twenty normal-weight women with PCOS and 20 control 
women (19-35 years; 19-25 kg/m2) who had previously been 
enrolled by the principal investigator (D.A.D.) of our 
NIH-funded study (P50 HD071836; 4/1/2013-3/30/2023) 
examining adipose dysfunction in PCOS were included in 
this study [10-13, 15, 16]. Each woman with PCOS was indi-
vidually age-/BMI-matched to a normoandrogenic ovulatory 
(control) woman who was similarly enrolled for comparison; 
all women were healthy individuals, as published previously 
[10-13, 15, 16] except for 1 woman with PCOS with hypertri-
glyceridemia and severely reduced insulin sensitivity index (Si) 
below the level of the general population [17].

PCOS was diagnosed by 1990 NIH criteria and biochemical 
hyperandrogenism, as previously defined by an elevated mean 
serum total or free T level from 2 separate blood samples >2 
SD above the normal ranges of the age- and BMI- matched 
control group [10-13, 15, 16]. Sixteen subjects with PCOS 
had polycystic ovarian morphology in either ovary, defined 
by transvaginal ultrasonography as a follicle number per ova-
ry ≥20 and/or an ovarian volume ≥10 mL (phenotype A), 
whereas 4 subjects with PCOS did not have polycystic ovaries 
(phenotype B) [18, 19]. Control women had normal men-
strual cycles at 21- to 35-day intervals and a luteal phase pro-
gesterone (P4) level without evidence of androgen excess [3]. 
Exclusion criteria, including late-onset congenital adrenal 
hyperplasia, thyroid dysfunction, and hyperprolactinemia, 
have previously been reported [10-13, 15, 16]. All studies 
were performed according to the Declaration of Helsinki after 
approval by the UCLA institutional review board and signed 
informed consent by each subject.

Body Fat Distribution
Waist and hip measurements were determined in all sub-
jects [10-13, 15, 16]. In 18 women with PCOS and age-/ 

BMI-matched controls, a total body dual-energy x-ray ab-
sorptiometry scan was performed with a Hologic QDR 
Discovery A densitometer (Hologic, Inc, Bedford, MA) as 
previously reported [10-13, 15, 16]. During the COVID-19 
pandemic, dual-energy x-ray absorptiometry scan also was 
used with a Hologic Horizon A densitometer (Hologic, 
Inc.) in 3 women with PCOS using the same calibrations, 
range-of-interest definitions, and analysis methods. Android 
and gynoid fat regions were from the first lumbar vertebra 
to the top of pelvis and from the femoral head to the mid- 
thigh, respectively.

Blood Sampling
Blood sampling was performed during the follicular phase in 
control women and during an anovulatory interval in women 
with PCOS. Absent luteal function in women with PCOS was 
confirmed by low serum P4 levels. Fasting blood samples were 
collected at 10 AM and obtained immediately before frequently 
sampled IV glucose tolerance testing (FSIVGTT) for adrenal 
and ovarian steroids (ie, 11OHA4, 11KA4, 11OHT, 11KT, 
17-hydroxyprogesterone [17OHP4], cortisol, cortisone, de-
hydroepiandrosterone sulfate [DHEAS], total and free T, 
A4, estrone [E1], estradiol [E2]), gonadotropins, glucose, 
free fatty acid [FFA], insulin, sex hormone binding globulin 
(SHBG), and lipids (total cholesterol, high-density lipoprotein 
[HDL], low-density lipoprotein [LDL], triglyceride [TG]). 
Fasting blood values were used to calculate adipose insulin re-
sistance (adipose-IR, defined by the product of fasting circu-
lating FFA [mmol/L] and insulin levels [pmol/L]).

The FSIVGTT was performed in all women using the modi-
fied minimal model of Bergman [20], except in 1 control who 
declined the study. Briefly, glucose in 50% concentration 
(0.3 g/kg) and regular human insulin (0.03 units/kg) were in-
jected IV under fasting conditions at 0 and 20 minutes, re-
spectively, and blood was collected at −20, −15, −5, 0, 2, 4, 
8, 19, 22, 30, 40, 50, 70, 90, and 180 minutes for glucose 
and insulin determinations. Mathematical modeling of circu-
lating glucose and insulin levels defined: Si (ie, insulin action to 
accelerate glucose uptake and suppress glucose production) 
and acute response to glucose (AIR g [ie, pancreatic β-cell re-
sponse to glucose infusion]).

Hormonal and Metabolic Assays
Quantification of serum 11-oxyandrogens, cortisol, cortisone, T, 
and A4 was performed in a single run by liquid chromatography- 
tandem mass spectrometry at the University of Michigan, Ann 
Arbor, as previously described [21, 22]. The intra-assay coeffi-
cients of variation (CVs) for all steroids were <3.5% and all de-
tection limits were >2.4 ng/dL.

Serum levels of DHEAS and E1 were measured by liquid 
chromatography-tandem mass spectrometry (Quest Diagnostics 
Nichols Institute, San Juan Capistrano, CA), as previously de-
scribed [10-13, 15, 16]. The intra-assay CVs were DHEAS, 
2.6% and E1, 10.2%. The inter-assay CVs were DHEAS, 4.4% 
and E1, 9.5%. The detection limits were DHEAS, 2 μg/dL 
and E1, 10 pg/mL. Free T was calculated from the concen-
trations of total T, SHBG (Beckman Coulter Cat# A48617, 
RRID:AB_2893035 [http://antibodyregistry.org/AB_2893035]), 
and albumin. The intra-assay CV for free T was 1.6% and the 
detection limit was 0.03 pg/mL.

Serum steroid product to precursor ratios were used as in-
direct markers of enzymatic activity (ie, 11OHA4/A4 and 
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11OHT/T ratios as CYP11ß1 activity, 11KA4/11OHA4 and 
11KT/11OHT ratios as HSD11ß2 activity, T/A4 ratio and 
11KT/11KA4 ratios as AKR1C3 activity, and cortisol to cor-
tisone ratio as HSD11ß1 activity).

Serum measurements of insulin (Roche Cat# 12017547, 
RRID:AB_2756877 [http://antibodyregistry.org/AB_2756877]), 
LH (Roche Cat# 11732234, RRID:AB_2800498 [http:// 
antibodyregistry.org/AB_2800498]), FSH (Roche Cat# 
11775863, RRID:AB_2800499 [http://antibodyregistry.org/ 
AB_2800499]), and E2 (Roche, Cat# 03000079, RRID: 
AB_2893079 [http://antibodyregistry.org/AB_2893079]) by 
electrochemiluminescence; glucose by a hexokinase method; 
and fasting lipids by spectrophotometry were performed at 
the UCLA Center for Pathology Research Services, as previ-
ously described [10-13, 15, 16]. The intra-assays CVs were in-
sulin, 0.6%; LH, 1.0%; FSH, 2.1%; E2, 7.0%; glucose, 0.8%; 
total cholesterol, 0.7%; LDL, 0.5%; HDL 0.6%; and TG, 
0.6%. The inter-assays CVs were insulin, 2.6%; LH, 2.3%; 
FSH, 2.8%; E2, 10.7%; glucose, 0.9%; total cholesterol, 
1.0%; LDL, 1.2%; HDL, 0.9%; and TG, 0.7%. Detection 
limits were insulin, <1 μU/mL; LH, <0.3 mIU/mL; FSH, 
<0.3 mIU/mL; E2, <12 pg/mL; glucose, <10 mg/dL; total 
cholesterol, <11 mg/dL; LDL, <10 mg/dL; HDL, <4 mg/dL; 
and TG, <9 mg/dL.

Serum FFAs were measured by quantitative spectropho-
tometry (ARUP Laboratories, Salt Lake City, UT). The 
intra- and inter-assay CVs for FFAs were 1.8% and 1.2%, re-
spectively, as previously reported [10-13, 15, 16]. The detec-
tion limit for FFA was 0.01 mmol/L.

Statistical Analysis
The primary outcome measure was a difference in serum 
11OHA4 levels, as the major 11-oxyandrogen, between 
women with PCOS and controls. Based on previously re-
ported differences between nonobese women with PCOS 
and controls in serum 11OHA4 levels [8], a sample size of 
20 per group (women with PCOS vs controls) provided ad-
equate power (>80%) to detect standardized effect sizes as 
small as 0.91 between groups using a 2-sample t-test 
(α = .05, 2-tailed). Additional exploratory analysis were 
female-type differences in serum cortisol and cortisone levels 
as well as serum steroid product to precursor ratios as indir-
ect enzymatic markers of CYP11ß1, HSD11ß2, AKR1C3, 
and HSD11ß1 activities.

An unpaired Student t-test compared patient characteris-
tics and clinical hormone/metabolic values between PCOS 
and age and BMI pair-matched control subjects. Results 
were presented with mean ± SD unless otherwise noted. 
Pearson correlation coefficients examined associations of se-
rum adrenal steroid levels with clinical outcomes [23]. As a 
sensitivity analysis, partial correlations were examined 
with the same associations after adjusting for adrenal cor-
tisol, to determine whether cortisol was confounding the 
adrenal androgen findings. For significant associations, 
we also fit linear regression models and the prediction lines 
were superimposed on the scatterplots for Fig. 1. Because 
of potential distributional assumption violations (eg, non-
normality), a log transformation was applied to some 
measures before analysis (eg, LH, AIRg, TG, adipose 
IR). Statistical analyses were run using IBM SPSS V27 
(Armonk, NY) and P values <.05 were considered statistically 
significant.

Results
Patient Characteristics and Hormone/Metabolic 
Levels
Consistent with our previous studies [10-13, 15, 16], age, 
BMI, waist, and hip measurements were comparable between 
women with PCOS and controls. Total body mass, total body 
fat, percent body fat, and android as well as gynoid fat masses 
were similar between female types (Table 1). The android to 
gynoid fat mass ratio, however, was significantly greater in 
women with PCOS than controls (P = .026) because of a shift 
away from percent gynoid fat (P = .026) to percent android fat 
mass (P = .062).

Serum log LH, total/free T, A4, and 17OHP4 levels were 
greater in PCOS women than controls (log LH, P = .004; an-
drogens, P < .001; 17OHP4, P = .004) (Table 1) and were 
accompanied by a trend for reduced SHBG levels 
(P = .054). Log adipose-IR values also were greater in 
PCOS women than controls (P = .017), because in part to a 
trend for increased fasting circulating insulin levels (P = .075). 
Low-normal Si values in PCOS women were accompanied by 
high-normal log AIRg values, as published previously [10-13, 
15, 16]. There were no female-type differences in serum FSH, 
estrogen, DHEAS, or fasting glucose and cholesterol levels, al-
though log TG levels were higher in PCOS women than con-
trols (P = .035).

Serum 11-oxyandrogens, cortisol, and cortisone were com-
parable between women with PCOS and controls (Table 1). 
Serum 11OHA4/A4 and 11OHT/T ratios, however, were sig-
nificantly reduced in women with PCOS compared with con-
trols, reflecting a predominant ovarian source for T and A4 in 
women with PCOS (both ratios, P < .01) (Table 2). Serum 
11KA4/11OHA4 and 11KT/11OHT ratios, as indirect en-
zymatic markers of HSD11ß2 activity, were similar between 
the 2 female groups, as were serum T/A4 ratio and 11KT/ 
11KA4 ratios, as indirect enzymatic markers of AKR1C3 ac-
tivity. Of interest, the cortisol to cortisone ratio as an indirect 
enzymatic marker of HSD11ß1 activity tended to be reduced 
in women with PCOS vs controls (P = .075).

Clinical Correlations
In all women combined, serum total/free T, A4, and 17OHP4 
levels correlated positively with log LH levels (total T: 
R = +0.55, P < .001; free T: R = +0.62, P < .001; A4: R = 
+0.61, P < .001; 17OHP4: R = +0.60, P < .001) (Table 3). 
Serum T, A4, and17OHP4 also correlated positively with 
BMI (total T: R = +0.42, P = .007; A4: R = +0.34, P = .029; 
17OHP4: R = +0.41, P = .009), whereas serum free T and A4 
correlated positively with waist to hip ratio (free T: R = +0.44, 
P = .005; A4: R = +0.33, P = .035).

Serum total/free T, A4, and 17OHP4 levels were unrelated 
to total body mass, total body fat, or % total body fat (P = NS, 
all values). Nevertheless, serum total/free T and A4 levels, but 
not 17OHP4 levels, correlated positively with the android to 
gynoid fat mass ratio (total T: R = +0.41, P = .013; free T: 
R = +0.49, P = .003; A4: R = +0.45, P = .006; 17OHP4: 
R = +0.19, P = .276). This was due to positive relationships 
of serum total/free T, and to a lesser degree serum A4, with an-
droid fat mass (total T: R = +0.34, P = .044; free T: R = +0.35, 
P = .038; A4: R = +0.28, P = .095) but not with gynoid fat 
mass (P = NS, all values) (Fig. 1).

Serum total/free T, A4, and 17OHP4 levels also correlated 
positively with log adipose-IR (total T: R = +0.34, P = .037; 
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free T: R = +0.40, P = .011; A4: R = +0.39, P = .013; 
17OHP4: R = +0.37, P = .018), but not with Si values (all ste-
roids, P = NS). In addition, serum free T levels correlated posi-
tively with circulating fasting insulin (R = +0.44, P = .005) 
and log TG (R = +0.35, P = .025) levels, while correlating 
negatively with SHBG (R = –0.57, P < .0001). During 
FSIVGTT, serum free T levels also correlated positively with 
log AIRg (R = +0.39, P = .015) and tended to correlate nega-
tively with Si (R = −0.27, P = .098).

Serum 11OHT, 11KT, and 11KA4 levels also correlated 
positively with BMI (11OHT: R = +0.36, P = .023; 11KT: 
R = +0.49, P = .001; 11KA4: R = +0.34, P = .034), but 
were unrelated to body fat distribution (Table 3). Serum 
11-oxyandrogen levels, however, correlated negatively with 
% total body fat (11OHA4: R = −0.42, P = .011; 11KA4: 
R = −0.34, P = .046; 11OHT: R = −0.36, P = .031; 11KT: 
R = −0.37, P = .027). In addition, serum 11KA4 levels corre-
lated positively with circulating fasting insulin (R = +0.33, 
P = .041), whereas serum 11OHT levels correlated negatively 
with SHBG (R = −0.32, P = .047) levels. None of the serum 
11-oxyandrogens was related to log LH, log adipose-IR, log 
TG, Si, or log AIRg.

Serum cortisol and cortisone levels correlated inversely with 
% total body fat (cortisol: R = −0.45, P = .006; cortisone: 
R = −0.49, P = .002) (Table 3). In addition, serum cortisol 
and cortisone levels correlated negatively with android 
fat mass (cortisol: R = −0.38, P = .021; cortisone: R = −0.35, 
P = .035) (Fig. 1) but were unrelated to any other metabolic out-
come. Because both serum cortisol and 11-oxyandrogen levels 
were correlated negatively with % total body fat, partial correla-
tions for serum 11-oxyandrogens were examined after adjusting 
for serum cortisol to determine whether glucocorticoid action 
was confounding the findings. Adjusting for serum cortisol, se-
rum 11-oxyandrogen correlations with % total body fat were 
no longer significant.

All 4 serum 11-oxyandrogen and cortisol levels correlated 
positively with serum DHEAS levels (11OHA4: R = +0.47, 
P = .002; 11KA4: R = +0.33, P = .038; 11OHT: R = +0.47, 

P = .002; 11KT: R = +0.36, P = .021; cortisol: R = +0.33, 
P = .040) (Table 3).

Discussion
The present study confirms an increased android to gynoid fat 
mass ratio in normal-weight women with NIH-defined PCOS, 
as previously described [10-13, 15, 16], but without a con-
comitant elevation in serum 11-oxyandrogen levels, suggest-
ing a predominant ovarian contribution to androgen excess 
in normal-weight women with NIH-defined PCOS. Serum 
11OHA4/A4 and 11OHT/T ratios were reduced in these 
women with PCOS and resembled the diminished serum 
11OHA4/A4 ratio reported in normal-weight women with 
PCOS by the Rotterdam criteria [7].

In our study, as in others, 11OHA4 was the most abundant 
11-oxyandrogen [7, 8]. Serum 11OHT, 11KT, and 11KA4 
levels positively correlated with BMI in all women combined, 
agreeing with positive relationships of serum 11OHT and 
11KT levels with BMI in some [7], but not all [9] women 
with Rotterdam-defined PCOS. Serum 11-oxyandrogen lev-
els, however, were normal in our women with PCOS with 
low-normal insulin sensitivity, as they are in more than one- 
half of overweight/obese women with PCOS [7, 8]. That 
serum 11KA4 correlated positively with circulating fasting in-
sulin levels in our women with PCOS agrees with a similar re-
lationship of serum 11KA4 levels with insulin resistance in 
overweight/obese PCOS women [8], implicating adrenal insu-
lin receptor signaling in this interaction, as seen in insulin- 
resistant women with lipodystrophy [24]. Serum DHEAS 
levels in our women with PCOS also were normal, as previ-
ously reported [7, 8], and were closely linked with serum 
11-oxyandrogen and cortisol levels, confirming the common 
adrenal origin and ACTH governance of these steroids.

Serum 11-oxyandrogen levels correlated negatively with % 
total body fat, as did serum cortisol and cortisone levels. 
Serum 11-oxyandrogen levels, however, were no longer sig-
nificant when adjusting for serum cortisol levels. Therefore, 

Figure 1. Correlations of android fat mass with serum (A) total T, (B) free T, (C) A4, and (D) cortisol levels in normal-weight women with PCOS and body 
mass index-/age-matched controls. Filled circles, women with PCOS; open circles, controls. All y-axes for android fat mass are identical in scale. A4, 
androstenedione; PCOS, polycystic ovary syndrome; T, testosterone.
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Table 1. Patient characteristics and serum hormone and metabolic levels in normal-weight control vs women with PCOSa,b

Patient characteristics Controls (N = 18) PCOS (N = 18) P value

Age (y) 27.7 ± 4.8 24.8 ± 4.4 .069

BMI (kg/m2) 21.7 ± 1.6 22.1 ± 1.9 .495

Waist (cm) 75.2 ± 5.1 76.1 ± 4.9 .572

Hip (cm) 89.3 ± 6.0 87.9 ± 5.5 .483

Total body mass (kg) 60.7 ± 7.8 60.9 ± 7.2 .945

Total body fat (kg) 19.3 ± 3.2 19.9 ± 3.2 .620

Percent body fat (%) 31.8 ± 2.9 32.8 ± 4.1 .429

Android fat (kg) 1.1 ± 0.3 1.2 ± 0.4 .126

Percent android fat (%) 5.5 ± 0.7 6.2 ± 1.3 .062

Gynoid fat (kg) 4.1 ± 0.8 4.0 ± 0.6 .663

Percent gynoid fat (%) 21.4 ± 1.6 20.3 ± 1.0 .026

Android/gynoid fat ratio 0.26 ± 0.04 0.31 ± 0.07 .026

Hormone/metabolic levels Controls (N = 20) PCOS (N = 20) P value

Log LH (mIU/mL) 0.89 ± 0.2 1.1 ± 0.2 .004

FSH (mIU/mL) 6.0 ± 2.3 5.3 ± 1.4 .257

E1 (pg/mL) 63.0 ± 32.4 67.4 ± 28.1 .655

E2 (pg/mL) 100.4 ± 106.7 72.0 ± 56.1 .301

Total T (ng/dL)c 27.4 ± 6.6 53.2 ± 20.4 <.001

Free T (pg/mL)c 3.4 ± 1.4 8.0 ± 3.2 <.001

A4 (ng/dL)c 106.9 ± 34.9 208.4 ± 73.3 <.001

11KT (ng/dL)c 30.3 ± 13.0 35.2 ± 18.5 .333

11OHT (ng/dL)c 11.9 ± 7.9 12.3 ± 5.5 .866

11KA4 (ng/dL)c 17.4 ± 7.4 17.5 ± 7.5 .960

11OHA4 (ng/dL)c 107.9 ± 61.8 111.3 ± 59.1 .858

17OHP4 (ng/dL)c 35.8 ± 15.3 62.7 ± 34.2 .004

DHEAS (μg/dL) 181.4 ± 97.0 221.8 ± 69.6 .139

Cortisol (ng/dL)c 11199.7 ± 5189.7 9740.4 ± 3781.9 .314

Cortisone (ng/dL)c 2122.5 ± 619.9 2278.4 ± 652.0 .440

Fasting glucose (mg/dL)d 85.2 ± 6.0 85.8 ± 6.5 .796

Fasting insulin (μU/mL)d 4.6 ± 1.9 5.8 ± 2.1 .075

Si (×10−4/min/μU/mL)d 6.0 ± 5.1 4.2 ± 2.0 .143

Log AIRg (μU/mL)d 2.4 ± 0.2 2.5 ± 0.2 .150

SHBG (nmol/L) 68.2 ± 33.2 49.2 ± 26.8 .054

Log adipose-IRd 1.2 ± 0.2 1.4 ± 0.2 .017

Log triglyceride (mg/dL) 1.7 ± 0.1 1.8 ± 0.2 .035

HDL-C (mg/dL) 64.8 ± 11.9 62.2 ± 12.5 .513

Non-HDL-C (mg/dL) 89.2 ± 25.6 93.6 ± 26.6 .592

LDL-C (mg/dL) 78.6 ± 23.7 78.2 ± 24.9 .960

Total cholesterol (mg/dL) 154.8 ± 29.4 155.9 ± 29.0 .913

Mean ± SD. Boldface values represent significant differences between female groups. 
Conversion to SI Units: T (× 0.0347 nmol/L), free T (× 3.47 pmol/L), A4 (× 0.0349 nmol/L), KT (× 0.0331 nmol/L), OHT (× 0.0329 nmol/L), 
KA4 (× 0.0322 nmol/L), OHA4 (× 0.0331 nmol/L), 17OHP4 (× 0.0303 nmol/L), DHEAS (× 0.0271 μmol/L), cortisol (× 0.0276 nmol/L), cortisone 
(× 0.0277 nmol/L), E1 (× 3.699 pmol/L), E2 (× 3.67 pmol/L), LH (× 1.0 IU/L), FSH (× 1.0 IU/L), glucose (× 0.0555 mmol/L), insulin (× 7.175 pmol/L, 
total cholesterol (× 0.0259 mmol/L), HDL-cholesterol (× 0.0259 mmol/L), LDL-cholesterol (× 0.0259 mmol/L), non-HDL-cholesterol (× 0.0259 mmol/L), 
triglycerides (× 0.0113 mmol/L). 
Abbreviations: 11KA4, 11-ketoA4; 11KT, 11-ketoT; 11OHA4, 11ß-hydroxyA4; 11OHT, 11ß-hydroxyT; A4, androstenedione; AIRg, acute response to 
glucose; BMI, body mass index; DHEAS, dehydroepiandrosterone sulfate; E1, estrone; E2, estradiol; HDL-C, high-density lipoprotein cholesterol; LDL-C, 
low-density lipoprotein cholesterol; PCOS, polycystic ovary syndrome; Si, insulin sensitivity index; T, testosterone. 
aModified from references previously reported for these subjects [10-13, 16]. 
bTotal body dual-energy x-ray absorptiometry studies (controls = 18, PCOS = 18). 
cNew measurements as determined by liquid chromatography-tandem mass spectrometry at the University of Michigan, Ann Arbor [21, 22]. 
dFrequently sampled IV glucose tolerance testing, and fasting glucose/insulin as well as log adipose insulin resistance studies (controls = 19, PCOS = 20).
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the inverse relationships between serum 11-oxyandrogens and 
% total body fat were most likely driven by cortisol, probably 
through diminished glucocorticoid-induced lipolysis, because 
cortisol infusion in normal-weight human volunteers increases 
plasma palmitate concentration [25, 26], whereas cortisol, not 
adrenal androgens, provides the predominant negative feed-
back regulation of the hypothalamus-pituitary-adrenal axis. 
In addition, exposure of adipocytes from women or male rats 
to dexamethasone in vitro enhances catecholamine-stimulated 
lipolysis, with glucocorticoid-enhanced lipolysis in rats accom-
panied by upregulation of adenylate cyclase activity and 
β-adrenergic receptor number [27, 28]. In normal-weight wom-
en with PCOS, therefore, glucocorticoid-enhanced lipolysis 
may interact with androgen inhibition of catecholamine- 
induced lipolysis, as seen in subcutaneous abdominal PCOS 
adipose [29-32], to determine fat accretion [15].

Serum cortisol and cortisone levels also correlated negative-
ly with android fat mass in all women combined. Moreover, a 
trend toward reduced serum cortisol to cortisone ratio in the 
present women with PCOS agrees with decreased HSD11ß1 
activity in other normal-weight women with PCOS [33], 
and with increased urinary excretion of 11-oxo to 11-hydroxy 
metabolites of cortisol in nonobese women with PCOS [34]. 
Importantly, HSD11ß1 activity correlates inversely with in-
creased abdominal adiposity in individuals with normal serum 
glucocorticoid levels, as evidenced by a reduced ratio of urin-
ary cortisol to cortisone metabolites and an impaired corti-
sone to cortisol conversion after oral cortisone acetate [35]. 
Therefore, in normal-weight women with NIH-defined 
PCOS, a trend toward reduced adipose/hepatic HSD11ß1 
and cortisol activities could compensate for the positive rela-
tionship of ovarian hyperandrogenism with increased intra- 
abdominal fat mass, while modifying hypothalamic steroid 
negative feedback to maintain normal circulating cortisol 
and 11-oxyandrogen levels [10, 29, 30, 32, 36, 37].

If so, reduced adipose/hepatic HSD11ß1 and cortisol activities 
of greater magnitude in overweight/obese women with PCOS 
would likely promote 11-oxyandrogen production [8, 9, 34], be-
cause increased abdominal adiposity in women impairs BMI sup-
pression of the hypothalamo-corticotropic-adrenal axis [36]. 
This mechanism, however, may be insufficient to compensate 
for HSD11ß1 mRNA upregulation in visceral adipose as a cor-
relate with omental fat hypertrophy in obese women [38], agree-
ing with increased HSD11ß1 mRNA expression in visceral 
adipose as a predictor of metabolic dysfunction through in-
creased adiposity in women with NIH-defined PCOS [39].

Our results differ from previous reports in several ways. 
First, the serum 11KA4/11OHA4 ratio, as an indirect enzym-
atic marker of HSD11ß2, was normal our normal-weight 
women with PCOS, despite being elevated in normal-weight 
Japanese women with PCOS by the Rotterdam criteria [7], 
perhaps because of ethnic differences. Second, the serum 
T/A4 ratio, as an indirect enzymatic marker of AKR1C3, 
also was normal in the present women with PCOS, although 
elevated in the same individuals by different steroid quantifi-
cation via mass spectrometry [16]. In women with PCOS, 
however, an elevation in the T/A4 ratio is greater in adipose 
than blood [40], so that using serum to estimate abdominal 
adipose AKR1C3 activity likely underestimates our previous 
finding of AKR1C3 mRNA overexpression in PCOS adipo-
cytes matured in vitro [16]. Equally important, the propor-
tional contribution of 11-oxyandrogen levels to total 
androgens in normal-weight women with PCOS is lower 
than in the obese PCOS phenotype [8], in agreement with find-
ings in Japanese women [7].

Important strengths of this study were the use of healthy, 
normal-weight women with PCOS by NIH criteria with a 
mild PCOS phenotype [41, 42] and who were age- and 
BMI-matched to controls to eliminate the confounding effects 
of age and obesity on study outcomes [7, 8, 22, 43-46]. Our 
experimental design also required collection of fasting blood 
samples at 10 AM to avoid diurnal variation of adrenal steroi-
dogenesis, allowing us to study the interrelationships of serum 
11-oxyandrogens with glucocorticoids, adjusting for the con-
founding effects of cortisol.

An important limitation of our study, however, was the use 
of morning serum, rather than 24-hour urinary, collections to 
measure steroid levels, which may have underestimated our 
ability to detect enhanced daily urinary excretion of gluco-
corticoid and androgenic metabolites in women with PCOS 
[33, 34]. Moreover, we did not measure 5a-reductase activity, 
as others have done [34], nor did we examine tissue-specific 
steroid metabolism, which could have influenced the interac-
tions examined. The small number of subjects with PCOS 
also diminished statistical power to examine subtle interac-
tions between adrenal steroids and clinical outcomes, and lim-
ited applicability of our data to women of different PCOS 
phenotypes, ethnicity, or adiposity. Finally, our assessment 
of body fat distribution and function did not investigate 
tissue-specific regulation of HSD11ß1 activity by cytokines 
[47], given that greater HSD11ß1 oxoreductase activity in 
omental than in subcutaneous fat cells accompanies increased 
visceral adipocyte size, enhanced visceral fat accumulation, 
and reduced insulin sensitivity [48, 49].

Nevertheless, our findings suggest that glucocorticoids play 
an important role in the health of normal-weight women with 
PCOS. An interplay between adrenal and ovarian steroido-
genesis appears to serve as a metabolic adaptation in these 

Table 2. Steroid ratios as indirect enzymatic markers of AKR1C3, 
CYP11ß1, HSD11ß2, and HSD11ß1 in normal-weight women with 
PCOS vs controls

Ratio Controls (N = 20) PCOS (N = 20) P value

AKR1C3

T/A4 0.265 ± 0.067 0.255 ± 0.051 .599

11KT/11KA4 1.835 ± 0.520 2.100 ± 0.736 .198

CYP11ß1

11OHA4/A4 1.040 ± 0.480 0.560 ± 0.284 <.001

11OHT/T 0.460 ± 0.300 0.240 ± 0.147 .006

HSD11ß2

11KA4/11OHA4 0.170 ± 0.057 0.170 ± 0.066 .999

11KT/11OHT 2.810 ± 0.818 2.965 ± 0.835 .559

HSD11ß1

Cortisol/cortisone 5.245 ± 1.938 4.295 ± 1.251 .075

Mean ± SD. Boldface values represent significant differences between female 
groups. 
Abbreviations: 11KA4, 11-ketoandrostenedione; 11KT, 
11-ketotestosterone; 11OHA4, 11ß-hydroxyandrostenedione; 11OHT, 
11ß-hydroxytestosterone; A4, androstenedione; AKR1C3, aldo-keto 
reductase family 1 member C3 (also known as 17ß-hydroxysteroid 
dehydrogenase type 5); CYP11ß1, adrenal-specific cytochrome P450 
11ß-hydroxylase; HSD11ß1, 11ß-hydroxysteroid dehydrogenase type 1; 
HSD11ß2, 11ß-hydroxysteroid dehydrogenase type 2;  PCOS, polycystic 
ovary syndrome; T, testosterone.
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women with PCOS to enhance subcutaneous fat storage, 
while promoting circulating glucose as well as FFA availabil-
ity as energy substrate for crucial target tissues. Such a meta-
bolic adaptation, however, could predispose women with 
PCOS to excess weight gain in today’s obesogenic environ-
ment, potentially increasing their risk of developing lipotoxic-
ity [15, 50-52].
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