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Triterpenoid saponins constitute a diverse class of bioactive compounds in medicinal
plants. Salicylic acid (SA) is an efficient elicitor for secondary metabolite production,
but a transcriptome-wide regulatory network of SA-promoted triterpenoid saponin
biosynthesis remains little understood. In the current study, we described the
establishment of the hairy root culture system for Psammosilene tunicoides, a
triterpenoid saponin-producing medicinal herb in China, using genetic transformation by
Agrobacterium rhizogenes. Compared to controls, we found that total saponin content
was dramatically increased (up to 2.49-fold) by the addition of 5 mg/L SA in hairy
roots for 1 day. A combination of single-molecule real-time (SMRT) and next-generation
sequencing (llumina RNA-seq) was generated to analyze the full-length transcriptome
data for R tunicoides, as well as the transcript profiles in treated (8 and 24 h) and
non-treated (0 h) groups with 5 mg/L SA in hairy roots. A total of 430,117 circular
consensus sequence (CCS) reads, 16,375 unigenes and 4,678 long non-coding RNAs
(IncRNAs) were obtained. The average length of unigenes (2,776 bp) was much higher
in full-length transcriptome than that derived from single RNA-seq (1,457 bp). The
differentially expressed genes (DEGs) were mainly enriched in the metabolic process.
SA up-regulated the unigenes encoding SA-binding proteins and antioxidant enzymes in
comparison with controls. Additionally, we identified 89 full-length transcripts encoding
enzymes putatively involved in saponin biosynthesis. The candidate transcription factors
(WRKY, NAC) and structural genes (AACT, DXS, SE, CYP72A) might be the key
regulators in SA-elicited saponin accumulation. Their expression was further validated
by quantitative real-time PCR (gRT-PCR). These findings preliminarily elucidate the
regulatory mechanisms of SA on triterpenoid saponin biosynthesis in the transcriptomic
level, laying a foundation for SA-elicited saponin augmentation in P tunicoides.
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INTRODUCTION

Triterpenoid saponins constitute a diverse class of natural
products, and their biosynthesis is responsible for the
pharmacological properties of numerous traditional medicinal
plants (Moses et al, 2013). The Caryophyllaceae family is
chemically characterized by high production of triterpenoid
saponins (Cheikh-Ali et al., 2019). Psammosilene tunicoides
WC Wu et CY Wu, a monotypic species of Caryophyllaceae,
has been commonly used as a valuable traditional medicine
in China (Wang and Zhang, 1992). This medicinal plant has
various therapeutic properties including pain-relief, haemostasia,
anti-inflammation and immunomodulation (Zhao et al.,, 2011;
Zhang et al., 2012). The tuberous roots of P. tunicoides (named
“Jintiesuo“) constitute an important ingredient in a famous
traditional Chinese medicine “Yunnan Baiyao® (Li et al., 2011;
Zhao et al., 2011). Previous phytochemical and pharmacological
analyses have revealed that the oleanane-type triterpenoid
saponins constitute the essential bioactive components in
P. tunicoides (Zhong et al, 2002; Deng et al, 2009; Wen
et al, 2020). However, P. tunicoides is only distributed in
southwest China, and it is a slow-growing plant with limited
saponin production. Due to the high market demand and
overexploitation, the natural resources of P. tunicoides have
dwindled and become endangered. Thus, it has been listed in the
National Key Protected Plants in China. As an alternative to wild
exploitation, hairy root cultures using genetic transformation by
Agrobacterium rhizogenes have been developed for sustainable
production of the bioactive components (Gutierrez-Valdes et al.,
2020). Moreover, these culture systems were also effectively used
in elucidating the biosynthesis pathway of bioactive molecules,
such as in Isatis indigotica (Chen et al, 2015) and Salvia
miltiorrhiza (Zhou et al., 2017). Hence, this approach provides
the foundation for in vitro triterpenoid saponin production by
synthetic biology strategies in P. tunicoides.

In general, terpenoids are regarded as phytoanticipins, which
are involved in responding to biotic and abiotic stresses (Dixon,
2001). Salicylic acid (SA) is an endogenous signal substance
that exists universally in plants (Wu et al, 2019). It exhibit
that SA is perceived by the Non-expresser of PR (NPRs)
receptors, and functions directly in the activation of defense
responses (Sawai and Saito, 2011). Additionally, SA participates
in promoting the yields of secondary metabolites (including
terpenoids) in medicinal plants (Yendo et al., 2010; Ramirez-
Estrada et al., 2016), and functions as one of the most important
elicitors in hairy root cultures (Gutierrez-Valdes et al., 2020).
A comprehensive understanding of SA-mediated regulatory
networks has been widely elucidated using transcriptome analysis
in plants. However, these studies mainly focused on the
molecular mechanism of SA in stress response (Kim et al,
2013; Fan et al., 2017), with minimal focus on the elicitation
of terpenoid biosynthesis. To date, the relationship between SA
elicitors and terpenoid accumulation is unclear in P. tunicoides.
Transcriptome-wide analysis of the SA-elicited regulatory chain
may reveal the biosynthesis pathway of terpenoids in this species.

Previous studies attempted to elucidate biosynthesis pathways
of oleanane-type triterpenoid saponins, such as soyasaponin

and glycyrrhizin (Sawai and Saito, 2011; Moses et al., 2014).
In general, three stages were reported to be involved in the
triterpenoid saponin biosynthesis process: terpene precursor
biosynthesis, triterpenoid skeleton biosynthesis, and saponin
structural diversification (Moses et al, 2014). The first
stage generates two types of terpene precursors, isopentenyl
pyrophosphate ~ (IPP) and  dimethylallyl-pyrophosphate
(DMAPP), through the mevalonate (MVA) and 2-C-methyl-
derythritol-4-phosphate (MEP) pathways, respectively. These
two precursors are then converted to P-amyrin to form a
skeleton of triterpenoid compounds, and further generate
various oleanane-type triterpenoid saponins by site-specific
oxidization and glycosylation (Moses et al., 2014; Seki et al.,
2015). These processes are essentially catalyzed by diverse rate-
limiting biosynthetic enzymes, which are encoded by multi-gene
families (Moses et al., 2013). In addition, transcription factors
(TFs), such as WRKY, NAC and MYB, modulate downstream
gene expression associated with related enzymes, and thus are
essential in transcriptional regulation of secondary metabolism
(Endt et al., 2002).

Next-generation sequencing (e.g., Illumina RNA-seq) is
an effective method to provide transcriptome-wide analysis
of sequence data and differentially expressed genes (DEGs),
especially for non-model plant species (Ma et al., 2016; Choudhri
et al, 2018). RNA-seq has been performed to identify the
putative genes involved in terpenoid biosynthesis in multiple
plants (Luo et al., 2011; Ma et al., 2016; Wang et al., 2017;
Zhou et al., 2017; Choudhri et al.,, 2018; Shan et al., 2020).
Nevertheless, the short read lengths from RNA-seq restrict the
construction of completely assembled transcripts, making it
difficult to obtain full-length sequences (Wu et al., 2019, 2020).
As a third-generation sequencing technique, single-molecule
real-time (SMRT) sequencing can generate full-length cDNA
sequences without post-sequencing assembly, which basically
overcomes the limitation of RNA-seq (Wu et al., 2019, 2020).
Thus, SMRT sequencing could provide an accurate technique
for gene annotation, novel gene discovery and long non-coding
RNA (IncRNA) identification. To eliminate its high error rate,
SMRT sequencing still needs to be corrected with RNA-Seq reads.
A combined analysis of SMRT sequencing and RNA-Seq is a
suitable approach to obtain high-quality transcripts, which has
been recently used in a variety of traditional Chinese medicinal
plants like Pogostemon cablin (Chen et al., 2019) and Coptis
deltoidea (Zhong et al., 2020). To date, although several genes
have been obtained and cloned in P. tunicoides from RNA-
seq (Jiang and Qian, 2014; Zhang et al., 2018), a high-quality
transcriptome data is still lack in P. tunicoides.

We previously established a high-efficiency P. tunicoides
hairy root culture (PTHRC) system (Wang et al, 2015).
Here, the effects of SA elicitors on triterpenoid saponin
production were determined in PTHRCs. The full-length
transcriptome of P. tunicoides was generated for the first time
using SMRT sequencing, corrected by RNA-Seq at different
stages of SA treatments. Functional annotation and IncRNA
identification were performed. DEGs related to SA-elicited
saponin biosynthesis were identified on the transcriptome,
and verified by quantitative real-time PCR (qRT-PCR). The
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regulatory chain of “signaling cascade-TF regulation-enzymatic
catalysis” was then illustrated. High-quality transcriptome data
were obtained, which can be used to elucidate the regulatory
mechanisms of SA in saponin biosynthesis in PTHRCs, and
provide a theoretical basis for effectively improving saponin
production in P. tunicoides.

MATERIALS AND METHODS

Plant Materials

PTHRCs were established as reported in our previous study
(Wang et al., 2015). Briefly, sterile healthy P. tunicoides plants
were maintained on MS media supplemented with 20 g/L sucrose
(pH 5.8) at 25 °C and a 16-h photoperiod. Excised leaves
of P. tunicoides were used to induce hairy roots by infection
with A. tumefaciens strain ATCC15834. The hairy roots were
routinely subcultured and maintained in 100 mL liquid MS
media supplemented with 30 g/L sucrose (pH 5.8) in conical
flasks (250 mL) in a shaker with a speed of 100 rpm for 35
days. The growth conditions for suspension cultivations were
25 £ 1°C in darkness.

Elicitor Preparation and Addition

SA (Sigma-Aldrich, United States) was dissolved in ultrapure
water as a stock solution (10 mg/mL) and filter-sterilized. After
35 days of suspension cultivation, hairy roots at their maximum
weight were used to perform an SA elicitation experiment. The
subcultured media were renewed by 100 mL fresh liquid media
supplemented with 30 g/L sucrose (pH 5.8), in which the SA
stock solution was added to give the final concentrations of 5, 10,
20 mg/L SA. The same volume of ultrapure water was added as
control (CK) cultures.

Saponin Extraction and Quantification

The treated (5, 10, 20 mg/L SA) and CK hairy root groups were
sampled at 1, 3, 5, 7, and 9 days for saponin extraction and
quantification. All experiments were repeated at least three times.
The samples were vacuum freeze-dried for 12 h (Telstar, Spain),
and ground into powders. The powders (1 g) were extracted using
80% ethanol with ultrasonication for 100 min. After extraction
with 40 mL of n-butanol three times, the combined extracts were
rotary evaporated at 40 °C (BUCHI, Switzerland), and redissolved
in 10 mL of methanol.

Total saponin content was determined by vanillin-perchloric
acid colorimetry according to a previous study (Xiang et al,
2001), and oleanolic acid was used as the reference standard.
Levels of two representative saponin derivatives [quillaic
acid (QA) and gypsogenin (Gyp)] were quantified by high-
performance liquid chromatography (HPLC) based on a previous
study (Kolodziej et al,, 2018). Chromatographic analysis was
carried out on a Shimadzu series LC-20 AD XR instrument, with
an SPD-M20A diode array detector, on a reverse-phase Sunniest
C18 (ChromaNik, Japan) analytical column (250 mm x 4.6 mm,
5 wm) at 25°C. The mobile phase consisted of acetonitrile (solvent
A) and 0.1% (v/v) H3POy4 aqueous solution (solvent B) using

the gradient elution as follows: 50% A 0-2 min, 50-100% A 2-
35 min, 100% A 35-40 min. The injection volume was 10 pL.
The detection wavelength was 210 nm, and the flow rate was
1 mL/min. Gyp and QA standards (Yuanye, China) were used as
standard calibration curves.

RNA Sample Preparation

For transcriptome sequencing, antioxidant enzyme and qRT-
PCR analysis, the 35-day-old hairy roots were harvested from
5 mg/L SA treatment at 8 (SA_8 h) and 24 h (SA_24 h) after
initiating treatments. Untreated hairy roots were collected before
SA treatment, and indicated as controls (SA_0 h). Total RNA
was extracted using TRIzol reagent (Invitrogen, United States)
according to the manufacturers instructions. RNA purity
was checked using the NanoPhotometer® spectrophotometer
(IMPLEN, United States). RNA concentration was assessed using
a Qubit® RNA Assay Kit in a Qubit® 2.0 Fluorometer (Life
Technologies, United States).

PacBio SMRT Library Preparation

and Sequencing

Equal amounts of RNAs from different hairy root groups
(SA_Oh, SA_8h, and SA_24h) were pooled to provide the total
RNA of P. tunicoides. The mRNA was enriched using the
Oligo d(T) magnetic beads, then reverse transcribed to cDNA
using Clontech SMARTer PCR ¢DNA Synthesis Kit (Clontech,
United States). Amplification of double-stranded cDNA was
followed by size selection using the BluePippin system (Sage
Science, United States), and fragments of 1-6 kb were retained.
The full-length cDNA was generated, and the cDNA ends were
repaired and ligated to sequencing adapters. SMRTbell template
libraries were obtained and subsequently sequenced on the
PacBio Sequel RS sequencing instrument.

SMRT Read Processing

Raw sequence data obtained from SMRT sequencing were
processed using SMRTIink6.0 software (Chin et al, 2013).
Circular consensus sequence (CCS) reads were generated from
subread BAM files, and classified into full-length non chimera
(FLNC) reads, full-length chimeric reads, non-full-length (NFL)
reads, and short reads based on poly(A) signal, 5" and 3’ adaptor
check. NFL and full-length FASTA files were then fed into the
cluster consensus isoforms by isoform-level clustering (ICE)
(Gordon et al,, 2015). Finally, the redundancies were removed
using CD-HIT-EST to obtain unigenes (Huang et al., 2010).

lllumina Library Construction and

Sequencing

RNA samples from three SA-treated hairy roots (SA_Oh, SA_8h
and SA_24h) were used for Illumina library construction and
sequencing. Each group had three biological replicates. RNA-
seq libraries were generated using NEBNext® Ultra™ RNA
Library Prep Kit for Illumina® (NEB, United States) following
the manufacturer’s recommendations and index codes were
added to attribute sequences of each sample. The libraries
were constructed with insert sizes of 250-300 bp in length.
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Clustering of the index-coded samples was performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit v3-
cBot-HS (Illumina). After cluster generation, the libraries were
sequenced on an Illumina Hiseq Xten platform from Novogene
Experimental Department (Beijing, China) and the raw data
were generated. The clean data were obtained by removing reads
containing adapters, poly-N and low quality reads from raw data
using Trimomatic (v0.36) (Bolger et al., 2014). The Q20, Q30 and
GC-content of the clean data were calculated. The raw sequence
data have been deposited in the Genome Sequence Archive'
under accession number CRA002795.

Gene Function Annotations and

Classifications

The gene function was annotated, and classifications were
based on NCBI non-redundant protein sequences (Nr)?
NCBI nucleotide sequences (Nt; see text footnote 1), protein
family (Pfam)’, eukaryotic/clusters of orthologous groups
(KOG/COG)*, Swiss-Prot®>, Kyoto Encyclopedia of Genes and
Genomes (KEGG)® and Gene Ontology (GO)’ databases with
local BLAST programs (E-value < 1.0E~%). Hmmscan was
adopted for Pfam annotation®, and Blast2GO was used for GO
annotation (Conesa et al., 2005). The ANGEL software was used
to predict coding sequences (CDS)’. The iTAK software was
applied to identify the TF family database (Zheng et al., 2016).

Differential Gene Expression Analysis

The gene expression levels were determined by RSEM software
with bowtie2 (mismatch 0) (Li and Dewey, 2011). Illumina clean
data were mapped onto the SMRT sequencing data, and the
readcount for each gene was obtained from the mapping results.
Then the unique readcounts for each transcript were normalized
by calculating fragment per kilobase per million (FPKM). DEGs
of different libraries were analyzed using the DESeq R package
(1.10.1) (Anders and Huber, 2010). Genes with an adjusted
P-value < 0.05 and | log2FoldChange| > 1 found by DESeq
were assigned as differentially expressed. GO enrichment analysis
of the DEGs was implemented by the GOseq R packages based
Wallenius non-central hypergeometric distribution (Young et al.,
2010). KEGG enrichment analysis of DEGs was done using
KOBAS software (Xie et al., 2011). Heatmaps were drawn by
TBtools software (Chen et al., 2020). A phylogenetic tree was
generated by the neighbor-joining method in MEGA?7 (1,000
bootstrap replicates) (Kumar et al., 2016) and iTOL v5. The
protein sequences were obtained from UniProt database''.

Thttps://bigd.big.ac.cn/gsa/
2ftp://ftp.ncbi.nlm.nih.gov/blast/db
3http://pfam.xfam.org
“http://www.ncbinlm.nih.gov/KOG
Shttp://ftp.ebi.ac.uk/pub/databases/swissprot
Chttp://www.genome.jp/kegg
"http://geneontology.org
Shttp://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
https://github.com/PacificBiosciences/ ANGEL
Ohttps://itol.embl.de
https://www.uniprot.org

Determination of Antioxidant Enzyme
Activity

Hairy root samples were fully ground into 0.2 M phosphate
buffer solution (pH 7.4) at 4°C, then the homogenates
were centrifuged at 12,000 rpm at 4°C for 10 min.
The supernatants were collected for peroxidase (POD)
and glutathione reductase (GR) activities
according to the instructions of the assay kits (Nanjing
Jiancheng, China).

measurement

Validation of DEGs With qRT-PCR

Analysis

Total RNA was extracted using RNAprep Pure Plant Kit
(Tiangen, China) according to the manufacturer’s protocol.
cDNA was obtained from 1 pg of total RNA using a
TransScript One-Step gDNA Removal and ¢cDNA Synthesis
SuperMix (TransGen Biotech, China). qRT-PCR assays
were performed using SuperReal PreMix Plus kit (Tiangen,
China) with SYBR Green method on an ABI 7500 Real-
Time PCR System (Thermo Fisher Scientific, United States).
The Ptp-Actin was used as the reference gene to normalize
the relative expression levels via 27A2C' method (Li
et al, 2016). All qRT-PCR experiments were performed
in three biological replicates. The primers were designed
using Primer Premier 5.0 (Lalitha, 2000), and listed in
Supplementary Table 1.

RESULTS

SA Effects on Saponin Accumulation in
PTHRCs

To investigate the elicitation effects of SA on triterpenoid
saponin accumulation, 35-day-old P. tunicoides hairy roots were
treated with a series of concentrations (5, 10, 20 mg/L) of SA,
then cultivated continuously for 9 days. In comparison with
the CK, the total saponin levels of PTHRCs were significantly
increased by all groups of SA elicitation (Figure 1A). The
treatments with 5 mg/L SA were most efficient, triggering
the total saponin content of PTHRCs to peak at 2.49-fold
higher than that of controls after 1 day (6.96 + 0.43 mg/g
DW). Hence, SA acted as an effective elicitor to positively
modulate triterpenoid saponin production in PTHRCs,
and 5 mg/L SA might be the optimal concentration for
further analysis.

Previous studies illuminated that the molecular structures of
P. tunicoides saponins were dominated by two representative
aglycones: QA and Gyp (Cheikh-Ali et al., 2019). Furthermore,
the trends of QA and Gyp with 1 day of SA treatments
were also considered in acidolysis extraction of PTHRCs using
HPLC (Supplementary Figure 1). Compared with control,
levels of QA (3.14 + 0.21 mg/g DW to 523 £ 0.23 mg/g
DW) and Gyp (0.77 £ 0.02 mg/g DW to 0.83 + 0.03 mg/g
DW) in SA-elicited PTHRCs (5, 10 or 20 mg/L SA for
1 day) were increased by 35.4-1259% and 20.1-28.4%,
respectively (Figure 1B). Taken together, SA promoted yields
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FIGURE 1 | Effects of SA elicitors on triterpenoid saponin production in

P, tunicoides hairy root cultures. (A) The total saponin productions in hairy root
cultures of control (CK) and elicited groups by 5, 10, and 20 mg/L SA for 1, 3,
5, 7, and 9 days. (B) The gypsogenin (Gyp) and quillaic acid (QA) contents in
hairy root cultures of CK and elicited groups by 5, 10, and 20 mg/L SA for 1
day. The values represent the mean value + SE from three biological
replicates. *, ** Indicate significant differences in comparison with values of CK
at P < 0.05 and P < 0.01 level (t-test), respectively.

of the representative saponin aglycones in PTHRCs in a
relatively short time.

Full-Length Transcriptome Analysis

To investigate how SA triggered the transcript pathway of
triterpenoid saponin biosynthesis in PTHRCs, we conducted
transcriptome analysis using combined Illumina- and PacBio
SMRT-based sequencing. Nine RNA samples from the different
time points of SA treatments (0, 8, and 24 h) were sequenced
using the Illumina Hiseq Xten platform. A total of 487,691,344
raw reads ranging from 48 to 62 million for each sample and
475,534,604 clean reads (97.5% of raw reads) ranging from 47
to 61 million for each sample were obtained. The quality of
clean reads was good with Q20 > 96%, Q30 > 91.8% (except
SA_0Oh_3) and GC 42-44% (Supplementary Table 2). To obtain
wide coverage of the P. tunicoides transcriptome, pooled samples
from different time points of SA treatments (0, 8, and 24 h) were
sequenced using the PacBio RS II platform. A total of 39.43 Gb

raw reads and 15,034,708 subreads were yielded. Then, 430,117
CCS reads were obtained after processing raw sequencing data,
including 325,905 (75.8%) FLNC reads, and 100,217 (23.3%) NFL
reads (Figure 2A). The CCS reads contained a mean length of
3,172 bp with N50 of 3,530 bp, while FLNC reads showed an
average length of 2,818 bp with N50 of 3,168 bp (Figures 2B,C).
After correcting with Illumina reads and removing the redundant
sequences via CD-Hit analysis, 35,262 non-redundant transcript
isoforms were generated.

We found that the unigene number obtained from
the PacBio transcriptome (16,375) was much lower than
that of the Illumina transcriptome (182,277) (Table 1).
However, PacBio unigenes showed a significantly longer
average length and larger N50 values when compared with
Mlumina unigenes (Table 1). We found that nearly 26.4%
of Illumina unigenes had a length of < 500 bp; whereas
only 0.3% of PacBio unigenes had lengths < 500 bp, and
approximately 96.9% genes from SMRT sequencing were
over 1,000 bp (Table 1). In addition, 65.1% of unigenes from
the PacBio platform had complete CDSs, while only 13.5%
of unigenes in the Illumina transcriptome had full-length
CDSs (Table 1).

Functional Annotation and

Categorization

Seven databases, including Nr, Nt, Pfam, KOG/COG, Swiss-
Prot, KEGG and GO, were used to annotate the functions
of all unigenes. A total of 15969 unigenes (97.5%) were
annotated from at least one database, while 8,154 annotated
unigenes were found in all databases (Figure 3A). For GO
analysis, “metabolic process” (5,779 unigenes) showed the most
enrichment pathways in biological process. “Cell” and “Binding”
represented the major groups in the category of cellular
component and molecular function, respectively (Figure 3B). For
KOG categorization, “general function prediction only” (2,055
unigenes) was the largest among 26 functional groups, followed
by “signal transduction mechanisms” and “post-translational
modification, protein turnover, chaperones” (Figure 3C). A total
of 442 unigenes were classified in the “secondary metabolites
biosynthesis, transport and catabolism” group. For KEGG
classification, the metabolism group exhibited the most genes
(Figure 3D). In this group, 168 unigenes were found to
represent “xenobiotics biodegradation and metabolism.” Only
376 unigenes were related to secondary metabolism, including
a large number of genes (22.9%) associated with terpenoid
metabolism (Supplementary Table 3).

Identification of IncRNAs

IncRNAs are key functional regulators in plant biological
processes (Long et al., 2017). In this study, 569, 1,324, 3,001, and
2,223 candidate IncRNAs were identified by the Coding-Non-
Coding-Index (CNCI), Coding Potential Calculator (CPC), Pfam,
and PLEK databases, respectively. A total of 4,678 IncRNAs were
identified from at least one database. The full lengths ranged
from 1,500 to 4,000 bp, with an average length of 2,656 bp
(Supplementary Figure 2).
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FIGURE 2 | Summary of PacBio SMRT sequencing. (A) The classification of circular consensus sequence (CCS) reads in SMRT sequencing of P, tunicoides hairy
root cultures. The percentage of full-length non chimera (FLNC), non-FL (NFL) and full-length chimera (FLC) reads. (B,C) The number and length distributions of CCS
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Comparative Analysis of DEGs

To investigate transcript changes in PTHRCs after SA treatments,
DEG profiles were determined using the FPKM mapped reads
method. The DEG numbers of three comparisons (“SA_8h
vs. SA_Oh)” “SA_24h vs. SA_Oh” and “SA_24h vs. SA_8h”)
are shown in Figures 4A,B. Compared to controls, a total
of 775 up-regulated and 811 down-regulated unigenes were,
respectively, observed after 8 and 24 h of SA treatments in
PTHRCs. Only 91 or 64 genes were up- or down-regulated
in all three comparisons, respectively. The up-regulated genes
involved in “SA_8h vs. SA_Oh” or “SA_24h vs. SA_Oh” were
further assigned in KEGG pathway analysis (Figures 4C,D).
We found a series of up-regulated genes related to secondary
metabolism, including terpenoid, flavonoid, phenylpropanoid
and glutathione. Notably, the pathway of “monoterpenoid

TABLE 1 | Comparison of unigene information from lllumina and Pacbio platform.

lllumina Pacbio
transcriptome transcriptome
data data
Unigene assembly
Total numbers 182,277 16,375
Distribution <500 bp 48,079 (26.4%) 55 (3.3%)
500-1 kbp 41,975 (23.0%) 453 (2.8%)
1 k-2 kbp 45,644 (25.0%) 4,573 (27.9%)
>2 kbp 46,579 (25.6%) 11,294 (69.0%)
Length Average 1,457 2,776
N50 2,277 3,131
N9O 653 1,731
CDS prediction
Total numbers 182,814 16,393
Type Complete 24,639 (13.5%) 10,680 (65.1%)
5 partial 12,612 (6.9%) 1,964 (12.0%)
3 partial 123,358 (67.5%) 53 (0.3%)
No affirmed 22,205 (12.1%) 3,696 (22.5%)

biosynthesis” reached the peak of factors among all KEGG
pathways in both comparisons.

DEGs Involved in the SA Signaling

Network

To illuminate how the SA signaling network functions in
P. tunicoides, DEGs involved in SA perception or transduction
pathways were analyzed based on transcriptome data. In
PTHRC:s, exogenous application of SA increased the expression
levels of two NPR genes, named PtNPRI (22,821/f3p0/2,141)
and PtNPR4 (18,761/f3p0/2,457), which are widely reported as
SA-binding proteins in model plants (Innes, 2018; Figure 5).
SA-binding protein 2 (SABP2) was also up-regulated after SA
elicitation (Figure 5). Furthermore, a series of genes encoding
reactive oxygen species (ROS) scavenging enzymes were found
in the transcriptome, including PODs and GRs. SA continuously
up-regulated four PtPODs and one PtGR, as well as promoting
enzyme activities of POD and GR at 8 h elicitation (Figure 5 and
Supplementary Figure 3).

Transcription Factors (TFs) Involved in

Saponin Biosynthesis

A total of 1,129 TF unigenes from 29 families were found in the
PTHRC transcriptome, and the three largest TF families were
related to C3H (89), NAC (56) and WRKY (56) (Figure 6A).
Compared to controls, 275 or 300 DEGs associated with TFs
were induced after 8 h or 24 h of SA treatments, respectively.
Among them, 42 DEGs were continuously up-regulated with
SA elicitation in both 8 and 24 h time points, of which
several TF families generally participate in stress response
and secondary metabolism (Endt et al., 2002), such as NAC
(9), WRKY (4), bZIP (2), HSF (2), and MYB (1) families
(Figure 6B). In particular, SA increased gene expression of
PtWRKY70 (31,348/f5p0/1,467), PtMYB4 (33,896/f3p0/1,108),
and PtWRKY40 (33,257/f4p0/1,251), suggesting that these
unigenes might participate in SA-elicited secondary metabolism.
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In the PTHRC transcriptome, six unigenes were identified as
putative genes in the MVA pathway, including one AACT
(acetyl-CoA  acyltransferase), one HMGS (3-hydroxy-3-
methylglutaryl-CoA  synthase), two HMGRs, one PMK
(phosphomevalonate kinase) and one MVD (mevalonate 5-
diphosphate decarboxylase). In addition, 17 putative unigenes
were recognized in the MEP pathway, containing eight DXSs
(1-deoxy-D-xylulose-5-phosphate synthase), two DXRs (1-
deoxy-D-xylulose 5-phosphate reductoisomerase), one MDS
(2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase), four
HDSs (4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase)
and two HDRs (4-hydroxy-3-methylbut-2-enyl diphosphate
reductase). Furthermore, 31 unigenes were putatively related to
formation of p-amyrin, including one GPPS (geranyl diphosphate
synthase), two FPSs (farnesyl pyrophosphate synthase), one SS
(squalene synthase), 22 SEs (squalene epoxidase) and six bASs
(B-amyrin synthase). Information for all of these genes is present
in Figure 7 and Supplementary Table 4. Among them, a total
of 35 DEGs were found after SA treatments in PTHRCs. We
observed that SA significantly promoted the expression levels
of one AACT, one HMGS and three DXSs (Figure 7). These
enzyme genes were all located at the early stage of MVA and MEP
pathways. Moreover, unigenes including one GPPS, 16 SE and
one bAS were rapidly up-regulated at 8 h of SA treatment. Five

SEs showed at least 10-fold up-regulation compared to control
(Figure 7), suggesting that these PtSE genes might be the key
regulatory factors in response to SA elicitation in PTHRCs.
Cytochrome P450s (CYPs) function in site-specific
oxidization of the oleanane skeleton (Banerjee and Hamberger,
2018). A total of 114 putative CYP unigenes were recognized in
transcriptome data, which belong to diverse CYP subfamilies like
CYP71A, CYP72A, CYP716A, CYP89A, and CYP94A. Given
that CYP72A and CYP716A subfamilies are primarily involved
in the biosynthesis of triterpenoid saponin diversification
(Ghosh, 2017), we found 29 genes belonging to CYP72A
subfamilies, while only two genes belonged to CYP716A families
(Supplementary Table 4). In total, 21 CYP72A genes were
significantly up-regulated after 8 h of SA applications, and
PtCYP72A219 (22,782/f10p0/2,106) showed the largest increase
compared to controls (206.8-folds) (Figure 7 and Supplementary
Table 4). Phylogenetic trees were inferred for PtCYP72A219
and eight known CYP72As that participated in terpenoid
metabolism, and PtCYP72A219 showed the highest similarity
(54.7%) to MtCYP72A58 in Medicago truncatula (Figure 8).

qRT-PCR Validation of DEGs

To validate the RNA-Seq transcriptome results, 10 candidate
DEGs involved in the SA signaling network and saponin
biosynthesis in PTHRCs were selected for measurement of
transcript levels by qRT-PCR analysis, including PtNPRI,
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FIGURE 4 | The distribution and classification of differentially expressed genes under SA treatments. (A,B) Venn figures represented the numbers of up-regulated (A)
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PtNPR4, PtAACT, PtHMGS, PtDXS, PtSE, PtbAS, PtCYP72A219,
PtNAC29, and PtWRKY70. The fold change of qRT-PCR and
RNA-seq data were compared. As shown in Figure 9, the relative
expression results of these 10 candidate DEGs were generally
consistent with the RNA-seq values. In particular, the expression
levels of PtSE, PtbAS, PtCYP72A219, PtNAC29, and PtWRKY70
increased significantly at the early stage of SA treatments.

DISCUSSION

As sequencing technologies continue to develop, the PacBio
SMRT platform is becoming increasingly popular for full-length

sequencing applications in secondary metabolism. For instance,
20.37% of FLNC transcripts obtained from SMRT sequencing
were putatively novel genes in pitaya fruit, and six novel genes
that might be involved in betalain biosynthesis were identified
(Wu et al, 2020). Herein, we performed the first full-length
transcriptome analysis of P. tunicoides using a combination
of Mlumina RNA-seq and PacBio SMRT sequencing. A total
of 430,117 CCS reads were obtained with SMRT, containing
35,262 non-redundant transcripts (Figure 2). The proportion
of long transcript reads and full-length genes from SMRT
sequencing were much higher than those of Illumina RNA-
seq analysis (Table 1), which was consistent with other reports
(Chen et al.,, 2019; Wu et al.,, 2020), indicating that SMRT has
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a prominent advantage in gene length and CDS completeness
prediction. Based on the long transcript reads and low error
rate, 97.5% of unigenes were successfully annotated from at least
one database (Figure 3A). GO analysis revealed that “metabolic
process” had the most enriched pathways in biological process
(Figure 3B), while KEGG annotation showed 22.9% of genes
in secondary metabolism associated with terpenoid metabolism
(Supplementary Table 3), suggesting abundant genes were
involved in primary and secondary metabolism, and the majority
of pathways of secondary metabolism were related to terpenoid
biosynthesis in P. tunicoides.

SA acts as a critical regulator to modulate hypersensitive
response to biotic and abiotic stresses (Lu et al., 2016). Few

transcriptome studies have been reported on the relationship
between SA-elicited terpenoid biosynthesis and the molecular
network. Ye et al. (2020) found that exogenous application of
SA enhanced terpene trilactone levels in Ginkgo biloba leaf;
RNA-seq showed 249 DEGs between SA treatment and control,
containing candidate structural genes (HMGR, CYP450) and
TFs (MYB and WRKY) involved in terpene synthesis (Ye et al.,
2020). Herein, the gene numbers and pathway enrichments
of DEGs were respectively obtained from five divided groups:
“SMRT+RNA-seq,” “single RNA-seq,” “overlap,” “unique in
SMRT” and “unique in RNA-seq” (Supplementary Table 5). We
noticed these five groups all exhibited the same tendency in
comparison of up-regulated and down-regulated gene numbers
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under 8 or 24 h of SA treatments compared with the control
(Supplementary Table 5). Besides, the enriched GO and KEGG
terms of DEGs from both “SMRT+RNA-seq” and “single RNA-
seq” were essentially the same in “SA_24 h vs. SA_0 h,” while
different in “SA_8 h vs. SA_0 h” (Supplementary Table 5). These
results indicated that the pathway enrichment results might be
distinctively analyzed by next- or third-generation sequencing
platforms at different stages of SA treatments. KEGG analysis
of the up-regulated DEGs revealed that “terpenoid biosynthesis”
was the highest among all pathways (Figures 4C,D), indicating
that SA enhanced the expression of terpenoid metabolism in
PTHRCs. Additionally, we noticed several DEGs were enriched
in the biosynthesis pathway of other secondary metabolites,
including phenylpropanoid, flavonoid and isoquinoline alkaloid
(Supplementary Table 3) consistent with Shan et al. (2020),
suggesting SA might influence multiple processes of secondary
metabolism in hairy roots.

NPRs were recently highlighted as the receptor of SA;
NPR1 functions positively in SA perception, while NPR3/4
has negative roles in Arabidopsis (Innes, 2018). Here, the
expression levels of both PINPRI and PtNPR4 increased with
SA elicitation, suggesting that NPR-related perception might
also exist in P. tunicoides. Furthermore, SA is also known
to exhibit crosstalk with ROS signaling pathways (Tewari
and Paek, 2011); endogenous ROS levels were regulated by
diverse antioxidant enzymes, such as superoxide dismutase
(SOD), catalase (CAT), POD, and GR (Zhou et al, 2017;
Buraphaka and Putalun, 2020). The POD and CAT activities were
up-regulated in SA-elicited triterpenoid synthesis in Centella

leaves (Buraphaka and Putalun, 2020); the involvement of nitric
oxide (NO) in SA-induced ginsenoside accumulation might be
mediated by multiple antioxidant enzymes (Tewari and Paek,
2011). In this study, we found that both transcript profiles and
enzyme activities of POD and GR were continuously enhanced
after SA treatments, which indicates that ROS might participate
in the SA signal cascade in PTHRCs.

As the rate-limiting enzymes in triterpenoid skeleton
biosynthesis, AACT and DXS represent the initial steps in MVA
and MEP pathways, while SE and bAS catalyze the last two steps
in oxidation and cyclization of squalene to B-amyrin (Moses
et al., 2014). Previous studies showed that SA stimulated the
expression of these key enzyme genes, thus resulting in terpenoid
accumulation in plants (Pu et al., 2009; Wu et al., 2020). Here,
numerous genes encoding these enzymes were up-regulated in
response to SA in PTHRCs (Figure 7). We observed that PtSEs
showed the highest gene numbers associated with formation
of the triterpenoid skeleton, and most PtSEs were significantly
up-regulated after SA treatments in PTHRCs (Supplementary
Table 4). Previous studies illuminated that SA stimulated the
gene expression of SE in Withania somnifera (Kushwaha et al.,
2019) and Nigella sativa (Elyasi et al., 2016), and overexpression
of PgSEI significantly increased ginsenoside production in
transgenic roots (Han et al., 2020). Therefore, SA triggers the
enzymatic network involved in saponin biosynthesis, and the
oxidation of squalene might be the key step in these processes.

CYP450s represent one of the largest enzymatic families,
and are essential in terpenoid skeleton diversification (Banerjee
and Hamberger, 2018). Members of the CYP72A subfamily
are involved in oleanolic acid-derived saponin biosynthesis
(Seki et al., 2015). MtCYP72A68 catalyzes the carboxylation of
oleanolic acid at the C-23 position to form gypsogenic acid in
Medicago truncatula (Tzin et al., 2019), while GuCYP72A154
oxidizes at the C-30 position of 11-oxo-B-amyrin to produce
glycyrrhetinic acid in Glycyrrhiza uralensis (Seki et al., 2011).
Li et al. (2017) reported that Meyerozyma guilliermondii
elicitation of G. wralensis increased glycyrrhizin acid by
enhancing CYP72A154 expression and endogenous SA
contents. We also observed a series of SA-elicited genes
from the CYP72A family in PTHRCs, with a high similarity
between PtCYP72A219 and MtCYP72A68, suggesting that
PtCYP72A219 likely participates in the SA-elicited saponin
biosynthesis pathway.

TF families have essential roles in transcriptional regulation
of secondary metabolism through modulating downstream
gene expression associated with terpenoid biosynthetic enzymes
(Endt et al,, 2002). PEWRKY4X positively regulates ginsenoside
biosynthesis via binding to a W-box element in the promoter
of PgSE (Yao et al, 2020), while AaNAC2/3/4 binds to a
28-bp fragment of the NAC binding site (NACBS) in the
AaTPS1 promoter to accumulate the kiwifruit monoterpene
volatiles (Nieuwenhuizen et al., 2015). Here, we observed that
a series of TF genes from the WRKY and NAC families
were up-regulated after SA treatments, and expression
of PtWRKY70 (31,348/f5p0/1,467) showed the largest
increase. Interestingly, we also found W-box and NACBS
cis-elements in promoters of SA-elicited genes containing
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AACT, HMGS, DXS, SE, and CYP72A based on full-length
transcriptome data (Supplementary Table 6), suggesting
a possible interactive relationship between TFs and key
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FIGURE 10 | The proposed transcriptional regulatory network for SA-elicited
saponin biosynthesis in P tunicoides hairy root cultures.

enzyme genes involved in SA-elicited saponin metabolism in
P. tunicoides.

In summary, we concluded that SA significantly increased the
triterpenoid saponin accumulation in P. tunicoides. The first full-
length transcriptome of P. tunicoides was produced, providing
a prominent advantage in gene length and CDS completeness
prediction. DEGs related to SA-elicited saponin biosynthesis were
identified on the transcriptome. Finally, a putative regulatory
chain was illustrated, involving elicitor perception (NPRs),
signaling cascade (ROS), TF regulation (WRKY, NAC) and
enzymatic catalysis (AACT, DXS, SE, CYP72A) (Figure 10).
These results improve the comprehensive understanding of
the SA-elicited triterpenoid saponin biosynthesis pathway,
and provide guidance for improving saponin production of
P. tunicoides.
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