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Abstract

Background: Running multiple-chain Markov Chain Monte Carlo (MCMC) provides an efficient parallel computing
method for complex Bayesian models, although the efficiency of the approach critically depends on the length of
the non-parallelizable burn-in period, for which all simulated data are discarded. In practice, this burn-in period is
set arbitrarily and often leads to the performance of far more iterations than required. In addition, the accuracy of
genomic predictions does not improve after the MCMC reaches equilibrium.

Results: Automatic tuning of the burn-in length for running multiple-chain MCMC was proposed in the context of
genomic predictions using BayesA and BayesCrm models. The performance of parallel computing versus sequential
computing and tunable burn-in MCMC versus fixed burn-in MCMC was assessed using simulation data sets as well
by applying these methods to genomic predictions of a Chinese Simmental beef cattle population. The results
showed that tunable burn-in parallel MCMC had greater speedups than fixed burn-in parallel MCMC, and both had
greater speedups relative to sequential (single-chain) MCMC. Nevertheless, genomic estimated breeding values
(GEBVs) and genomic prediction accuracies were highly comparable between the various computing approaches.
When applied to the genomic predictions of four quantitative traits in a Chinese Simmental population of 1217 beef
cattle genotyped by an lllumina Bovine 770 K SNP BeadChip, tunable burn-in multiple-chain BayesCr (TBM-BayesCn)
outperformed tunable burn-in multiple-chain BayesCr (TBM-BayesA) and Genomic Best Linear Unbiased Prediction
(GBLUP) in terms of the prediction accuracy, although the differences were not necessarily caused by computational
factors and could have been intrinsic to the statistical models per se.

Conclusions: Automatically tunable burn-in multiple-chain MCMC provides an accurate and cost-effective tool for
high-performance computing of Bayesian genomic prediction models, and this algorithm is generally applicable to
high-performance computing of any complex Bayesian statistical model.

Keywords: Bayesian models, Convergence diagnosis, Genomic prediction, High-performance computing,
Tunable burn-in

* Correspondence: xulingyang@caas.cn; xulingyang@163.com;
jlT@iascaas.net.cn

"Equal contributors

'Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal
Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West
Road 2#, Haidian District, Beijing 100193, China

Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-2003-3&domain=pdf
mailto:xulingyang@caas.cn
mailto:xulingyang@163.com
mailto:jl1@iascaas.net.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Guo et al. BMC Bioinformatics (2018) 19:3

Background

Genomic predictions have been proposed as a method
of providing accurate estimates of the genetic merits of
breeding animals using genome-wide SNP markers [1].
This new technology does not require the actual pheno-
typing of breeding candidates and therefore offers great
promise for traits that are difficult or expensive to
measure, such as carcass traits [2]. A noted feature of
genomic predictions is that selection can be performed
on breeding candidates at birth or young ages, which in
turn accelerates genetic improvement progress more
rapidly than conventional breeding approaches in farm
animals [3-6].

Many genomic prediction models have been proposed,
such as the Genomic Best Linear Unbiased Prediction
(GBLUP) [7] and Bayesian alphabets [1, 8]. Bayesian
genomic models are widely used [8-11], although
complex calculations are required for Bayesian models
implemented via Markov chain Monte Carlo (MCMC)
and may take hours, days or even weeks to complete.
Hence, parallel computing for genomic predictions is of
importance for applying genomic selection in practice
[12]. However, parallelization in MCMC is difficult
because the procedure is iterative in the sense that simu-
lating the next value of the chain depends on the current
value, which violates Bernstein’s condition of independ-
ence for parallel computing [13]. This problem increases
the difficulty of delivering parallelism for a single
Markov chain. Thus, Wu et al. proposed the use of a
multiple-chain MCMC method to calculate Bayesian
genomic prediction models [14].

Running multiple-chain MCMC provides a naive yet
efficient form of parallel computing for Bayesian gen-
omic prediction models, although the speedup in com-
puting is limited by the burn-in requirement, which is
included to give the Markov chain time to reach equilib-
rium distribution. A burn-in period corresponds to the
first n samples during the MCMC, and these samples
are discarded after the burn-in is initiated from a poor
starting point to the period before each chain moves into
a high probability state. Often, the length of the burn-in
is assumed to be one-tenth or one-fifth of the entire
length of the MCMC iterations or even half of the total
iterations [1, 8—10]. This rule of thumb is often used for
the sake of convenience but is not necessarily optimal
for computing.

In the present paper, a multiple-chain MCMC com-
puting strategy utilizing automatic tuning of the burn-in
period was proposed and demonstrated with two
Bayesian genomic prediction models (BayesA and
BayesCm). Using this strategy, a convergence diagnosis
based on Gelman and Rubin [15] was conducted period-
ically in accordance with the multiple-chain situation.
The burn-in period ended as soon as the convergence
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criteria were met, and posterior samples of unknown
model parameters were then collected to perform statis-
tical inferences. This strategy was assessed on a simula-
tion data set and applied to genomic predictions of four
quantitative traits in a Chinese Simmental population.

Methods

Simulation data

The simulated data set consisted of 1000 animals in
scenario 1 and scenario 2 and 2000 animals in scenario 3,
with each presenting a phenotype and genotypes on five
chromosomes. The GPOPSIM software package [16] was
used to generate the simulation data set, including the
markers and QTLs based on a mutation-drift equilibrium
model in the three scenarios. In scenario 1, the heritability
of the trait was set at 0.1, and each chromosome had 4000
markers. In scenario 2, the heritability was 0.5, and each
chromosome had 10,000 markers. In scenario 3, the herit-
ability was 0.3, and each chromosome had 40,000 markers.
In each of the three scenarios, 200 QTLs were simulated.
The mutation rate of the markers and QTLs was set at
1.25 x 107 for each generation.

Real phenotype and genotype data

The experimental population consisted of 1302 Simmental
cattle born between 2008 and 2013 in Ulgai, Xilingol
League, Inner Mongolia, China. After weaning, all cattle
were transferred to the Beijing Jinweifuren farm and raised
under the same nutritional and management conditions.
Each animal was evaluated regularly for growth and devel-
opment traits until slaughter at between 16 and 18 months
of age. At slaughter, the carcass traits and meat quality
traits were assessed according to the Institutional Meat
Purchase Specifications [17] for Fresh Beef Guidelines.
The quantitative traits used in the present study included
carcass back fat thickness (CBFT), strip loin weight
(SLW), carcass weight (CW), and average daily gain
(ADG). Prior to the genomic predictions, the phenotypes
were adjusted for systematic environmental factors, which
included the farms, seasons and years, and age at slaugh-
ter, using a linear regression model. The genetic and
residual variances for each of the four traits were esti-
mated by restricted maximum likelihood (REML) based
on equivalent animal models.

Each animal was genotyped by an Illumina Bovine
770 K SNP BeadChip. SNP quality control was con-
ducted using PLINK v1.07 software [18], which excluded
SNPs under the following categories: 1) SNPs on the X
and Y chromosomes, 2) SNPs with minor allele frequen-
cies less than 0.05, 3) SNPs with > 5% missing genotypes,
and 4) SNPs that violated Hardy-Weinberg equilibrium
(p<107°). After data cleaning, 1217 Simmental cattle
remained for subsequent data analyses, and each had
genotypes on up to 671,220 SNPs on 29 autosomes.
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Statistical model
Adjusted phenotypes were described by the following
linear regression model:

M
yi=ut ijlxtjaj +e (1)

where y; is an adjusted phenotype for individual i, M is
the number of SNPs, y is the overall mean of the traits,
a; is the additive (association) effect of the j-th SNP, X;;
is the genotype (0, 1, or 2) of the j-th SNP observed on
the i-th individual, and e; is the residual term.

BayesA

The BayesA model [1] assumed a priori a normal distri-
bution for SNP effects, with zero mean and SNP-specific
variances denoted by sz , where j=1, 2, ..., M. The
variances of SNP effects were independent of one
another, and each followed an identical and independ-
ently distributed (IID) scaled inverse chi-square prior
distribution, p(cf) =x(c7 | v,$*), where v is the
degree of freedom parameter and S> is the scale
parameter, both of which are assumed to be known.
Thus, the marginal prior distribution of each marker
effect, p(oylv,$*) = [N(w|0,07)x2(07|v,$%)do7}, was a
t-distribution [19].

BayesCm

The BayesCmt model [8] assumed a priori that each SNP
effect was null with probability m or followed a normal
distribution, N (0, 0%), with probability 1-m.

N(0,0%) with probability (1-1)

ol {105 il
0 with probability w

(2)

In the above, o2 is a variance common to all non-zero
SNP effects, and it is assigned a scaled inverse chi-
square prior distribution, x~2(v,,s2). The value of 7 in
the model is unknown, and it is inferred based on the
prior distribution of 7, which is considered uniform be-
tween 0 and 1, or 77~Uniform(0, 1).

GBLUP

GBLUP [7] can be considered a re-parameterization of
the Bayesian RKHS (reproducing kernel Hilbert spaces)
regression [20]. In RKHS, each SNP effect is assumed to
follow a normal distribution with a zero mean and com-
mon variance; and in GBLUP, genomic estimated breed-
ing values (GEBVs) are assumed to follow a normal
distribution #~N(0,Go?), where G is a nxn genomic
(co)variance matrix that is formulated as follows [7]:
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where 7 is the number of SNPs, ¢; is the frequency of an
allele of SNP i, and X is a centered incidence matrix of
SNP effects, which are corrected for allele frequencies.
The additive genetic variances and residual variances of
the four traits were estimated by REML based on an
animal model equivalent to (1).

G (3)

Tunable versus fixed burn-in multiple-chain MCMC
Tunable burn-in multiple-chain MCMC

In multiple-chain MCMC simulations, the following pro-
cesses occur. Assume that we want to estimate some tar-
get distribution p(X) but cannot directly draw samples of
X from p(X). Instead, a Markov chain X, Xj, ... can be
generated that converges to p(X) at equilibrium via a tran-
sition density #(X;, 1| X,). Now, let there be i=1, 2, ..., K
parallel chains, with each initialized and burned-in inde-
pendently for B; updating steps before more samples are
drawn at intervals. As K— « and all B; — oo, the ensem-
ble is ergodic (i.e., tending in the limit) to p(X) [14].

To assess the convergence of multiple parallel chains
simulated for each model, both the inter-chain and
within-chain variances were calculated for each selected
model parameter, e.g., x. Briefly, the inter-chain variance
I was calculated as follows:

I_I’l m

=N @R (4)

The within-chain variance W was determined as follows:

W= iz:’;sf. (5)

m

R o N AL R b oL =1
whmere =D (x,} x,) , X = nzjzlx,,, and ¥ =,
> 7 .%;. Then, the marginal posterior variance of x was

estimated by a weighted average of W and I as follows:
- n-1 1
=—W4+-1 6
@) =W (6)

Under the assumption that the starting distribution of x
was appropriately over-dispersed, the above quantity tended
to overestimate the marginal posterior variance but was un-
biased under stationarity (i.e., when the starting distribution
equals the target distribution) or within the limit, 7 — co.

Following Gelman et al. [21], we assessed convergence
by estimating the factor by which the scale of the
current distribution for x might be reduced if the poster-
ior simulation were continued within the limit, 7 — oo.
This potential scale reduction was estimated by the fol-
lowing shrink factor:

var (x)
w

(7)
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which reduced to 1 as n — . A high-scale reduction in-
dicated that proceeding with more simulations could
further improve the inference about the target distribu-
tion of the model parameter. To run multiple-chain
MCMC simulations, a collection of shrink factors was
obtained, R = (ry, 1y, ..., 'z _ 1), where N is the length of
a chain, Rg%r(j “Dxp TG - Dxpsb oo Fjxp — 1) 1S the jth
subsection of R, and p is the length of R, Let T be a
threshold that was arbitrarily provided; the mean 7) and
standard deviation S” were calculated as follows:

(i 1 p-1
r(,) = 7Zi:07(j—1)xp+ia (8)

p
. 1 - ,
S(]) = \/‘; ZI::; (r(j—l)xpﬂ_?(]))z' (9)

The multiple chains were considered to converge in
the jth subsection when |7(j>—1| <Tand SV<T.

In the simulation study, each of the parallel MCMC
chains was initiated independently. Then, the conver-
gence diagnosis during burn-in used samples from each
parallel chain to determine the convergence state of
these chains. The end of burn-in iterations occurred
when the convergence criteria were met. Then, the sim-
ulated posterior samples were collected to calculate the
posterior summary statistics of the model parameters of
interest, which were subject to the thinning of the
MCMC chains.

For the Simmental cattle data set, we evaluated genomic
prediction accuracies (GPAs) by running up to 16 parallel
chains for both TBM-BayesA and TBM-BayesCr, and the
results were compared with those obtained from GBLUP.

Speedup ratio

According to Amdahl’s law [22], the speedup ratio of
multiple-chain MCMC over that of single-chain MCMC
was calculated as follows:

Nt
S(K) =
( ) Nburn—in + (NT_Nburn—in)/K

(10)

where Npym.in is the number of burn-in iterations that
cannot be parallelized, Nt is the total number of MCMC
iterations, and K is the number of computer cores avail-
able for running multiple-chain Markov chains in paral-
lel. The parallel computing efficiency was assessed as
follows:

E=S(K)/K (11)

Evidently, when E =1, the parallel computing scales
linearly with the number of cores used for computing;
thus, S(K) = K. However, because of the non-parallelizable
burn-ins, the parallel computing efficiency is upper
bounded by N7/Np,.; — in (as K— o).
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Parameter setting

Fixed burn-in multiple-chain MCMC jobs were also run
on the simulation data, with the length of burn-in set at
one-tenth of the total sequential MCMC iterations in
scenario 2 and at one-fifth of the total sequential
MCMC iterations in scenarios 1 and 3. To assess the ef-
fect of the burn-in length, we ran 50,000 iterations for
each chain of fixed burn-in multiple-chain BayesA
(FBM-BayesA), which included burn-ins of 2000, 4000,
6000, 8000, and 10,000 iterations in scenario 2.
Threshold T was set to 0.001 in this study.

Evaluation of genomic prediction accuracy
The GEBVs were calculated as the sum of all SNP effects
of each individual (say i) as follows:
GEBV: =) Xig (12)
where Xj; is a genotype (coded 0, 1, or 2) for SNP j of ani-
mal i and g; is the estimated genetic effect of the jth SNP.
The GPA relative to that of phenotypic selection was

calculated as r/ VI, where r is Pearson’s correlation be-
tween GEBVs and true breeding values in the simulation
study or Pearson’s correlation between GEBVs and
adjusted phenotypes. This criterion of relative genomic
prediction accuracy (RGPA) was used so that the
GPAs were comparable regardless of their respective
heritabilities [23].

A fivefold cross-validation [24] was used to evaluate
the genomic predictions in the Simmental data set.
Briefly, the entire data set of 1217 Simmental cattle was
randomly divided into five approximately equal subsets.
Then, four subsets were used to estimate the SNP effects
(i.e., training), and the remaining subset was used for
testing the GPA (i.e., validation). The above process was
rotated five times until each subset was used for testing
once and only once. For each trait, fivefold cross-
validations were randomly duplicated 10 times, and the
GPA for each trait was calculated as the average of GPAs
across the ten replicates.

Computer system

The calculations were conducted on an HP ProLiant
DL585 G7 (708686-AA1) server, which was equipped
with an AMD Opteron 6344 (2.6G Hz) CPU, 272 G of
memory and an L2 cache size of 4 M and an L3 cache
size of 16 M. The operating system was Microsoft
Windows. A C program with Message Passing Interface
(MPI) for parallel computing was developed to
implement the aforementioned multiple-chain MCMC.
MPICH2 is an open source MPI implementation and a
standard for message passing in parallel computing, and
it is available freely (http://www.mpich.org/downloads).
The Integrated Development Environment that we used
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is Dev-C++ 5.1, which is available freely at the following
link: http://www.bloodshed.net/index.html.

Results

Simulation studies

Speedup ratios

Running multiple chains of genomic prediction models led
to substantially reduced computing time compared with
running a single chain (Additional file 1: Tables S1-S3 and
Figures S9-S11). The speedups increased non-linearly with
the number of parallelized chains or available computer
cores (Fig. 1) because of the non-parallel burn-ins, and per-
fect speedups were not practically observed when calculat-
ing these Bayesian genomic prediction models. In scenario
1, for example, the speedup obtained by TBM-BayesA was
1.86 when running two parallel chains and was 13.63 when
running 18 parallel chains. However, the speedup obtained
by FBM-BayesA increased from 1.57 when running two
chains to 3.79 when running 18 parallel chains. For the re-
sults obtained with 18 parallel chains, the speedups were
approximately between 3 and 6 when running fixed burn-
in MCMC and between 10 and 14 when running tunable
burn-in MCMC. More precisely, TBM-BayesA had consid-
erably greater speedups than those of FBM-BayesA, and
the speedups by TBM-BayesA scaled better than those by
FBM-BayesA. Similar trends were found in the comparison
of computing time between TBM-BayesCn and FBM-
BayesCrnt (fixed burn-in, multiple-chain BayesCr). Thus,
tunable burn-in MCMC had greater parallel computing ef-
ficiencies than fixed burn-in MCMC because the use of
automatic convergence diagnosis and tuning of burn-ins
effectively shortened the computing time by TBM-BayesA
(or TBM-BayesCm), resulting in increased speedups in
computing time with tunable burn-ins. We also noted that
the loss of parallel computing efficiency relative to an
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assumedly perfect speedup increased with the model di-
mension, which is proportional to the number of SNPs in
the genomic prediction models (Fig. 1).

Theoretically, the speedups achieved by running
multiple-chain MCMC are limited by the length of non-
parallel parts (i.e., burn-ins). Frequently, the rule of
thumb for the length of burn-in tends to result in far
more burn-in iterations than are required. Thus, with
automatic tuning of the convergence diagnosis on
multiple-chain MCMC, the burn-in length can be
drastically reduced, resulting in greater speedups in
computing. With all other factors equal, the speedup
obviously increased with a greater number of chains
(or CPU cores) running in parallel (Fig. 1).

Estimated model (SNP) effects Various computing
forms of the same genomic prediction models essentially
generated highly comparable estimated model effect re-
sults. Trace plots of the residual variance obtained by vari-
ous computational approaches are shown in Fig. 2. Each
chain mixed very well, and all were centered near zero.
The estimated SNP effects were also highly compar-
able among various forms of calculating the same gen-
omic prediction models. In parallel computing, between
2 and 18 chains (with an increment of two chains) were
run for each model, and the posterior mean of a SNP ef-
fect was calculated as the average of all saved posterior
samples from all the chains running for that model. In
sequential computing, a SNP effect was calculated as the
average of all the saved posterior samples from the single
chain. The results showed that the correlations of esti-
mated SNP effects, such as in scenario 2, were greater
than 0.80 between parallel MCMC and sequential MCMC
and even greater than 0.90 between tunable burn-in
MCMC and fixed burn-in MCMC (Fig. 3). For example,

Speedup

in scenario 2 C Speedup in scenario 3
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Fig. 1 Speedup ratios of parallel MCMC (>1 chain) over sequential MCMC (1 chain) in simulation studies under the three scenarios: a Scenario 1
(h?=0.1; 4000 SNPs; 200 QTLs), b Scenario 2 (h*=0.1; 10,000 SNPs; 200 QTLs), and ¢ Scenario 3 (h* = 0.1; 40,000 SNPs; 200 QTLs). Expected
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the correlations of estimated SNP effects were from 0.901
to 0.908 between FBM-BayesA and TBM-BayesA. Similar
results were obtained in scenarios 1 and 3 (data not
presented). Thus, the observed differences in estimated
SNP effects for the same method were attributable to
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Fig. 3 Correlations of the estimated SNP effects in simulation scenario
2. Seg-BayesA = sequential BayesA; Seg-BayesCr = sequential BayesCr;
FBM-BayesA = fixed burn-in, multiple-chain BayesA; TBM-BayesA =
tunable burn-in, multiple-chain BayesA; FBM-BayesCrr = fixed burn-in,
multiple-chain BayesCm; TBM-BayesCr = tunable burn-in,
multiple-chain BayesCrm

Monte Carlo errors, and they were essentially made trivial
as soon as the MCMC chains converged to the expected
stationary distributions.

GEBVs and GPAs The GEBV of each animal was calcu-
lated as the sum of all SNP effects for that animal. The
results showed that the GEBVs obtained from various
forms of calculating the same genomic prediction
models were almost identical and presented correlations
that were greater than or close to unity (>0.99). The
GEBVs obtained from different models were also highly
correlated but with some noticeable differences. These
differences did not result from the use of varied compu-
tational strategies but reflected the use of different stat-
istical models (and the underlying model assumptions).
Similarly, the GPAs were also analogous between
different computational forms of the same model, re-
gardless of the number of MCMC chains and types of
burn-in mechanisms, although noticeable differences
were observed in the GPAs between different statistical
models (Tables 1, 2 and 3). In simulation scenario 1, for
example, the GPA was approximately 0.523 for the
various forms of BayesA with either fixed or automatic-
ally tunable burn-in periods running between 1 and 18
chains. However, the GPA obtained by various comput-
ing forms of BayesCm varied only slightly between 0.630
and 0.632 (Table 1). Similar trends were observed in
simulation scenarios 2 and 3. As a comparison, GPAs
were also obtained using GBLUP; however, these values
were mostly lower than the GPAs obtained from the
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Table 1 Genomic predictive accuracies obtained using FBM-BayesA, TBM-BayesA, FBM-BayesCr, TBM-BayesCrm, and GBLUP in

Scenario 1

Chains FBM-BayesA TBM-BayesA FBM-BayesCmn TBM-BayesCmn GBLUP
1 0.5239 0.5231 06316 06317 0.6016
2 05227 05229 0.6301 0.6296

4 0.5230 05229 06304 06314

6 05230 0.5230 06310 0.6304

8 05231 05232 06313 06311

10 05232 05231 06309 0.6307

12 05228 05232 06315 0.6305

14 05230 0.5231 0.6306 06313

16 05230 05231 06307 06303

18 05230 0.5231 06310 06311

FBM-BayesA fixed burn-in, multiple-chain BayesA, TBM-BayesA tunable burn-in, multiple-chain BayesA, FBM-BayesCr fixed burn-in, multiple-chain BayesCr,
TBM-BayesCm tunable burn-in, multiple-chain BayesCm, and Chains number of parallel MCMC running for each genomic prediction model. Simulation parameters
are as follows: population size = 1000; number of QTL = 200; heritability = 0.1; number of chromosomes = 5; and number of markers per chromosome = 4000

various computing forms of BayesA and BayesCm, al-
though BayesA models in scenario 1 were exceptions
(Table 1). Again, the slight differences in GPA among
the various computing forms of the same genomic pre-
diction models were caused by Monte Carlo errors in
the simulation of posterior samples of SNP effects,
whereas the differences in GPA between the various stat-
istical models were not necessarily computational but
were attributable to intrinsic differences between the
methods per se.

Application in Chinese Simmental beef cattle

Convergence diagnoses

Convergence diagnoses were conducted for residual vari-
ances as well as for a randomly selected number of SNP
effects. Generally, the MCMC simulations of residual
variances converged quickly, which primarily occurred
within the first 1000 iterations, and the posterior modes
were highly comparable among the various computing

forms of the same genomic prediction models. Never-
theless, certain differences were observed in the poster-
ior modes of the residual variances between different
models (e.g., between TBM-BayesA and TBM-BayesCn).
These results were consistent with our observations in
the simulation studies, with trivial differences in the esti-
mated SNP effects and GEBVs (and hence GPAs) among
various computing forms of the same statistical models
caused by Monte Carlo errors and intrinsic differences
observed between different statistical models. With the
estimated residual variances of the four traits used as ex-
amples, the difference was the lowest for SLW, and the
posterior mode of residual variance approached 0.16
with TBM-BayesA (Figure S1 in Additional file 1) and
0.18 with BayesCn (Figure S2 in Additional file 1); the
difference was largest for CBFT, and the posterior mode
of the residual variance approached 0.19 (TBM-BayesA;
Additional file 1: Figure S3) and 0.30 (TBM-BayesCrm;
Additional file 1: Figure S4). Trace plots of the MCMC

Table 2 Genomic predictive accuracies obtained using FBM-BayesA, TBM-BayesA, FBM-BayesCr, TBM-BayesCrm, and GBLUP in

Scenario 2

Chains FBM-BayesA TBM-BayesA FBM-BayesCr TBM-BayesCn GBLUP
1 0.846777 0.846761 0937837 0937312 0.833173
2 0.846731 0.846709 0937741 0937161

4 0.846797 0.846855 0.937449 0.937160

6 0.846904 0.846855 0.938563 0.938017

8 0.846559 0.846884 0.938305 0938319

10 0.846770 0.846812 0.938232 0.938763

12 0.846862 0.846824 0.938997 0.938347

14 0.846814 0.846832 0938535 0938426

16 0.846844 0.846657 0.938852 0.938385

18 0.846820 0.846854 0.938823 0.938210

Simulation parameters are as follows: population size = 1000; number of QTL = 200; heritability = 0.5; number of chromosomes = 10; and number of markers

per chromosome = 5000
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Table 3 Genomic predictive accuracies obtained using FBM-BayesA, TBM-BayesA, FBM-BayesCr, TBM-BayesCrm, and GBLUP in

Scenario 3

Chains FBM-BayesA TBM-BayesA FBM-BayesCmn TBM-BayesCmn GBLUP
1 0.7717 0.7717 0.8415 0.8415 0.7632
2 0.7716 0.7717 0.8421 0.8416

4 0.7716 0.7717 0.8417 0.8418

6 0.7715 0.7717 0.8413 0.8418

8 0.7718 0.7719 0.8415 0.8514

10 0.7720 0.7720 0.8411 0.8419

12 0.7720 0.7720 0.8418 0.8415

14 0.7720 0.7716 0.8413 0.8418

16 0.7718 0.7720 0.8415 0.8417

18 0.7718 0.7718 0.8411 0.8416

Simulation parameters are as follows: population size = 2000; number of QTL = 200; heritability = 0.3; number of chromosomes = 5; and number of markers

per chromosome = 40,000

chains of residual variance for the remaining two traits
(CW and ADG) are also provided in Additional file 1:
Figures S5-S8. Trace plots of MCMC chains of selected
SNP effects on SLW obtained by TMB-BayesA and TMB-
BayesCrt are shown in Additional file 1: Figures S12 and
S13, respectively. Evidently, these MCMC chains also all
converged quickly within the first 1000 iterations.

Estimated heritabilities and GPAs
The estimated heritabilities for the four traits were within
the range of previous reports [25, 26]. The differences
may have been caused by differences in the genomic
architectures of distinct breeds. In this Chinese Simmental
beef population, CBFT had a smaller heritability com-
pared with the other three traits. Consequently, the GPAs
for CBFT were also lower (0.100 ~0.106) than those for
the other three traits (0.202 ~ 0.271) (Table 4).
Nevertheless, the RGPAs were comparable among the
four traits because this criterion assessed the GPAs rela-
tive to the square root of the heritability of each trait,
with the latter reflecting the selection accuracy based on
phenotypes and pedigree information. The RGPAs were
also roughly comparable among the three models but
with slight differences: TBM-BayesA and TBM-BayesCn
had a greater RGPA for CBFT, SLW, and CW but a
lower RGPA for ADG; and TBM-BayesCn had the

greatest average RGPA for the four traits calculated
across the three computational-statistical models. Again,
these differences might not be based on computational
differences but could be intrinsic to the differences in
the data and statistical models.

Discussion

Parallel computing of Bayesian genomic prediction
models: tunable burn-in versus fixed burn-in

Bayesian regression models are of high value for gen-
omic prediction, although the complexity of computing
of these models can be intensive [14], which is increas-
ingly becoming the bottleneck in practical genomic
selection programs. The challenges are found primarily
in two aspects. First, genotype and phenotype data have
been accumulating drastically in the past 10 years, and
these “big data” are not managed efficiently because
traditional data processing methods and tools are inad-
equate. Hence, high-performance computing (e.g., via
parallel programming and computing strategies) is
required to increase the computational efficiency and
generate high computational throughputs for genomic
selection. Nevertheless, the computing of Bayesian
genomic prediction models is not parallelizable by the
nature of the iterative algorithms, which poses the
second and most likely greater challenge. Although

Table 4 Heritability estimates and predictive accuracies of four quantitative traits in a Chinese Simmental cattle population

Trait h? Correlations Correlations divided by square root of heritability
GBLUP TBM-BayesA TBM-BayesCmn GBLUP TBM-BayesA TBM-BayesCn
CBFT 0.10 0.100 0.105 0.106 0316 0332 0337
cw 045 0.266 0271 0.268 0.397 0404 0.399
SLW 0.24 0.202 0.213 0215 0413 0435 0440
ADG 047 0214 0.204 0.206 0312 0.297 0.301
Mean 0.196 0.198 0.199 0.360 0.367 0.369

CBFT carcass back fat thickness, SLW strip loin weight, CW carcass weight, ADG average daily gain, and h? heritability
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Bayesian genomic prediction models can be calculated
in parallel by running multiple MCMC chains of the
same model, the speedup of computing heavily depends
on the length of the burn-in period, which cannot be
parallelized. Often, the length of burn-ins is set arbitrar-
ily and thus can be too short or too long. When too
short, the Markov chains are not converged, and the
generated samples do not represent those drawn from
the targeted posterior distributions. When too long, run-
ning a longer burn-in period after the convergence of
Markov chains does not improve the accuracies of the
posterior estimates of the model parameters [27, 28] but
does consume more time than necessary. In the present
study, we proposed a tunable, multiple-chain MCMC
algorithm that is capable of automatically tuning an
appropriate length of burn-ins, depending only on the
actual status of MCMC convergence of the Bayesian
statistical model. Our results showed that this tunable
burn-in algorithm was effective and able to reduce the
computing time remarkably compared with its counter-
part with fixed burn-ins. In the present study, we used
Gelman and Rubin’s convergence diagnostic method
[15] to monitor the convergence state of the multiple-
chain MCMC method. The shrink factor was calculated
using posterior samples of the residual variance and a
selected number of SNP effects from multiple chains of
each model. When the multiple chains reached conver-
gence, the burn-in period was terminated immediately,
and the posterior samples generated afterward were col-
lected and used for statistical inferences of the model
parameters of interest, and they were subject to the fre-
quency of thinning.

In the discussion that follows, we explain numerically
how tunable burn-in MCMC could achieve greater
speedups than fixed burn-in MCMC. Consider again the
formula of the speedup ratio as in (10). Let Npyn.in = m
and Nt=5 m; in FBM-BayesA and FBM-BayesCrn, the
speedup ratios are S(5) = 2.78 and S(20) = 4.16 when 5 and
20 cores are available for computing, respectively.
Nevertheless, the maximal speedup ratio is I(hﬁrg S(K) =5,

regardless of how many cores are available for computing.
Using our strategy, Npun.in Was adjusted to reduce un-
necessary burn-in iterations based on the convergence
diagnosis. If Npyn.in was shortened to m/2 by the conver-
gence diagnosis, then the corresponding speedup ratios
were doubled to S(5) = 3.84 and S(20) = 7.14. Furthermore,
if Npurn-in Was reduced to m/4, then the speedup ratios
were quadrupled to S(5) =4.76 and S(20) = 11.11. In the
simulation studies, our results showed that TBM-BayesA
(or TBM-BayesCn) tended to a burn-in length that was
half or even one-fourth as long as that of FBM-BayesA (or
FBM-BayesCm). This result demonstrated that the
automatic tunable burn-in MCMC method effectively
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shortened the length of burn-ins compared with the
fixed-burn-in MCMC; therefore, the tunable burn-in
MCMC led to a greater speedup and greater parallel
computing efficiency.

Our results showed that the use of tunable burn-in
MCMC did not change the GPA as long as the MCMC
chains converged. This conclusion is also supported by
previous research [27, 28]. The GEBV is a critical concept
in genomic prediction, and it was calculated as the sum of
all SNP effects for each animal. Our results showed that
the estimated SNP effects were highly analogous between
the tunable burn-in MCMC and fixed burn-in MCMC
used to calculate the same statistical model; however, the
former had greater speedups than the latter. The differ-
ences were essentially caused by Monte Carlo errors. Be-
cause of such small differences in the estimated SNP
effects among various forms of calculating the same gen-
omic prediction model, the differences in the calculated
GEBYV for individual animals could mostly be ignored.

Genomic predictions of Chinese Simmental beef cattle: a
real application

The tunable burn-in MCMC and fixed burn-in MCMC
methods were applied to genomic predictions of four
quantitative traits in a Chinese Simmental beef popula-
tion, and the GPAs obtained were also compared with
those of the GBLUP. In the Chinese Simmental data set,
the RGPAs were roughly comparable among the three
models GBLUP, TBM-BayesA and TBM-BayesCn because
the RGPA assesses the GPA relative to the heritability of
each trait in the present study. Without adjusting for the
heritability differences of these traits, our results indicated
that the GPA was higher for a trait with higher heritability
than for traits with lower heritability. Nevertheless, both
the GPA and RGPA showed noticeable differences among
the different genomic prediction models, and these differ-
ences were not necessarily based on computational factors
but could be intrinsic to the varied assumptions of these
models. In reality, GPAs can vary with a number of fac-
tors, such as the size of the reference populations, herit-
ability of the trait, density of the SNP panels, level of LD,
and the statistical models used for prediction [2].

In this real application, our results supported that this
tunable burn-in MCMC was effective and outperformed
the fixed burn-in MCMC regarding speedup and parallel
computing efficiency. The GPAs were comparable among
the various computing forms of BayesA and BayesCr, and
these two models had greater GPAs for three of the four
traits than GBLUP.

Toward greater parallel computing efficiencies: what to
consider?

Finally, several strategies deserve mention, such as adap-
tive MCMC algorithms [29, 30] and tempering [31, 32],
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which can further improve the convergence of multiple-
chain MCMC. These strategies were not investigated in
the present study but are worthy of investigation in
future studies for further increasing parallel computing ef-
ficiency for genomic prediction. For example, Metropolis-
coupled MCMC is a method that is related to simulated
tempering and tempered transitions [31, 32] and simul-
taneously runs several different Markov chains governed
by different (yet related) Markov chain transition probabil-
ities. Occasionally, the algorithm “swaps” values between
different chains, with the probability governed by the
Metropolis algorithm to preserve the stationarity of the
target distribution. Possibly, these swaps can speed up the
convergence of the algorithm substantially. Craiu et al.
proposed an ensemble of MCMC chains using the covari-
ance of samples across all chains to adopt the proposed
covariance for a set of Metropolis-Hastings chains [33].
Somewhat different from these multiple-chain methods,
which use a synchronous exchange of samples to expedite
convergence, Murray et al. mixed in an additional inde-
pendent proposal that represents some hitherto best esti-
mate or summary of the posterior and cooperative
adapting across chains [34]. Therefore, a globally best esti-
mate of the posterior is generated at any given step, and
then this estimate is mixed as a remote component with
whatever local proposal that a chain has adopted. This
method does not preclude adaptive treatment or temper-
ing of that local proposal but also permits a heterogeneous
blend of remote proposals, thus allowing the ensemble of
chains to mix well.

Conclusions

An automatically tunable burn-in MCMC method for
calculating Bayesian genomic prediction models was
proposed and manifested using BayesA and BayesCm
models. Our results from the simulation study showed a
better speedup in computing with tunable burn-in
MCMC than with fixed burn-in MCMC. However, the
estimated SNPs and GPAs were highly comparable re-
gardless of the various forms of parallel computing when
the same Bayesian genomic prediction model was used.
In a Chinese Simmental beef population, the average
GPAs for four quantitative traits obtained by the tunable
burn-in BayesA and BayesCm models were better than
those obtained by the GBLUP, and although these
differences may have been caused by computational fac-
tors, they might also have been attributable to intrinsic
differences in the statistical model assumptions. The
proposed tunable burn-in strategy for running parallel
(i.e, multiple-chain) MCMC can lead to dramatically
increased computational efficiency and is applicable to
the computing of all complex Bayesian models, either
sequentially or in parallel.
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Additional file

Additional file 1: Figure S1. Trace plots of posterior samples of
residual variance from TBM-BayesA (16 chains) for SW of the first 2000
iterations. Figure S2. Trace plots of posterior samples of residual variance
from TBM-BayesCr (16 chains) for SW of the first 2000 iterations.

Figure S3. Trace plots of posterior samples of residual variance from
TBM-BayesA (16 chains) for CBFT of the first 1800 iterations. Figure S4.
Trace plots of posterior samples of residual variance from TBM-BayesCr
(16 chains) for CBFT of the first 2500 iterations. Figure S5. Trace plots of
posterior samples of residual variance from TBM-BayesA (16 chains) for
CW of the first 2000 iterations. Figure S6. Trace plots of posterior
samples of residual variance from TBM-BayesCr (16 chains) for CW of the
first 2000 iterations. Figure S7. Trace plots of posterior samples of residual
variance from TBM-BayesA (16 chains) for ADG of the first 1400 iterations.
Figure S8. Trace plots of posterior samples of residual variance from
TBM-BayesCrr (16 chains) for ADG of the first 1400 iterations. Figure S9. Plot
of running time in scenario1.FBM-BayesA: Fixed burn-in multiple chains
parallel BayesA, TBM-BayesA: Tunable burn-in multiple chains parallel
BayesA, FBM-BayesCr: Fixed burn-in multiple chains parallel BayesCr,
TBM-BayesCr: Tunable burn-in multiple chains parallel BayesCm. One chain
is equivalent to sequential genomic selection. Figure $10. Plot of running
time in scenario 2. Figure S11. Plot of running time in scenario 3 Figure
S12. Convergence of TBM-BayesA for SW. Iteration: 50,000, initial Burn-
in:10,000, threshold:0.001. Figure S13. Convergence of TBM-BayesCr for SW.
Iteration: 50,000, initial Burn-in:10,000, threshold:0.001. Table S1. Running
time using five genomic prediction approaches in scenario 1. Table S2.
Running time using five genomic prediction approaches in scenario 2.
Table S3. Running time using five genomic prediction approaches in
scenario 3. (ZIP 405 kb)

Abbreviations

ADG: Average daily gain; CBFT: Carcass back fat thickness; CW: Carcass
weight; FBM: Fixed burn-in, multiple-chain; GBLUP: Genomic Best Linear
Unbiased Prediction; GEBVs: Genomic estimated breeding values;

GPA: Genomic prediction accuracy; h?: heritability; MCMC: Markov chain
Monte Carlo; MPI: Message Passing Interface; QTL: Quantitative trait locus;
REML: Restricted maximum likelihood; RGPA: Relative genomic prediction
accuracy; SLW: Strip loin weight; TBM: Tunable burn-in, multiple-chain

Acknowledgements
We are grateful to the editor and the two anonymous reviewers whose
comments have greatly helped improve this paper.

Funding

This work was supported by the National Natural Science Foundation of
China (31372294, 31201782 and 31672384), National High Technology
Research and Development Program of China (863 Program 2013AA102505-
4), the Agricultural Science and Technology Innovation Program (ASTIP-

IASO3, ASTIP-IAS-TS-16 and ASTIP-IAS-TS-9),

Cattle Breeding Innovative Research Team of Chinese Academy of Agricultural

Sciences (cxgc-ias-03), Beijing Natural Science Foundation (6154032).

Availability of data and materials

We confirm that all data used to generate our findings are publicly available
without restriction. Data are available from the Dryad Digital Repository:
http://datadryad.org/resource/doi:10.5061/dryad.4qc06.

Authors’ contributions

JYL, HJG, HMN and YG conceived and designed the study. PG and BZ
performed statistical analyses and programming in C language. PG, LYX, XLW
and EH wrote the paper. PG, ZZW and YHL participated in data analyses.

HN and XG carried out quantification of phenotypic data and SNP data
preprocessing. YC and LPZ participated in the design of the study and
contributed to acquisition of data. All authors read, commented and
approved the final manuscript.



dx.doi.org/10.1186/s12859-017-2003-3
http://datadryad.org/resource/doi:10.5061/dryad.4qc06

Guo et al. BMC Bioinformatics (2018) 19:3

Ethics approval

Animal experiments were approved by the Science Research Department of
the Institute of Animal Sciences, Chinese Academy of Agricultural Sciences
(CAAS) (Beijing, China). Human participants, data or tissues were not used.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal
Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West
Road 2#, Haidian District, Beijing 100193, China. 2Co\l(—:*ge of Computer and
Information Engineering, Tianjin Agricultural University, Tianjin, China.
3Animal Science and Technology College, Beijing University of Agriculture,
Beijing, China. “Livestock and Range Research Laboratory, ARS, USDA, Miles
City, MT, USA. °Biostatistics and Bioinformatics, GeneSeek (A Neogen
company), Lincoln, NE 68504, USA. ®Department of Animal Sciences,
University of Wisconsin, Madison, WI 53706, USA.

Received: 20 June 2017 Accepted: 18 December 2017
Published online: 03 January 2018

References

1. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value
using genome-wide dense marker maps. Genetics. 2001;157(4):1819-29.

2. Chen L, Vinsky M, Li C. Accuracy of predicting genomic breeding values for
carcass merit traits in Angus and Charolais beef cattle. Anim Genet.
2015;46(1):55-9.

3. Moser G, Tier B, Crump RE, Khatkar MS, Raadsma HW. A comparison of
five methods to predict genomic breeding values of dairy bulls from
genome-wide SNP markers. Genet Sel Evol. 2009;41:56.

4. Neves HH, Carvalheiro R, O'Brien AM, Utsunomiya YT, do Carmo AS, Schenkel FS,

Solkner J, McEwan JC, Van Tassell CP, Cole JB, et al. Accuracy of genomic
predictions in Bos indicus (Nellore) cattle. Genet Sel Evol. 2014;46:17.

5. de Campos CF, Lopes MS, e Silva FF, Veroneze R, Knol EF, Lopes PS,
Guimaraes SE. Genomic selection for boar taint compounds and carcass
traits in a commercial pig population. Livest Sci. 2015;174:10-7.

6. Duchemin SI, Colombani C, Legarra A, Baloche G, Larroque H, Astruc JM,
Barillet F, Robert-Granie C, Manfredi E. Genomic selection in the French
Lacaune dairy sheep breed. J Dairy Sci. 2012;95(5):2723-33.

7. VanRaden PM. Efficient methods to compute genomic predictions.

J Dairy Sci. 2008;91(11):4414-23.

8. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian
alphabet for genomic selection. BMC Bioinformatics. 2011;12:186.

9. Brondum RF, Su G, Lund MS, Bowman PJ, Goddard ME, Hayes BJ. Genome
position specific priors for genomic prediction. BMC Genomics. 2012;13:543.

10. Yang W, Tempelman RJ. A Bayesian antedependence model for whole
genome prediction. Genetics. 2012;190(4):1491-501.

11. Zhu B, Zhu M, Jiang J, Niu H, Wang Y, Wu Y, Xu L, Chen Y, Zhang L, Gao X,
et al. The impact of variable degrees of freedom and scale parameters in

Bayesian methods for genomic prediction in Chinese Simmental beef cattle.

PLoS One. 2016;11(5):0154118.

12, Wu XL, Beissinger TM, Bauck S, Woodward B, Rosa GJ, Weigel KA, Gatti Nde L,
Gianola D. A primer on high-throughput computing for genomic selection.
Front Genet. 2011,2:4.

13. Bernstein AJ. Analysis of programs for parallel processing. IEEE Trans
Electron Comput. 1966,EC-15(5):757-63.

14. Wu XL, Sun C, Beissinger TM, Rosa GJ, Weigel KA, Gatti Nde L, Gianola D.
Parallel Markov chain Monte Carlo - bridging the gap to high-performance
Bayesian computation in animal breeding and genetics. Genet Sel Evol.
2012;44:29.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Page 11 of 11

Gelman A, Rubin D. Inference from iterative simulation using multiple
sequences. Stat Sci. 1992,7(4):457-511.

Zhang Z, Li X, Ding X, Li J, Zhang Q. GPOPSIM: a simulation tool for
whole-genome genetic data. BMC Genet. 2015;16:10.

Service AM. Institutional meat purchase specifications. In: Fresh beef series 100;
2010. http//www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELDEV3003281.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet.
2007;81(3):559-75.

Gianola D. Priors in whole-genome regression: the bayesian alphabet
returns. Genetics. 2013;194(3):573-96.

de Los Campos G, Gianola D, Rosa GJ. Reproducing kernel Hilbert spaces
regression: a general framework for genetic evaluation. J Anim Sci.
2009;87(6):1883-7.

Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis. New York:
Chapman and Hall; 2004.

Amdahl GM. Validity of the single processor approach to achieving large
scale computing capabilities. In: Proceeding AFIPS '67 (Spring) Proceedings
of the April 18-20, 1967, spring joint computer conference; 1967. p. 483-5.
Rolf MM, Garrick DJ, Fountain T, Ramey HR, Weaber RL, Decker JE, Pollak EJ,
Schnabel RD, Taylor JF. Comparison of Bayesian models to estimate direct
genomic values in multi-breed commercial beef cattle. Genet Sel Evol.
2015;47:23.

Saatchi M, McClure MC, McKay SD, Rolf MM, Kim J, Decker JE, Taxis TM,
Chapple RH, Ramey HR, Northcutt SL, et al. Accuracies of genomic breeding
values in American Angus beef cattle using K-means clustering for
cross-validation. Genet Sel Evol. 2011;43:40.

Mehrban H, Lee DH, Moradi MH, ICho C, Naserkheil M, Ibanez-Escriche N.
Predictive performance of genomic selection methods for carcass traits in
Hanwoo beef cattle: impacts of the genetic architecture. Genet Sel Evol.
2017;49(1):1.

Fernandes Junior GA, Rosa GJ, Valente BD, Carvalheiro R, Baldi F, Garcia DA,
Gordo DG, Espigolan R, Takada L, Tonussi RL, et al. Genomic prediction of
breeding values for carcass traits in Nellore cattle. Genet Sel Evol. 2016;48:7.
Rosenthal J. Parallel computing and Monte Carlo algorithms. Far East J
Theor Stat. 2000;4:207-36.

Guo J, Jain R, Yang P, Fan R, Kwoh CK, Zheng J. Reliable and fast estimation
of recombination rates by convergence diagnosis and parallel Markov chain
Monte Carlo. [EEE/ACM Trans Comput Biol Bioinform. 2013;11:63-72.

Gilks W, Robertson G, Sahu S. Adaptive Markov chain Monte Carlo through
regeneration. J Am Stat Assoc. 1998,93:1045-54.

Andrieu C, Thoms J. A tutorial on adaptive MCMC. Stat Comput.
2008;18:343-73.

Marinari E, Parisi G. Simulated tempering: a new Monte Carlo scheme.
Europhys Lett. 1992;19:451-8.

Neal R. Sampling from multimodal distributions using tempered transitions.
Stat Comput. 1996;6:353-66.

Craiu R, Rosenthal J, Yang C. Learn from thy neighbor: parallel-chain and
regional adaptive MCMC. J Am Stat Assoc. 2009;104:1454-66.

Murray L. Distributed Markov chain Monte Carlo. In: Proceedings of neural
information processing systems workshop on learning on cores, clusters
and clouds: 2010. Mt. Currie South. http://Iccc.eecs.berkeley.edu/Papers/
dmcmc_short pdf.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELDEV3003281
http://lccc.eecs.berkeley.edu/Papers/dmcmc_short.pdf
http://lccc.eecs.berkeley.edu/Papers/dmcmc_short.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Simulation data
	Real phenotype and genotype data
	Statistical model
	BayesA
	BayesCπ
	GBLUP

	Tunable versus fixed burn-in multiple-chain MCMC
	Tunable burn-in multiple-chain MCMC
	Speedup ratio
	Parameter setting

	Evaluation of genomic prediction accuracy
	Computer system

	Results
	Simulation studies
	Speedup ratios

	Application in Chinese Simmental beef cattle
	Convergence diagnoses
	Estimated heritabilities and GPAs


	Discussion
	Parallel computing of Bayesian genomic prediction models: tunable burn-in versus fixed burn-in
	Genomic predictions of Chinese Simmental beef cattle: a real application
	Toward greater parallel computing efficiencies: what to consider?

	Conclusions
	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

