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In the past couple of decades, molecular ecological techniques have been developed to elucidate microbial diversity
and distribution in microbial ecosystems. Currently, modern techniques, represented by meta-omics and single cell
observations, are revealing the incredible complexity of microbial ecosystems and the large degree of phenotypic
variation. These studies propound that microbiological techniques are insufficient to untangle the complex microbial
network. This minireview introduces the application of advanced mathematical approaches in combination with
microbiological experiments to microbial ecological studies. These combinational approaches have successfully
elucidated novel microbial behaviors that had not been recognized previously. Furthermore, the theoretical perspective
also provides an understanding of the plasticity, robustness and stability of complex microbial ecosystems in nature.
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The complexity of an ecosystem was well recognized by

Charles Darwin, who described the biosphere in the words

“tangled bank” (7). Application of molecular techniques

to microbial ecology is revealing the incredible diversity

and variety of interspecies relationships in the microbial

world. These achievements demonstrate that micro-

environments are markedly complex systems. However, even

a model ecosystem composed of three species has been shown

to be considerably complex. As a representative example

describing the three-species relationships, Paine reported that

selective predation by a sea star Pisaster maintained the

coexistence of two species of shellfish that competed with

each other in a bay (48). A bacteriological study demonstrated

the complexity of bacterial relationships as being similar

to rock-paper-scissors among three strains, i.e., a colisin-

producing strain, a colisin-resistant strain and a colisin-

sensitive strain (37). A series of recent studies attempted to

assess network relationships among members in a stable

mixed culture system composed of four bacterial species (21,

34, 35, 70). These studies indicated that conventional

experimental researches should be complemented by other

approaches to comprehend complex ecosystems.

Mathematical modeling has been traditionally applied to

predict population dynamics and to evaluate the carrying

capacity of environments since the 19th century. Conse-

quently, microbial growth has been well documented by

logistic curves. The Lotka-Volterra equations proposed in the

20th century are widely utilized to describe the population

dynamics of ecosystems containing competitive interactions

or a predator-prey system. Currently, progress in computers

is allowing mathematical analyses to deal with a variety of

complex biological behaviors, such as population dynamics,

circadian rhythm, morphogenesis, genetic evolution and

immune system. Mathematical approaches will potentially

help to understand ecosystems, to predict future behaviors

and to propose new hypotheses through model construction

and model analysis on the basis of experimental data.

Mathematical interpretation will help to develop a microbial

ecological theory.

We review the application of advanced mathematical

approaches to microbial ecological studies and provide a

theoretical perspective. “Feedback between ecological and

evolutionary dynamics: experimental study using planktonic

microorganisms” introduces a series of studies on a predator-

prey system by laboratory experiments and mathematical

modeling to elucidate the adaptive changes in microbial

phenotypes that drive population dynamics. “Trends in

understanding the dynamics of microbial ecosystem” de-

scribes an example applying kinetic modeling to a chemo-

stat culture. Mathematical modeling using certain para-

meters is ineffective to elucidate microbial behavior not

previously recognized. “In silico biofilm as a tool for

investigation of microbial eco-system” overviews combina-

tional approaches of laboratory experiments and in silico

analyses by reviewing studies on multispecies biofilm.

Finally, “Complex-systems biology for plasticity-diversity

problem in ecosystem” proposes practical approaches to
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understand the plasticity, robustness and stability of complex

microbial ecosystems from a theoretical point of view.

It is our hope that this review will enhance communication

among microbiologists, ecologists and mathematicians for

mutual understanding to develop new concepts in their study

fields.

Feedback between ecological and evolutionary dynamics: 

experimental study using planktonic microorganisms

Understanding the pattern of temporal changes in organism

abundance has been attracting the attention of ecologists

although, due to various aspects of research capacity and

technical difficulties, our understanding of population

dynamics is still limited, especially for wild populations. For

example, Kendall et al. (36) conducted a meta-analysis to

identify the qualitative nature of dynamics in wild popula-

tions, and found that about one third of wild populations

fluctuate in abundance and the remaining two thirds are stable.

We know very little about how these qualitatively different

population dynamics are shaped in nature. Understanding

population dynamics involves three technical steps (62): [1]

describing the pattern of population dynamics by observation

studies, [2] finding the mechanisms that drive the population

dynamics by, for example, experimental studies, and [3]

formalizing the mechanisms into a mathematical model and

reproduce the observed pattern by the model. It is easy to

imagine the difficulty of performing all three steps, and indeed

we do not have many examples of research that successfully

explained population dynamics in nature. Studying the

dynamics of populations reared in laboratory conditions can

provide the principles of population dynamics, which will

hopefully help to understand population dynamics in nature.

Yoshida et al. have been using planktonic microorganisms

cultured in the laboratory as a model for studies of population

dynamics.

The conventional analysis of population dynamics assumes

that organisms have fixed traits or a constant phenotype so

that the strength of interactions between species does not

change over time. For example, different prey species could

have a different extent of defense against a specific predator,

resulting in different strengths of the predator-prey interaction

depending on the specific predator and prey pair, but this

interaction strength would not change and would be constant

for the pair. However, evolutionary ecological studies have

shown that organisms can indeed change their phenotype

traits in response to changes in ecological and environmental

conditions (59). Organisms have the ability to adaptively

change their phenotype by means of rapid microevolution

using genetic diversity within a population or phenotypic

plasticity without changing the genetic structure of a

population. The adaptive change of a trait can result in a

change of interaction strength if the trait is associated with

the interaction, which suggests that we need to understand

how the adaptive change of traits can alter the pattern of

population dynamics.

We have shown the influence of adaptive change on

the population dynamics by laboratory experiments using

planktonic microorganisms. Our study system is a predator-

prey system that consists of an algal prey (Chlorella vulgaris)

and a rotifer predator (Brachionus calyciflorus), reared

in a chemostat culture. C. vulgaris reproduces only asexually

so that a population is a collection of clones. B. calyciflorus

can reproduce asexually and sexually, but our laboratory

population evolved to reproduce only asexually, because the

turbulent condition in the chemostats prevented mating

between males and females (14).

We found that our algal population had genetic diversity

with regard to defense against rotifer predation (72). This

defense is associated with competitive ability to obtain a

limited nutrient (i.e. nitrate in our system) and there is a

tradeoff relationship between defense and competitive ability.

A defended clone is advantageous when rotifer predators are

abundant, whereas an undefended clone is advantageous

when predators are scarce and competition for the limited

nutrient is severe. This genetic diversity of the algal

population was a key determinant of population dynamics of

the algal and predator populations (71). By manipulating

algal genetic diversity, we were able to show qualitatively

different population cycles of the predator-prey system. If

the algal population consisted of a single clone and thus there

was no genetic diversity, i.e., the raw material for evolutionary

changes, the predator-prey system showed shorter population

cycles (ca. 7 to 10 days) with regular phase lag between

predator and prey cycles as in the Lotka-Volterra predator-

prey model. On the other hand, if the algal population

consisted of multiple clones that had a tradeoff between

defense and competitive ability and thus there was genetic

diversity that allowed evolutionary responses, the system

showed longer population cycles (ca. 30 to 60 days) with the

unusual, out-of-phase lag between predator and prey cycles.

Thus, the algal genetic diversity markedly altered the pattern

of population dynamics of the algal-rotifer system.

The evolutionary change of the algal population was

revealed by a newly developed molecular method that can

quantify the relative frequency of a pair of different clones

(43). When the rotifer predator was in low abundance and

algal abundance was high, which implies severe competition

for the limited nutrient, the undefended clone with superior

competitive ability was selected for and increased in

frequency within the algal population. When the rotifers

increased their abundance and total algal abundance declined,

the defended clone with inferior competitive ability was

selected for and was eventually fixed in the population

because rotifer abundance was kept high for the rest of the

experiment. This study clearly showed the evolutionary

change of the algal population that has been thought to occur

and that produced a change of population dynamics in the

above-mentioned experiment (71).

The evolutionary change of the algal population also

produced other qualitatively different population dynamics

(73). In regular population cycles, an increase of predator

abundance should correspond to a decrease of prey abundance

or vice versa, although there is often a time lag in the response.

Our predator-prey system showed that algal abundance was

almost constant whereas rotifer abundance fluctuated greatly,

so that prey abundance did not respond to the increase or

decrease of predator abundance. If we did not have prior

information that the rotifer was an actual predator of the alga

and there was no other organism contained in the chemostats,
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we would have concluded that there was no predator-prey

relationship between the rotifer and the alga because of the

apparent non-response of the alga to the rotifer predator. Our

mathematical model showed that the evolutionary change of

the algal population can produce a strange pattern of

population dynamics if defended and undefended algal clones

compensate for the change of rotifer density with the decrease

of one type well balanced by the increase of another type.

The genetic diversity and consequent evolutionary changes

of the algal population altered the population dynamics of

the algal-rotifer system markedly. The change of rotifer

density produced selection pressure on the algal population

that responded evolutionarily using genetic diversity. Thus,

there was a tight interaction between the trait-level dynamics

(i.e. evolutionary change) and the population-level dynamics

(i.e. population cycles). Changes in one level resulted in the

response of the other level, which produced a feedback to

the response of the original level. Recognizing the feedback

relationship among different biological levels was necessary

to understand our algal-rotifer system with regard to dynamics

at trait and population levels. This understanding clearly

needs insight beyond reductionism and we could not

accurately understand the predator-prey system if we looked

at the hierarchic system unidirectionally (Fig. 1).

Although we observed feedback between different biolog-

ical levels (i.e. phenotype and population levels) in our simple

experimental system, which consisted of only a pair of

interacting species, whether such feedback actually works in

a wild community that has more interacting species is

obviously the next question to address. If adaptive changes

of one species somehow result in alterations of the biological

community or environmental conditions, and if the altered

community or environment possesses new selection pressure

that feeds back to the original species and leads to adaptation

of the species, there will be feedback among the different

biological levels (56). Some recent studies showed part of

this feedback relationship, and only a few studies have

elucidated the whole picture of the feedback within a single

system (13, 17). Thus, we are still far from concluding that

the feedback among different biological levels is universally

important in wild systems. This is where laboratory experi-

ments can contribute by elucidating whether and how

feedback works in different contexts and in different types

of biological communities. For example, compared to the

feedback in predator-prey systems, our understanding is

very limited in competitive systems where adaptation of

competitors may have an influence on the competitive

outcome of interacting species. Experimental studies using

microorganisms are a promising approach because adaptive

responses of microorganisms tend to be rapid and more likely

result in changes in population abundance, either of which

makes it easier to examine the dynamic nature of the feedback.

Trends in understanding the dynamics of microbial 

ecosystem

It is a great challenge for microbial ecologists to understand

and control microbial ecosystems, which is also desirable

for efficient bioremediation, wastewater treatment, agricul-

ture field, human health, and etc. Microbial populations

affect each other and build up their ecosystem. The

microbial ecosystem is affected by its surrounding environ-

ment, and vice versa (10, 22). Although the bacterial

community is constructed under environmental conditions

(self-organization), the community structure is not stable, but

fluctuates (bacterial community succession). It is predicted

that the stability/sustainability of an ecosystem is maintained

by the dynamics of the bacterial community structure

(dynamic equilibrium mechanism). However, we do not know

the basis of the self-organization and dynamic equilibrium

mechanism.

It has been reported that seasonal marine bacterial

succession in the community composition was robust (18).

What is the driving force of community succession and its

robust seasonal cyclicity? By analyzing the relationships

among bacteria, eukaryotes, and environmental factors,

Gilvert et al. suggested that interactions were strongest within

domains of bacteria and eukaryotes rather than between them,

and correlated relationships were stronger between taxa than

between environmental variables. This may indicate that

biological rather than physicochemical factors may be more

important in defining the fine-gain community structure. It

is suggested that robust seasonal cyclicity is also self-evident

in the interactions between members of the community.

Laboratory-based microbial model systems have been

shown to be useful in addressing ecological questions (24).

As a model microbial ecosystem, a chemostat bioreactor was

constructed with aquifer soil as the inoculum and phenol as

the sole carbon and energy source, resulting in an enrichment

culture of soil-bone phenol-degrading bacterial communities

(15, 16). Kinetic parameters, KS and KI values, for phenol

Fig. 1. Simplified schemes of the reductionism view (a) and
bidirectional, feedback view (b). In biological communities such as
predator-prey systems, the reductionism view provides unidirectional
cause-effect relationships, for example, between traits of interacting
species and the nature of interaction/population dynamics driven by
the interaction. In reality, however, the relationship between the two
levels (components and the whole system) tends to be bidirectional
and to involve feedback. For example, trait changes can influence the
interaction and population dynamics that in turn shape how the trait
changes.
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in the chemostat culture were analyzed according to the

method described previously (15, 65) (Fig. 2). KS is the

half-saturation constant and KI is the inhibition constant.

These KS and KI values were stable at 3.1±0.65 µM and

3,600±290 µM, respectively, until day 10. Interestingly, these

parameters oscillated; in particular, KI values changed

between 3,400 µM to 170 µM for the next 20 days. Finally,

KS and KI values were stable at 10.1±0.51 µM and 150±17

µM, respectively. These parameters oscillated from the

position of low KS and high KI to that of high KS and low

KI, although the KS value is usually stable at a lower level

in a chemostat culture. Bacterial community structure was

analyzed by culture-dependent and -independent techniques.

Phylogenetic analysis targeting 16S rRNA genes of strains

isolated from the chemostat culture revealed that bacterial

community succession occurred (Fig. 3), e.g., Pseudomonas

and Arthrobacter genera were initially the dominant bacteria

and then the Acinetobacter genus became dominant from

day 10, while the Variovorax genus, which was initially

one of the minor populations, became dominant after day 32

(Fig. 4). Intra-genus succession was also observed in the

Acinetobacter, Pseudomonas, Variovorax and Ralstonia

genera. DGGE analyses also showed bacterial community

succession (16). These results revealed that the dynamic

Fig. 2. Kinetic parameters for phenol of chemostat bioreactor.
Number means the sampling date.

Fig. 3. An unrooted neighbor-joining tree based on the nucleotide sequences of 16S rRNA genes from strains isolated from chemostat bioreactor.
Purple, yellow, orange and green clusters indicate the clusters of strains isolated on day 0, day 3, day 10 and day 32, respectively. Numbers at the
branch nodes are bootstrap values (per 1,000 trials); only values >500 are indicated. Bar represents 0.02 substitutions per site.
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change of the microbial ecosystem occurs at both community

and intra-genus levels. Furthermore, it was indicated that the

kinetic parameters for phenol of the Variovorax strains

corresponded to those of the bioreactor on day 31 to day 49

(16). These results suggest the following: [i] the initially

most abundant bacteria do not maintain their dominance; in

parallel, a minor population then becomes dominant, [ii]

however, the function of the system (complete degradation

of phenol) is maintained, resulting in a sustainable ecosystem.

Although the mechanism for complex bacterial community

succession is not known yet, it was demonstrated that the λ

value is a useful parameter for predicting a dominant strain

in a two-strain mixed culture (21). The λ value is calculated

according to the formula; λ=(KS×D)/(μ−D), where KS is a

half-saturation constant (mg L−1), D is the dilution rate (h−1),

and μ is the growth rate constant (h−1). This means that a

strain exhibiting a lower λ value will become dominant

in a two-strain mixed culture. However there is need to

investigate whether the λ value theory is valid for a mixed

culture of several strains. Furthermore, the properties of a

given bacterium as a substrate are not sufficient for

understanding the complex system, and several analyses

based on population-population interactions may be needed

to understand the ecosystem network, including the metabolic

process.

In silico biofilm as a tool for investigation of microbial 

eco-system

General introduction to mathematical modeling.

Recently, mathematical modeling together with computer

simulation, the so-called “in silico” approach, has come to

the attention of the field of biology. In this section, we discuss

the potential and challenges of the “in silico” approach as a

tool for investigating the microbial eco-system for better

understanding of the system, focusing on creating virtual

biofilm as an example.

In general, mathematical modeling of a natural system is

the process of creating a mathematical representation of a

natural phenomenon and attempting to match experimental

observation with symbolic statement. Mathematical modeling

in the science and engineering field is used generally for the

following two purposes: “Understanding” and “Prediction”

of phenomena in natural or engineered systems. The main

engineering objective of modeling is the “prediction” of

processes to be investigated and controlled. On the other

hand, the scientific objective of modeling is “integrative

understanding” of the system to be investigated by verifying

hypotheses because modeling provides an explanation of the

system from a more theoretical point of view. The advantages

of in silico experiments are well known as follows. First,

they are usually much cheaper and faster than a laboratory

experiment and thus can be repeated easily. Second, the

experiments can be conducted under ideal conditions and are

not subject to disturbing external influences. Third, an

interesting process can be isolated easily. Fourth, the system

behavior can be investigated under extreme conditions, which

are often difficult to generate in a laboratory experiment.

Beyond these advantages, constructing an artificial natural

system and comparing these data with the real system can

be a process in the integrated understanding of the complex

natural system.

Modeling of biofilm. Biofilm developed in various natural

environments is a dynamic and highly complex system,

composed of multispecies microorganisms (8). Their growth

is characterized by complex three-dimensional structures,

including channels, voids, towers, and mushroom-like pro-

trusions, and their changing characteristics in response to

environmental conditions (60). In this decade, there have

been marked advances in experimental techniques for the in

situ identification of microbial and physical structures of

biofilm. Combined use of several techniques, such as

fluorescent in situ hybridization, autoradiography techniques,

and micro-sensors, enables in situ identification of microbial

types, functions, and their activities at a single cell level (46,

58). Furthermore, having been recently developed and widely

spreading in the field of microbial ecology, omics approaches

will provide huge amount of data on individual components

of the biofilm system (46).

Modeling a biofilm system describes mathematically the

structure and activity of biofilm and to be able to dynamically

represent a biofilm structure from the initial environmental

conditions. Modeling of biofilm represents [i] heterogeneous

morphology, [ii] spatial distribution of multiple species of

microbial cells and their activities resulting from cell growth

and decay, [iii] production of extracellular polymetric sub-

stances (EPS) and their distribution, [iv] spatial distribution

of multiple soluble substances resulting from consumption

and production by metabolic activity, and transportation by

diffusion and convection, [v] hydrodynamics that affect mass

transport efficiency and the physical structure of the biofilm,

[vi] concentration of bulk liquid phase resulting from the

above phenomena (8).

Stochastic discrete model. To capture such a complex

structure of biofilm, stochastic multi-dimensional, and

bottom-up type models have been developed, such as grid-

based modeling, commonly know as CA (cellular automata)

(5, 45, 54), continuum type modeling (2), individual-based

Fig. 4. Image of bacterial community succession. For example, filled
diamonds: first dominant (Pseudomonas), open squares: second
dominant (Acinetobacter or Ralstonia), filled circulars: third dominant
(Variovorax). Practical population densities of Pseudomonas,

Acinetobacter or Ralstonia in the chemostat bioreactor are unknown
but that of Variovorax is shown (17).



HARUTA et al.290

modeling (IbM) (38, 39, 51), and hybrid individual/

continuum modeling (1). These models represent a discrete

dynamic system whose behavior is completely specified in

terms of a local relation, and are based on the idea that the

complex behavior of a total system can be derived from

simple local rules and interactions among the behaviors of

elements. The stochastic discrete model compared with the

deterministic model (such as ordinary or partial differential

equations [ODE/PDE] based model) rather fits the modeling

of a non-linear biological phenomenon, especially in the

field of ecology, composed of many elements affecting each

other, because the stochastic discrete model represents a

self-organizing complex system.

Among them, IbM is appealing due to its more realistic

representation of biomass division and spreading, which

describes a biomass (a bacterial cell or bacterial biomass) as

spherical particles with positions in space defined by

continuous coordinates. Each biomass particle contains an

active biomass of a single microbial type surrounded by an

EPS capsule produced by the biomass within the particle.

Each biomass particle grows and produces EPS. The biomass

particles divide into two daughter particles when their size

exceeds a critical size as a result of growth. Each “type

(species)” has its own set of parameters. The spheres move

when they are too close, resulting in biofilm spreading. In

this model, the pressure that builds up due to biomass growth

is relaxed by minimizing the overlap of spheres. Biomass-

based IbM using larger biomass particles (10 to 20 µm in

diameter) is more realistic for general use rather than treating

a bacterial cell as a minimum unit, which sometimes requires

too much computer power, while maintaining the moving or

pushing principle for biomass redistribution. Fig. 5 describes

IbM representing a microbial granule, a type of biofilm

resulting from self-aggregation and growth as an example

(42).

In the model, the calculations of soluble substrate profiles

and biomass growth are separated. The biomass (particle)

consumes the substrate in states calculated by solving the

appropriate discrete diffusion/reaction equations (diffusion:

usually according to Fick’s law; and reaction and growth:

usually according to the Monod equation), but division, death

and detachment are treated as stochastic events. In contrast,

solute substrate profiles are solved by using differential

equations based on mass balances that contain well-known

biological reaction kinetics and mass transport terms. Such

an approach acknowledges the enormous difference in size,

and the time scale over which change can be observed

between the biomass (cell) and substrate (molecule). More

detailed descriptions of these models are shown in previous

papers (51, 53, 67, 69).

Combined approach with laboratory experimentation.

A considerable number of studies have been conducted on

the application of multi-dimensional models to analyze the

various types of biofilm. They focus on various aims, for

example, the analysis of detachment (6), the effect of EPS

production on the community structure (69), the biofilm

formed in membrane-aerated bioreactors (41), granular

aggregate formations (42, 68) and biofouling (52) in the

wastewater treatment process, the biofilm formed in microbial

fuel cells (50), and biofilm development in the bioleaching

process (47). Although there are various types of experimental

techniques, which enable direct measurement of the microbial

community, there have been limited numbers of studies on

the experimental verification of multi-dimensional biofilm

model predictions (41, 66). Furthermore, very few attempts

have been made at evaluating the microbial eco-system in

biofilms by combining the strategy of experimental and

simulation analysis (42).

This is probably because mathematical modeling and

computer simulation are not familiar to most microbiologists.

The models that have been developed so far are not sufficient

in terms of simplicity and capability for general use. There

remain several limitations: [i] computer power, although

current computational efficiency is much higher than before;

[ii] algorithms and modeling due to the problem of realisti-

cally not knowing all the components that exist in the biofilm

to apply to the model; [iii] not knowing all the parameters

precisely. Therefore, such models that represent complex

systems of the microbial community include many simplified

assumptions in order to capture a fraction of the biofilm

features. This does not imply that in silico biofilm must be

identical to “real biofilm.” Models can and should be

improved through validation with laboratory experimental

data and verification of a hypothesis (Fig. 6).

In explaining synthetic biology, a phrase often cited,

Richard Feynman wrote, “What I cannot create, I do not

Fig. 5. IbM model description (a) 2-D biofilm (granular type microbial aggregate is shown) in a square computational domain; (b) square grid
elements discretizing the space, each containing several biomass particles; (c) individual biomass particles of different possible biomass types. All
biomass particles within a single grid element experienced the same substrate concentrations (44).
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understand.” Instead of constructing “real biofilm,” creating

“virtual biofilm” through mathematical modeling and com-

putational simulation, followed by comparative analysis

with laboratory experimental data, would provide a better

understanding of the general rules that govern the develop-

ment of the biofilm eco-system. Therefore, the goal of this

approach is to reconstruct biofilm with the minimum number

of factors: that is to say, “What I understood, I can create.”

Complex-systems biology for plasticity-diversity 

problems in ecosystem

Traditionally, population dynamics have often been

adopted in theoretical studies of the ecosystem, in which each

individual has no internal degree of freedom, and just the

number of population of each species (or types) is involved.

As already pointed out in the section “Feedback between

ecological and evolutionary dynamics: experimental study

using planktonic microorganisms”, such treatment has a

limitations when discussing plasticity in phenotypic traits. In

response to environmental changes, the phenotype is often

changed, and this changeability is defined as plasticity. As a

response to the environment is an essential feature of an

organism, which influences the growth rate and the nature

of interactions in population dynamics, phenotypic plasticity

need to be taken into account seriously (19, 66). Here, if all

the individuals belonging to the same genotype showed an

identical response to the environmental change, then in

considering plasticity, just the introduction of additional

parameter(s) to the population dynamics would be sufficient,

controlling the growth rate and species-to-species interaction

of each species and depending on the plastic change of the

phenotype.

However, experiments in bacteria and other organisms

have elucidated that there is a large degree of phenotypic

variation, even among isogenic individuals (3, 9, 11, 57).

Hence, phenotypes are distributed even in isogenic individ-

uals sharing the same environmental condition. An individual-

based model with internal phenotypic variables is often

postulated, as also referred to in the section “In silico biofilm

as a tool for investigation of microbial eco-system”.

Even though such non-genetic phenotypic variation itself

is not inherited by offspring, the degree of variance of

phenotypes generally depends on genotypes, and thus can

be inherited. Hence, it is interesting to study the possible

relationship between isogenic phenotypic variance and evo-

lution. Indeed, recent experimental, numerical, and theoretical

studies have suggested that this phenotypic variation of

isogenic individuals is proportional or positively correlated

with the evolution speed of such phenotypes (26, 30, 55).

This correlation may not be so surprising to physicists, as

the proportionality between fluctuation and response against

external change has been established in thermodynamics. By

extending the fluctuation-response relationship in physics, it

is proposed that phenotypic plasticity (changeability) is

correlated with the variance of (isogenic) phenotypic fluctu-

ation, as a consequence of the robustness of such phenotypes

against external or internal perturbations (27, 29). Further-

more, recent numerical experiments have demonstrated the

relevance of phenotypic plasticity by fluctuation to cope with

environmental variations (28).

Although this isogenic phenotypic variance gives one

quantitative measure of plasticity, further important steps are

still missing to deal with the complexity of the ecosystem.

The first is the discrete and discontinuous change in

phenotypes. Environmental change often leads to such a

change in phenotypes, as in polyphenism in the desert locust,

Rotifer, Daphnia, and so forth (19). In terms of dynamical-

systems theory, such change can be regarded as a result of

bifurcation by representing a relevant environmental con-

dition as a bifurcation parameter (such as temperature,

population density of some species, and so forth). Indeed, in

bifurcation, a slight change in a parameter can result in

discontinuous change of the state value in the system in

question. In this case, the plasticity concerns with how far

the system’s parameter is from such a bifurcation point.

So far, we have discussed phenotypic plasticity against

environmental change. To discuss the coexistence of diverse

species under a given environmental condition, however, we

need to take interaction among individuals into account,

which is essential in a complex ecosystem that consists of a

large number of individuals. Depending on the population of

each species or type, interaction changes alter the environ-

mental condition of each individual. This change in interac-

tion may introduce a continuous or discrete change in the

phenotype. A typical example is the change in phenotype

depending on population density, as typically seen in

polyphenism, depending on the density of the same species

or of predator species.

The above two points, the change in phenotype by

bifurcation and by interaction, are indeed integrated. Yomo

and Kanko proposed ‘isologous diversification’, in which

phenotypes of isogenic individuals are bifurcated into two

(or more) groups, as a result of interaction with other

individuals (26, 31, 32). Here, the interaction influences the

developmental dynamics to shape the phenotype, and it works

as a bifurcation parameter. Bifurcation to two (or more)

phenotypic types occurs as a result of population change.

Fig. 6. Schematic image featuring comparative analysis of the in
silico approach and a laboratory experiment. The scheme of this
analysis is 1) modeling of biofilm followed by computer simulation,
2) validation of the simulated data with the experimental data and
verifying the hypothesis, and 3) reconstruction of the model followed
by comparison with experimental data. This cycle continues to identify
the essential factors for biofilm development.
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When individuals of a novel distinct phenotype emerge,

interaction between individuals of different phenotypes is

changed, so that the interaction and diversification of types

influence each other. In a certain condition, this mutual

feedback leads to the stabilization of each distinct phenotype,

as well as the population density of each type.

This isologous diversification was originally proposed for

cell differentiation of a multicellular organism due to cell-

cell interaction but, as a concept, it is generalized to any

differentiation in the phenotypes of interacting organisms.

Here, however, differentiation into types by isologous

diversification is not yet speciation, since they still share the

same genotype. However, when genetic change in the

reproduction of each individual is included, non-genetic

phenotypic differentiation is later fixed to genetic differen-

tiation, and finally two groups with distinct phenotypes and

genotypes are formed (which are also stable against sexual

recombination, as hybrid sterility results). Hence robust

sympatric speciation based on interactions was proposed (25,

32).

So far, isologous diversification has been applied only to

speciation to two (or a few) types. To connect this concept

with diversification in the ecosystem and phenotypic plastic-

ity, we need to integrate the following processes that reinforce

each other: [i] Introduction of a novel type of interaction

enhances the phenotypic plasticity of certain individuals; [ii]

With the increase in plasticity, groups of novel, distinct

phenotypic types (and accordingly of distinct genotypes

later) are generated; [iii] The increase in existing types of

phenotypes introduces a new dimension in interaction. If this

feedback progresses, mutual amplification among plasticity,

interaction, and diversification will progress, so that a

complex ecological system is shaped. Of course, whether this

plasticity-interaction-diversification loop starts to reinforce

itself generally depends on environmental conditions but,

once started, the amplification will reach a stage that allows

for the diversification of species even under sympatric

conditions. Indeed, in this case, the effective environmental

condition for each individual is influenced by the interaction

with others, thus it depends on the population distribution of

species and can change over 3 time.

The mechanism of the above reinforcement of the

plasticity-interaction-diversification loop has not been estab-

lished theoretically or experimentally. However, the experi-

mental report on the coexistence of diverse types of

Escherichia coli by Kashiwagi et al. (33) is suggestive. They

found that bacterial communities increase the number of

coexisting types when they are cultured under high density

conditions, in which an increase in phenotypic plasticity was

also suggested. Further experimental/theoretical studies of

the plasticity-interaction-diversification loop will be impor-

tant to understand its complexity and stability in ecosystems,

including biofilms.

With this plasticity-interaction-diversification loop, a

robust ecosystem is expected to be shaped, in which

populations of diverse species with distinct phenotypes are

maintained, while each phenotype remains stable. Indeed,

one of the key concepts in complex-systems biology (26) is

shaping the consistency between two hierarchical levels, i.e.,

each individual element and the whole system consisting of

such elements, by means of the interaction of elements with

plasticity. It covers the consistency between molecule

replication vs cellular reproduction, cell growth vs develop-

ment of an organism, and genotypic vs phenotypic changes.

Of course, consistency between replication of an individual

organism vs sustainment of an ecosystem is another important

issue, and we hope that concepts developed in complex-

systems studies will be relevant for understanding the

plasticity, robustness, and diversity of an ecosystem.

Concluding remarks

The research introduced in this review shows how

ecosystems become complex, what we know, what we do

not know and what we can know at present, and additionally,

what we should do and how it should be approached in the

future. Indefinite species concepts and physiological elastic-

ity/phenotypic variation of microbes increase the complexity

of microbial ecosystems. Elements for modeling should be

adjusted by each purpose and ecosystem, e.g., metabolic

group, phylogenetic species, physiological state or individual

cell.

The prediction of interactions in microbial networks has

been challenged by a comprehensive survey of microbiolog-

ical processes in addition to mathematical analysis (11). In

order to fully elucidate microbial ecosystems, however,

mathematical approaches will be further combined with

other analyses, e.g., artificial neural networks (40), network

theory (61), and systems analysis (63, 64). Systems analysis

has been applied to several fields, e.g., metabolic flux,

economics and computer science in this century. Merry R.

Buckley proposed “systems microbiology”, which treats the

organism or community as a whole to create an integrated

picture of how a microbial cell or community operates, in a

report from the American Academy of Microbiology 2004

(Systems Microbiology: Beyond microbial genomics, http://

academy.asm.org/). This may provide a conceptually differ-

ent point of view from the previous perspective. As a limited

example, the chaotic behavior of populations was found in

the unpredictable behavior of microbes in a defined mixed

culture (4). Consequently, socio-microbiology has been pro-

posed as a keyword to draw the whole picture of the micro-

bial ecosystem (23, 49).

As Charles Darwin proposed in “The Origin of Species”

(7), diversification, adaptive evolution, and interspecies

interactions could be produced by “laws”. How can we clarify

these laws? Montoya and coworkers mentioned in their

review article that a simple pattern representing ecological

mechanisms can be defined for ecosystems (44). The

microbial world was almost invisible before the recent

development of molecular techniques and equipment. The

microbial ecosystem may allow the establishment of ecolog-

ical principles/rules and constitute appropriate tractable

alternatives to ecosystems composed of long-lived macro-

organisms that are harder to investigate. Researchers from a

variety of disciplines, e.g., biology, chemistry, geology,

astronomy, mathematics, sociology, and so on, should join

forces to obtain innovative achievements, which may com-

pletely change our understanding of the biosphere.
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