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ABSTRACT Viruses have evolved diverse strategies to hijack the cellular gene
expression system for their replication. The poly(A) binding proteins (PABPs), a family
of critical gene expression factors, are viruses’ common targets. PABPs act not only
as a translation factor but also as a key factor of mRNA metabolism. During viral
infections, the activities of PABPs are manipulated by various viruses, subverting the
host translation machinery or evading the cellular antiviral defense mechanism.
Viruses harness PABPs by modifying their stability, complex formation with other
translation initiation factors, or subcellular localization to promote viral mRNAs trans-
lation while shutting off or competing with host protein synthesis. For the past
decade, many studies have demonstrated the PABPs’ roles during viral infection.
This review summarizes a comprehensive perspective of PABPs’ roles during viral
infection and how viruses evade host antiviral defense through the manipulations
of PABPs.
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Whether DNA or RNA viruses, no known virus encodes all apparatus required to
synthesize viral proteins. Viruses compete with the host translational factory

to translate their viral mRNAs. This situation inspires viruses to develop strategies to
hijack the cellular gene expression system to promote their propagation in host cells.
Viruses usually manipulate the translational apparatus by host cell shutoff, inhibiting
host protein synthesis for viral replication. Few other viruses finish their propagation in
host cells more quietly by shutting down only a small part of the host translational sys-
tem or facilitating virus replication with ongoing host protein synthesis. Although
viruses regulate cellular translation at different molecular levels, the important and
early step to interfere with translation is to disrupt translation initiation machinery on
polyadenylated mRNAs. The translation machinery contains eukaryotic initiation fac-
tors (eIFs), poly(A) binding proteins (PABPs), and other cellular factors (Fig. 1B). eIF4F is
a protein complex that binds to the 59 cap of a mature mRNA. The eIF4F complex con-
sists of eIF4E (a small cap-binding protein), eIF4A (a DEAD box RNA helicase), and the
central factor eIF4G (a large scaffold protein) (1). eIF4G anchors the 43S pre-initiation
complex (consisting of eIF3, eIF1, eIF1A, eIF2-GTP-tRNAiMet, eIF5, and the 40S subunit
of the ribosome) to the 59-end of the mRNA through the interaction with eIF3 (1).
PABPs bind to the 39-end poly(A) tail of mRNA and interact with the eIF4G protein on a
59 cap, thereby stabilizing the structure of mRNA by forming a head-to-tail loop and
promoting the recruitment of ribosome subunits for translation initiations (1, 2). PABPs
are general viral targets, and the modification of PABP activities allows viruses to
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hinder the host translation initiations (3). To date, numerous studies have demon-
strated that viruses target the translation initiation factor PABPs. Consequently, how
viruses subvert PABPs during viral infections needs to be updated despite a review of
PABP as a viral target being published more than a decade ago (3).

RNA-binding proteins (RBPs) regulate numerous post-transcriptional processes by
binding to intended RNAs (4). A clear-identified and well-conserved group of RBPs is
the PABPs subfamily. PABPs are a cluster of proteins that interact with polyadenylated
mRNAs in eukaryotic cells. It was first discovered to be bound to the polyadenylated
region of eukaryotic messenger RNAs (mRNAs) in the 1970s (5–7). In the early days,
PABPs were mainly supposed to protect mRNA stability from deadenylation of the 39-
end poly(A) tail. In addition to its RNA-binding capabilities, PABPs are also critical medi-
ators of gene expression at the level of RNA metabolism (8). Nevertheless, most studies
claim the critical role of PABPs in enhancing the cellular translation initiation, which is
PABPs binds poly(A) tail to 59 cap of mRNA to facilitate the efficiency of translation ini-
tiation or regulates the length of 39 poly(A) tail (PAT) for different translation purposes
(8–10).

Moreover, PABPs act as enhancing factors of mRNA translation initiation and as trans-
lation factors themselves. They function as scaffold proteins, supporting protein-protein
interactions with multiple translation factors, thus promoting translation initiation and
regulating gene expression (11). To date, PABPs have been shown to take part in all the
metabolic pathways of the mRNA, including mRNA polyadenylation, mRNA deadenyla-
tion, mRNA export, mRNA surveillance, mRNA translation and stability, mRNA decay,
microRNA-associated regulation, and regulation of expression during development and
so on (11–15). These metabolic pathways are good routines for the viruses to utilize in
their infection strategies. Targeting PABPs by both DNA and RNA viruses again highlights
the role of PABPs as central regulators of gene expression. This review updates an inte-
grative account of the significance of PABP during viral infections.

THE CLASSIFICATION OF PABPS

There are significant differences in PABPs family proteins among different species
from yeast to humans. Different species have different numbers of PABP proteins. For
example, dicot Arabidopsis thaliana contains eight PABPs (16, 17), Xenopus laevis con-
tains three PABPs (18–20), and Mus musculus contains two PABPs (21, 22). In humans,
seven PABPs have been discovered. In irrespective of species, PABPs can be classified
according to their distribution in cells. PABPs include cytoplasmic PABPs, nuclear PABP,

FIG 1 The structure of PABPs and translation initiation complex in uninfected cells. (A) The structure of different human PABPs. PABP
comprises N-terminus RRM domains, C-terminus MLLE domain, and a proline-rich linker sequence connect these two parts. PABPC5
and PABPN1 do not have MLLE and the linker region. (B) The translation initiation complex in uninfected cells. PABPs bind to poly(A)
tail eukaryotic cellular mRNA, and they guide 39-end of mRNA to its 59 cap through interaction with eIF4G. eIF4G is a bridge
between the PABP-poly(A) tail and 59 cap, forming a head-to-tail loop and recruiting ribosome 40S subunit for further translation
initiations.
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embryonic PABP, and the X chromosome-encoded protein. Cytoplasmic PABPs
(PABPC) includes PABPC1 (also called PABP1), tPABP (testis-specific PABP, also called
PABPC2 or PABPC3), iPABP (inducible PABP, also called PABPC4 or PABP4), and
PABPC4L; embryonic PABP is called ePABP or PABPC1L, and X chromosome-encoded
protein is named PABPC5; and the nuclear PABP is named PABPN1 (11, 23, 24).
Nevertheless, the most well-studied PABPs during viral infections are PABP1. Only
PABP1 was reported in virus infections. This review focus on how PABP1 (refer to
PABPs in the following text) is manipulated during viral infections.

THE STRUCTURE OF PABPS

Cytoplasmic PABPs bind specifically to the poly(A) tail of eukaryotic mRNAs via its
RNA-recognition motifs (RRMs), which have a lower affinity for poly(U) and poly(G),
and no detectable binding to poly(C) (25–28). The structures of PABPs are highly con-
served, with its N-terminus containing four non-identical RRMs, and its C-terminus con-
sisting of a highly conserved carboxy-terminal helical domain named MLLE, previously
known as PABC (Fig. 1A) (11, 29, 30). Proline-rich linker sequences connect the four
RRM domains to the MLLE domain (31, 32). Despite that the RRM motifs are conserved
for RNA recognition, their binding abilities to RNA and proteins appear to be specifi-
cally different (27, 28). For instance, RRM 1 and 2 exhibits highly poly(A) binding abil-
ities to eIF4G and PABP-interacting protein 1 (Paip1), while RRM 3 and 4 provide lower
binding affinity to poly(A) while binding to AU-rich RNA and mediate protein-protein
interactions (25, 33, 34). Multiple genes encoding PABPs are found in metazoans and
plant species.

Furthermore, not all PABPs encode four RRM domains. In plants like A. thaliana, only
two of the eight PABP genes encode proteins containing four RRM domains(17). In
plants, such as PABPs in N. tabacum, only one of the three expressed PABP genes have
four RRMs (17). In contrast to RRMs roles, the MLLE is not required for RNA recognition
but is necessary for interaction with initiation factors through its binding site, such as the
release factor eRF3, translation repressor Paip1/Paip2. A 15-residue sequence “PABP
interaction motif,” termed PAM2, is critical for this process. This oligomerization controls
mRNA translation, deadenylation, and regulates PABPs binding ability to poly(A) tail and
eIF4G (35–40).

VIRUSES USURP PABP FUNCTIONS FOR VIRAL INFECTIONS

Viruses have long been reported to shut off host protein synthesis, usually disrupt-
ing the translation initiation machinery. PABPs are general translation initiation factors
targeted by viruses to promote viral propagation and/or thwart cell gene expression
during infections. In eukaryotic cells, PABPs bind to the 39-end poly (A) tail and indi-
rectly bind to the 59-end cap complex to promote efficient translation initiations (1).
However, some viruses do not contain a canonical 59-end cap and/or 39-end poly(A)
tail. Hence, viruses develop strategies to manipulate PABPs for viral replication and
protein synthesis. Depending on distinct structures of viral mRNAs, different RNA
viruses and DNA viruses favor different mechanisms to manipulate PABPs. In reported
cases, viruses could commandeer PABPs to hinder the efficient host translation initia-
tion through following ways, such as cleavage of PABPs by viral proteases, regulation
of eIF4F-PABP translational complex, relocalization of cytoplasmic PABPs into the nu-
cleus, interfering with PABPs containing stress granules (SGs), expressing viral transla-
tion factor analogs (3, 8, 41). The genomic structure of RNA viruses containing both ca-
nonical 59-end cap and 39-end poly(A) tail would prefer to use a cap-dependent
translation initiation method to translate their mRNA while simultaneously shutting off
the cellular and viral mRNA translation. In this situation, viruses would compensate
their translation by distinct means to escape the whole translation shutoff. The more
specific mechanism of how viruses escape their shutoff is summarized and discussed
in each virus in this review. Coincidentally, DNA viruses transcripts are similar to host
mRNAs, using a cap-dependent strategy. The genomic structure of RNA viruses lacking
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a 59-end cap usually bears an internal ribosomal entry site (IRES) in the 59 untranslated
region (5'UTR). They utilize cap-independent translation to promote viral mRNA trans-
lation and inhibit the host protein synthesis by degrading PABPs or eIF4F complex.
When RNA viruses have a genomic structure without a classic poly(A) tail, they usually
express PABPs surrogates in enhancing viral mRNA translation initiation by binding to
viral 39-end tail and redistributing the cytoplasmic PABPs into the nucleus. Although
there seems to be a rule to follow by deciphering the relationship between the viral
mRNA structures and their strategies in usurping PABPs, the underlying mechanisms
that each virus subverts PABPs are distinct. In this regard, more studies are warranted
to draw a map about how viruses hinder the host PABPs.

Cap-dependent RNA viruses. (i) Coronaviridae. The coronavirus (CoV) contains a
single-stranded, positive-sense RNA genome, which resembles the structure of most
eukaryotic cellular mRNA. CoV genomic RNA contains a cap structure at the 59-end, a
poly(A) tail at the 39-end, and untranslated regions (UTRs) (42). During CoV infections,
knockdown of PABPs could attenuate virus propagations. For instance, transmissible
gastroenteritis virus (TEGV) is a member of the Coronaviridae family, and it was
reported that PABPs play significant roles in virus RNA synthesis, possibly by binding to
the TEGV genome through its 39 end poly(A) tail (43) However, a new report showed
that in bovine coronavirus (BCoV), it is the viral nucleocapsids (N) protein, not PABPs
involving in RNA synthesis by binding to both 59- and 39-ends (44). Even though PABP
is important for CoV replication (43, 45), it still unclear how PABPs influence virus RNA
synthesis during the CoV life cycle.

Moreover, CoV competitively utilized PABPs as translation initiation factors with the
host for viral mRNA translation. CoV could decrease the translation of host mRNA by its
nucleocapsid (N) protein. For example, BCoV N protein competes with PABP to interact
with poly(A) tail and eIF4E to decrease translation initiation efficiency of virus and host
both in vitro and in vivo (46). This finding suggests that CoV can suppress host mRNA
translation by competitively inhibiting the interaction between PABP and host mRNAs'
poly(A) tails. Even this process could also harm viral mRNAs translation. However, N
protein also binds to viral replicase proteins, which might be an important way to res-
cue the disturbance of viral mRNAs. Once viral replicase protein is synthesized, it asso-
ciates with N protein and guides the N protein-associated viral mRNAs to the replica-
tion complex at the endoplasmic reticulum (ER) to promote viral mRNA synthesis (47).
This process may compensate for viral mRNA quantity for later translation events.

A recent study demonstrated that CoV could manipulate PABPs in a different strat-
egy. SARS-unique domain (SUD) is a non-conserved part of non-structural protein 3
(NSP3) shared by SARS-CoV-2 and SARS-CoV (48–50). Brunn et al. showed that SUD
promoted PABP-interacting protein 1 (Paip1) and PABPs interactions by binding to
40S/80S ribosome, and Paip1 interacts with the RRM domains of PABPs to stimulate
translation, thus increasing both viral and host mRNAs translation efficiency (36, 40,
51–53). However, viruses hinder host translation by specifically degrading host mRNAs
and blocking them from binding to the 40S ribosome by viral protein NSP1 (54–56).
Consequently, only viral but not host translation is enhanced by SARS-CoV-2 and
SARS-CoV SUD (51).

In conclusion, the CoVs either evade cellular shutoff by compensating viral mRNA
levels or blocking host mRNA translation by viral protein after stimulating a high activ-
ity of the translation system.

(ii) Arteriviridae. Porcine reproductive and respiratory syndrome virus (PRRSV) is a
single-stranded positive-sense RNA virus containing a 59-end cap, 39-end poly(A) tail,
and UTRs. Depending on the similar viral mRNA structures, PRRSV and CoV may use
similar strategies to manipulate PABPs. However, this hypothesis is not verified as lim-
ited studies reported manipulating PABPs in PRRSV. Jiang et al. found that PRRSV N
protein was responsible for redistributing cytoplasmic PABPs into the infected nuclei
through the interaction with the C-terminal half of PABPs (57). Moreover, knockdown
of PABPs significantly influences viral RNA synthesis and virus titers, suggesting that
the mRNA translation or replication of PRRSV is closely related to PABPs (57). The
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underlying mechanisms of how PRRSV N protein or other viral proteins manipulate
PABPs need further investigation.

(iii) Togaviridae. The Rubella virus (RV) belongs to the Rubivirus genus of the
Togaviridae family. Its genomic structure is a positive-strand, capped, and polyadeny-
lated RNA. Like other viruses with similar RNA structures, such as PRRSV, RV would redis-
tribute cytoplasmic PABPs into the nucleus (58). This phenomenon is also observed in
rotavirus and herpes simplex virus (HSV), which have classic 59-end cap mRNA. Notably,
RV capsid protein binds to the C-terminal region of PABPs and co-localizes it to the peri-
nuclear region of the cell in vitro and in vivo (58). PABPs levels increased in RV infected
cells, but its activity in translation may be blocked, causing the inhibition of translation;
however, this situation was alleviated by excess PABPs (58).

Nevertheless, it is still unclear whether the interactions between RV capsid protein
and PABPs are associated with viral mRNA translation by restricting PABPs in the nu-
cleus or hijacking PABPs to inhibit cellular protein synthesis. Furthermore, it was sug-
gested that by sequestration of PABPs, the viral capsids could increase the efficiency of
viral RNA packaging into capsids instead of viral RNA translation (58). If so, more nu-
cleocapsid formation-related identifications need to be performed to verify this hy-
pothesis (59).

(iv) Orthomyxoviridae. Influenza A contains a single-stranded, negative-sense RNA
genome. Its genome is both capped and polyadenylated with 59-UTR. Influenza A enc-
odes a non-structural protein 1 (NS1) that binds to the 59-UTR region of viral mRNA
and functions in viral replication and protein synthesis (60, 61). NS1 also interacts with
PABPs and eIF4G on its different binding domains (59). It does not evict PABPs from
the eIF4G as relative amounts of eIF4G, and PABPs proteins are co-purified with NS1.
NSP1 specifically accelerates PABPs and eIF4G to form a complex with it, and this com-
plex is beneficial for viral translation initiation (62). This mechanism of manipulating
PABPs is very different from other positive-sense RNA viruses.

(v) Rhabdoviridae. Some viruses induce SGs formation in infected cells, such as the
rabies virus (RABV), the typical species of the Lyssavirus genus within the Rhabdoviridae
family (63). The viral genome is a single-stranded, negative-sense RNA consisting of a
59-end cap and 39-end poly(A) tail (64). No report shows how RABV manipulates PABPs
in a cap-dependent way. However, RABV might exploit PABPs to disrupt the formation
of SGs. PABP-specific SGs are among the major distinguishable RNA particles in host
cells (41, 65). It is an important component of host antiviral defense. Viral infection
exerts pressure on the host cells to induce the formation of SGs (41). However, viruses
must face the adverse environment from host immunity and take various strategies to
block the formation of SGs and promote its infection and proliferation effectively.
RABV mRNAs synthesize in cytoplasmic viral factories, known as Negri bodies (NBs),
closely related to SGs (63). This close correlation of viral mRNAs accumulating around
SGs reveals material communications between them and may inhibit the antiviral func-
tion of SGs (63). Nevertheless, it is unclear how the virus targets PABPs in RABV induced
SGs, and the relationship between PABP-specific SGs and viral infections needs further
explorations generally.

Cap-independent RNA viruses. (i) Picornaviridae. The genera Enterovirus, Rhinovirus,
Hepatovirus, Parechovirus, Cardiovirus, and Aphthovirus belong to the Picornaviridae family.
Picornavirus contains an uncapped and polyadenylated positive-strand RNA genome with
UTRs. Lacking the 59-end cap, they employ an IRES located in the 59-UTR instead to initiate
the translation of viral mRNAs (66). As a 59-end cap is required in host cellular translation ini-
tiation, in this regard, IRES serves as a 59-end cap-like element in picornavirus mRNA transla-
tion initiation. Picornavirus exhibits alternative translation control strategies based on the
IRES structure of the viral genome.

RNA viruses of this family have been extensively responsible for PABPs and eIF4G
cleavage by the viral proteases, facilitating viral translation by inhibiting cellular mRNA
translation (Fig. 2). 3C is a viral cysteine protease that cleaves the proline-rich linker of
the PABPs and eIF4G structure (67). The 3C proteases of coxsackievirus (CV), poliovirus
(PV), encephalomyocarditis virus (EMCV), and duck hepatitis A virus (DHAV) target
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PABPs to destabilize PABP-poly(A) association (68–71). These 3C proteases separate the
N-terminus of PABPs from its C-terminus by cleaving its flexible linker. Even the recog-
nition sites vary (Fig. 2B). PV 3C cleaves PABPs at Q537/G538, Q437/G438, and Q413/
T414, while the cleavage sites on PABPs by EMCV and DHAV 3C are WTAQ437/G438
and Q367/G368, respectively (70, 72, 73). PABPs are also degraded by PV and coxsack-
ievirus B3 (CVB3) 2A proteases between amino acids 486 and 487. Even this cleavage is
not as efficient as 3C protease does (67, 70). Moreover, PV 2A protease would cut
eIF4G, which evicts the N-terminus of eIF4G from the C-terminus, destabilizes the
PABP-eIF4G interaction, and causes impaired cellular translation initiation (74).

Picornaviruses escape from their shutoff through a cap-independent initiation way.
PV mRNA is translated using an IRES instead of a 59-end cap, which does not require
intact eIF4G (74–76). Intriguingly, the truncated eIF4G works more efficiently on the vi-
ral IRES-driven than the host cap-driven translation (77). PABPs might promote PV
mRNA translation without eIF4G as it interacts with other eIFs. Although 3C protease
mediates the proteolysis of PABPs, leading to the inhibition of host translation, there
are still some uncleaved PABPs. These uncleaved PABPs promote PV mRNAs translation
(75, 78), and picornavirus could evade the complete shutoff by utilizing the uncleaved
PABPs.

Concerning the cleavage of eIF4G, it is mediated by viral 2A, 3C protease, or other
viral proteases. For example, foot-and-mouth disease virus (FMDV) 3C protease and
leader (Lb) protease induce the cleavage of eIF4G at C-terminus residue 681/682 (79,
80). CVB3 2A proteases degrade eIF4G at 688/689, and 3C also cleaves eIF4G even with
no evidence showing the cleavage site (81). SARS-CoV-2 3C-like protease, also called
the main (M) protease or non-structural G protein 5 (NSP5), induces the cleavage of
eIF4G at two sites LQ658/GI659 and LQ1127/QA1128, even the role of host cell shutoff
behind this cleavage is not elucidated (82).

FMDV Lb protease also cleaves G3BP1 and G3BP2, the scaffold protein in the stress
granules (SGs), to disturb the formation of SGs (83). G3BP1 interacts directly with the
viral IRES region and negatively regulates viral translation. FMDV 3C protease cleaves
G3BP1 at amino acid residue 284/285 to release the IRES site and destroy the G3BP1
role to activate innate immunity (84). Another picornavirus CVB3 3C protease cleave
G3BP1 at amino acid residue 325/326, inhibiting SG formation and promoting CVB3
replication (85). In addition, Feline calicivirus (FCV) NS6 protease was reported to
cleave G3BP1 to inhibit SG formation (86).

FIG 2 Cleavage of PABPs or eIF4G by viral proteases. (A) Cleavage of PABPs and eIF4G on the translation initiation complex by viral proteases. Viral 2A, 3C,
and other viral proteases will cut PABPs from their RRM domains or proline-rich linker sequences when host cells are infected. This cleavage will lose the
interaction between PABPs and eIF4G, leading to inhibition of cellular translation. Besides, viral protease (2A/3C/Lb proteases) will cleave eIF4G, separating
its N-terminus from C-terminus, thus destabilizing PABPs interactions with poly(A) or disrupting eIF4G interaction with other translation initiation factors. (B)
Schematic of the cleavage sites on PABPs and eIF4G by different viral proteases. The cleavage site of PV protease on eIF4G and NNV protease on PABPs is
not reported yet. Thus, '”?'” mark is used to indicate the unfound cleavage site.
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(ii) Caliciviridae. The family of Caliciviridae consists of Vesivirus, Lagovirus, Norovirus,
Sapovirus, and Nebovirus genera. The genome structure is highly conserved with a pos-
itive-sense, single-stranded RNA. However, Calicivirus RNA contains a 39-end poly(A)
tail and short UTRs without a canonical 59-end cap (87). Calicivirus genome is different
but closely related with picornaviruses. Calicivirus does not contain IRES elements.
Instead, the 59-end covalently links with a small virus-encoded protein (VPg), which
would interact with the classic translation initiation factors for translation (88). FCV and
norovirus (NV) express 3C-like protease because it shares similarity to picornavirus 3C
protease in the active site region. Viral 3C-like protease also inhibits cellular translation
by the cleavage of PABPs. FCV and norovirus cleave PABPs within the proline-rich linker
as well (89).

(iii) Retroviridae. Human immunodeficiency virus (HIV) is Lentivirus belonging to
the Retroviridae family. Retrovirus genomic RNAs contain 59-end cap, 39-end poly(A)
tail, and UTRs regions, resembling host cellular transcripts. HIV mRNA utilizes cap-de-
pendent translation initiation. However, HIV mRNA also contains the IRES region, which
uses IRES-dependent translation initiation (90). Retroviruses like HIV, simian immuno-
deficiency virus (SIV), or Moloney murine leukemia virus (MMLV) contain the IRES
region (91–93), which may let the virus take advantage of cap-independent translation,
even without intact eIF4G. Like picornavirus or calicivirus, which do not contain a clas-
sic 59-end cap but an IRES part, HIV-1 and HIV-2 encode proteases to degrade eIF4G
and PABPs (94).HIV-1 and HIV-2 proteases cleave PABPs at amino acid residue 237/238
and 477/478, while HIV-2 additionally cleaves at 410/411 (95). The reason may be
based on the IRES region located in the 59-UTR. Although these viral IRESs contain
diverse sequences, many have similar secondary structures and facilitate translation
through similar mechanisms (96).

Overall, these studies demonstrated that cytolytic RNA viruses, including the Piconaviridae,
Calicivirade, and Retroviridae, downregulate host metabolism mostly by drastically degrading
cellular translation factors, such as PABPs and eIF4G, while viral translation continues via a
cap-independent mechanism, which ensures that the translational machinery stays available
only to viral mRNAs.

Non-polyadenylated RNA viruses. (i) Reoviridae. Rotavirus is a double-stranded
RNA virus belonging to the Reoviridae family. The rotavirus mRNAs are capped but not
polyadenylated. The rotavirus mRNA structure is quite different from the host mRNA,
and the rotavirus uses distinct translation logic from the cap-dependent translation ini-
tiation. It is well known that the PABP-eIF4G complex is efficient for the translation ini-
tiation of cellular polyadenylated mRNAs, and rotavirus dispatched a viral non-struc-
tural protein NSP3 to compete with PABPs from binding to eIF4G (Fig. 3) (97).
Consequently, rotavirus utilizes NSP3 to mediate the shutdown of host protein synthesis

FIG 3 Displacement of PABPs by viral structure protein. In RV infected cells, viral protein NSP3
surrogate PABPs by binding to viral 39-end tail (GACC tail instead of AAAA tail in RV mRNAs). NSP3
and RoXaN are two RV proteins that bind to eIF4G to promote viral mRNAs translation.
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by suppressing the translation of cellular mRNAs. Poncet et al. found out that in infected
cells, NSP3 is genetically linked to GACC-tailed mRNA, not poly(A)-tailed mRNA, compet-
ing with host for efficient translation initiation (98, 99). Notably, the 39-end of rotavirus
mRNA contains a conserved binding site (GACC motif) for NSP3 (99). The homodimerized
NSP3 recognizes the specific motif and interacts with eIF4G to enhance viral mRNA trans-
lation, thus escaping from the host shutoff (100).

Rotavirus NPS3 usurps PABPs by working as a surrogate of PABPs to evict them
from the translation initiation complex and redistributing the cytoplasmic PABPs into
the nucleus. This redirect of PABPs requires the interaction of NSP3 with eIF4G and
RoXaN (rotavirus X protein associated with NSP3) (101, 102). Another research showed
that the nuclear localization of PABPs by NSP3 upon rotavirus infection simultaneously
happens with the altered splicing of the stress-related transcription factor XBP1, and
the eIF4G-binding domain of NSP3 is required for this process (103). XBP1 is a cellular
factor involved in innate immunity and stress response (104). During infections, it
could be possible that NSP3 evicts PABPs from eIF4G change the conformation of
PABPs or eIF4G, thus exposing the nuclear import signal of cytoplasmic PABPs (103),
and PABPs are relocalized into the nuclear to interact with XBP1 pre-RNA, causing
retention of transcripts. Alter splicing of XBP1 could be a specific host response to rota-
virus infection or virus cause nuclear localization of PABPs. Despite that NSP3 displaces
PABPs' roles in host protein translation initiation, the function or mechanism of rotavi-
rus NSP3 needs to be elucidated for further understanding.

(ii) Nodaviridae. Nervous necrosis virus (NNV) is classified as the Betanodavirus ge-
nus of the Nodaviridae family. NNV has a positive, single-stranded RNA containing a 59-
end cap but lacks a 39-end poly(A) tail. It is a pathogen causing viral nervous necrosis
disease in marine fish, larvae, and juveniles (105). Chang et al. reported that NNV infec-
tions induced host shutoff by degrading host cytoplasmic PABP sand translocating it
into the nucleus (106). The NNV sequestered PABPs in the infected nucleus via interac-
tion with its coat protein (106). This interaction requires the N-terminal shell domain of
NNV coat protein and proline-rich linker region of PABPs (106). This mechanism of host
shutoff is also seen with RV (58). Moreover, PABPs were degraded up to the RRM3 do-
main at a later infection stage through the ubiquitin-proteasome system, distinct from
viruses like picornaviruses, calicivirus, or other viruses retrovirus, which carry proteo-
lytic enzymes to degrade PABPs. It is a relatively new mechanism found in manipulat-
ing PABPs during viral infection.

Plant RNA viruses. The studies between plant viruses and PABPs are limited.
Despite some of the PABPs structures in plant cells may be distinct from human or ani-
mal cells, it was targeted by plant viruses to affect efficient translation initiation. In
some plant RNA viruses, their viral mRNAs lack both 59-end cap and/or 39-end poly(A)
tail. Its mRNAs have cap-independent translation enhancer elements (CITEs) located in
the 39 UTR, mediating their translation. For instance, in red clover necrotic mosaic virus
(RCNMV), A-rich sequence (ARS) and 39-end CITEs are substitutes for the 39-end poly(A)
tail and the 59-end cap of eukaryotic mRNAs for translation initiation (107). PABPs bind
to ARS in the viral 39 UTR to facilitate translation of uncapped nonpolyadenylated viral
mRNAs (107). Some plant viruses use IRES for translation initiation, like the picornavirus
or calicivirus. However, unlike many IRES elements, the crucifer-infecting tobamovirus
(CrTMV) contains a polypurine tract rather than a pyrimidine-rich tract for PABPs bind-
ing activities (108). For example, PABPs interact with the polypurine tract of CrTMV
IRES in the presence of poly(A) tail to enhance IRES activity (108). In tobacco etch virus
(TEV), PABPs play important roles in the kinetics and stability of eIF4F binding to IRES,
thus facilitating viral mRNAs translation initiations (109). VPg of turnip mosaic virus
(TuMV) plays an important role in the cap-independent initiation of viral protein syn-
thesis by interacting with PABPs and eIF4B to eIF4F, which resembles what happens in
calicivirus (110, 111).

DNA viruses. RNA viruses manipulate PABPs in diverse manners as the structures
of viral mRNAs are diverse. DNA viruses have double-stranded DNA, and their viral
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transcripts are both capped and polyadenylated; therefore, they are more likely to
employ the canonical cap-dependent translation initiation way for their replications.

Poxviridae. Poxvirus genera is a large, complex, enveloped virus belonging to the
Poxviridae family. Unlike herpesviruses, which take advantage of the host DNA and
RNA polymerases, poxvirus could replicate in the cytosol as it encodes itself DNA and
RNA polymerases. Poxvirus replicates in the cytoplasmic compartments known as DNA
factories, containing viral mRNA, RNA-binding proteins, ribosomal proteins, virally tran-
scription factors, and cellular translation initiation factors eIF4E and eIF4G (112).
Poxvirus and herpesvirus mRNAs are translated via the classic cellular cap-dependent
route. Vaccinia virus (VV), a model of the poxvirus, utilized its viral factors to inactivate
the eIF4E binding protein (4E-BP) (113). 4E-BP is a translational repressor that seques-
ters eIF4E from its association with eIF4G, a core bridge between PABPs and eIF4F com-
plex (114). VV negatively regulate eIF4F to suppress cellular cap-dependent mechanism
to translate their mRNAs by destroying 4E-BP (113). Moreover, in VV infected cells,
eIF4E, eIF4G, and PABPs are redistributed to the distinct viral replication compartments
in the cytoplasm (113). VV hijacks of the host translation apparatus to DNA factories
enhance the efficiency of viral replication and thwart cellular protein synthesis.

Herpesviridae. Herpesviridae family comprises three subfamilies, including the
Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. Alphaherpesvirus and
betaherpesvirus are represented by herpes simplex virus 1 (HSV-1) and human cyto-
megalovirus (HCMV), respectively, whereas Kaposi’s sarcoma-associated herpesvirus
(KSHV) and Epstein-Barr virus (EBV) are two models of a gammaherpesvirus. HSV-1 and
KSHV induce host shutoff gene expression while HCMV does not. Besides this, they de-
velop both similar and distinct mechanisms to ensure efficient viral mRNAs translation
initiation.

Alphaherpesvirus. PABPs could shuttle between the cytoplasm and the nucleus
under the assist of many viruses even without a typical nuclear export or import signal.
For instance, PABPs are associated with HSV-1 ICP27 protein. HSV-1 immediately early
gene-encoded protein ICP27 is a nucleo-cytoplasmic shuttling protein involved in tran-
scriptional and posttranscriptional regulation of viral and cellular gene expression
(115). Gromeier and colleagues investigated the significance of ICP27-PABP interaction.
They reported that in HSV-1 ICP27 alone expressed HeLa cells, PABPs were largely relo-
cated into the nucleus without affecting the expression levels and integrity of PABPs or
their associating translation initiation factors (116). Moreover, the interaction of ICP27
and UL47 decreased PABPs interactions to their physiological binding partner eIF4G
and Paip2 (116). It is unknown whether the dissociation of eIF4G or Paip2 from PABPs
could also result from PABPs redistribution to the nucleus, causing fewer cytoplasmic
PABPs ready for efficient translational initiation.

Another group investigated the ICP27-null mutant and discovered that ICP27 does
not influence the relocalization of PABPs into the nucleus, suggesting that other HSV-1
encoded viral factors may influence PABPs relocalization (117). It is argued that redis-
tribution of PABPs into the nucleus was vhs dependent (118). Again, more work needs
to be done on understanding how HSV-1 manipulates PABPs during infection.
Although both ICP27 and UL47 are RNA-binding proteins, abundant nuclear PABPs
seem more convenient for interacting with viral mRNA poly(A) tails in the nucleus and
facilitating viral mRNAs export from the nuclei. These findings suggest that HSV-1 tar-
gets PABPs by changing its subcellular localization and disrupting its binding to the
translational initiation complex. Gray and colleagues found that HSV-1 ICP27 also form
a complex with PABPs and eIF4G to promote small ribosomal subunit recruitment for
viral mRNAs translation purposes independently (119), suggesting PABP-eIF4G interac-
tion is not only targeted for mRNA repression but also activation. Besides, similar to VV,
HSV-1 infection also enhances eIF4F assembly by phosphorylation and proteasome-
mediated degradation of the 4E-BP, thus negatively regulating eIF4F complex forma-
tion (120), which is similar to what happens in VV infected cells. Consequently, viruses
may also target PABPs to affect viral or cellular mRNA processing and transport in
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addition to mRNA translation initiation. More viral and cellular factors related to this
process await investigations to propose a clear and intact model to decipher how
ICP27 or other associated proteins commandeer PABPs or other translation initiation
factors during HSV-1 infections.

HSV-2 is another alphaherpesvirus that might utilize PABPs during infections.
However, the interaction between PABPs and HSV-2 encoding factors is not clear. Viral
protein vhs is required to disrupt SGs, but the abundance of PABPs is not changed in
SGs of infected cells (121). Whether PABPs or their binding partner were affected by
vhs or other viral factors is not clear, and future investigations are needed to explore if
vhs interact with PABPs to disrupt SGs integrity.

Betaherpesvirus. In HSV-1, HCMV, and KSHV-infected cells, viral mRNAs compete
with host mRNAs for translation by stimulating the assembly of cellular translation ini-
tiation factors eIF4F (122, 123). However, only HCMV increases host eIF4F components
(eIF4E, eIF4G, and eIF4A) and cytoplasmic PABPs levels, and this process requires the
inactivation of cellular translational repressor 4E-BP (124). HSV-1 and KSHV exclude
PABPs from the eIF4F complex by restricting them in the nucleus (116, 125). By con-
trast, HCMV manipulates PABPs in a cytoplasmic-dependent manner. PABPs in HCMV
infected cells aggregate in the cytoplasm and are sensitive to rapamycin complex 1
(mTORC1)-mediated inhibition of 4E-BP phosphorylation (Fig. 4) (124). HCMV UL38 pre-
serves the role of mTORC1 activity to inactivate 4E-BP. mTORC1 kinase mediates the
inactivation of 4E-BP, the inactivated 4E-BP resulted in the release of eIF4E, leading to
more efficient eIF4E-eIF4G interaction for more efficient translation initiation (122, 126,
127). Finally, the accumulated PABPs in the cytoplasm are ready to bind to eIF4F and
promote efficient translation of viral mRNAs. Moreover, UL38 is an HCMV encoded tar-
get of mTORC1 activator, which translationally increases PABPs synthesis by regulating
terminal oligopyrimidine (TOP) elements found on PABP mRNA 59 UTR (127). The
HCMV-induced PABPs accumulation promotes eIF4F assembly, thus increasing host
translation initiation factors to foster viral protein synthesis and stimulate virus replica-
tion (127). Another HCMV UL69 protein also antagonizes the active state of 4E-BP by a
different mechanism. UL69 interacts directly with eIF4A, excluding 4E-BP from the cap-
binding complex and PABPs (128). In the meantime, the host is trying to restrict HCMV

FIG 4 Negative regulation of PABPs by HCMV proteins. 4E-BP, a translation inhibitor binding to eIF4E,
regulates cellular translation initiation. HCMV excludes 4E-BP from the translation initiation complex
to promote viral mRNA translation. HCMV UL38 disassociates 4E-BP from eIF4E by enhancing its
phosphorylation through the mTORC1 signal, thus relieving the inhibition of translation initiations.
UL38 also increases PABPs levels in the cytoplasm, assisting viral mRNA translations. HCMV UL69
excludes 4E-BP from cap-binding complex and PABPs by indirectly interacting with eIF4A.
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by increasing Paip2 levels (129). Paip2 is a gene expression repressor that is tightly
regulated with PABPs. Despite the cellular Paip2 functioning as an innate defense to
impede virus propagation, HCMV could sufficiently increase PABP levels to overcome
its repression caused by Paip2 (129).VV, HSV-1, and HCMV can inactivate 4E-BP to pro-
mote the initiation of viral mRNA, even exploiting different mechanisms. Thus, depend-
ing on these discoveries, it is still worth studying how other HSV-1 and HCMV proteins
manipulate PABPs and propose a working model of different herpesviruses, which
might be good antiviral targets for the future.

Gammaherpesvirus. Redistribution of PABPs into the nucleus is, at least in part, a
typical method utilized by viruses to induce host shutoff. In KSHV, viral protein K10/10.1
may target PABPs for their redistribution into the infected nuclei, which would mediate
host translation defects. However, the importance and mechanism of this interaction are
not elucidated due to the unknown function of the K10/10.1 protein in KSHV (130).
Additionally, KSHV ORF37 encodes a protein named SOX which strongly induces a host
shutoff (131, 132). KSHV SOX was shown to possess both endonuclease and exonuclease
activity and facilitates host shutoff by promoting cytoplasmic mRNA degradation, nu-
clear mRNA hyperadenylation, and their nuclear retention (133–137), causing retaining
of host mRNAs in infected nuclei and mediating mRNA export defects (125, 137); The nu-
clear import signals of PABPs are masked when bind to RNA in the cytoplasm, and SOX
is sufficient to mediate nuclear relocalization of PABPs by degrading mRNAs on PABPs,
resulting in RNA-free PABPs imported into the nucleus (138).

Moreover, during KSHV lytic infections, an intronless viral long noncoding (lnc) RNA
called polyadenylated nuclear (PAN) RNA is transcribed at high levels (139). SOX upre-
gulates the accumulation of PAN RNA in the nucleus further to restrict PABPs in the nu-
cleus (139). These measures taken by SOX are consistent with the host shutoff effect. In
addition to that, PAN RNA might promote viral gene expression at the late stage of
infections as knockdown of PAN RNA is associated with the reduced amount of virus
released into cell culture media (139).

ORF57 induces the translocation of PABPs from the cytoplasm to the nucleus, simi-
lar to SOX protein (140). Moreover, KSHV ORF57 is responsible for the stability of viral
PAN RNA structures (140, 141). PABPs inhibit PAN RNA accumulation by destabilizing
its structure in the absence of ORF57. However, the N-terminus of ORF57 interacts with
the RRM of PAPBs, colocalizing PABPs with nuclear PAN RNA and alleviating the nega-
tive effect of PAPBs on PAN (140). As the relocating nuclear PABPs interrupt mRNA nu-
clear export and cause subsequent hyperventilation, one of the functions of ORF57 is
probably to prevent viral RNA from hyperadenylation in the nucleus.

KSHV expressed another protein, ORF10, which directly targeted the nuclear export
pathway by interacting with Rae1 (142), a highly conserved eukaryotic cellular export
factor to inhibit nuclear mRNA exit. Export of mRNA-ribonucleoprotein (mRNP) complex
requires the transit of them through the nucleopore complex (NPC), and Rae1 was
involved in mRNA export by interacting with Nup98 at NPC, disrupting Rae1 and Nup98
complex working in nuclear mRNA export (133, 142). EBV and murine gamma-HV 68
(MHV68) encode homologs of KSHV SOX: BGLF5 and muSOX, respectively (143). KSHV
SOX roles are mimicked by these two homologs suggesting the universal roles of KSHV
SOX and the possible representative mechanism model in gammaherpesviruses (Fig. 5).

Epstein-Barr virus (EBV) encodes an RNA-binding protein EB2 to facilitate translation
initiation of viral mRNA through association with PABP-eIF4F (144). EB2 protein is
encoded to promote the recruitment of viral mRNAs in the cytoplasm. Most of the viral
genes of herpesvirus are intronless, and herpesvirus requires a specific mechanism of
mRNA export and translation for efficient expression of their non-intron mRNAs. EBV EB2
can shuttle between the nucleus and the cytoplasm and enhance the nuclear export of
intronless viral mRNAs (145). Gruffat et al. provided a model showing how EB2 of EBV
facilitates the efficient translation of viral mRNAs (144). They reported that EB2 (Fig. 5)
first binds to mRNA's cap-binding complex (CBC) in the nucleus. After the formation of
mature mRNAs, mRNPs are transported into the cytoplasm by CBC (144). The mature
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viral mRNAs then interacted with the N-terminus of eIF4G and PABPs to facilitate transla-
tion initiation in the cytoplasm (144). HSV-1 ICP27, HCMV UL69, and KSHV ORF57 are
homologs of EBV EB2. They play important roles in viral mRNA translation, and their
mechanisms are different and not fully explored. For example, KSHV ORF57 proteins
recruited a cellular factor PYM to promote viral mRNAs translation, and the interaction
between ORF57 and PYM links the 40S subunit of ribosomes and initiation factors (146).
ICP27 of HSV-1 and UL69 from HCMV were both claimed to target PABPs and eIF4A/
eIF4G to facilitate translation initiation as described above (119, 128, 147, 148). The
Herpesviridae could relocate PABPs into the nucleus. However, it looks like only gamma-
herpesvirus would accelerate host mRNA decay to promote this process. The mechanism
models of how the Herpesviridae target PABPs await further clarifications.

Summary and future perspectives. The host mRNA translation apparatus has long
been recognized as a base to attack during viral infections. PABPs are the number one
targets as they play significant roles in translation initiation. Manipulating PABPs would
impede host translation efficiency and hijack them to work for viral mRNA synthesis
simultaneously. In general, there are a few ways to control PABPs activities.

Firstly, PABPs are cleaved by viral proteases. Enterovirus (PV and CV), Hepatovirus (HAV
and HCV), Calicivirus (FCV and NV), Lentiviruses (HIV-1 and HIV-2) encoding proteases medi-
ate proteolysis of PABPs and/or the eIF4G, which directly decrease the translation initiation
efficiency. In addition, in PV and CV, PABPs were observed to facilitate viral RNA replication
directly via an unknown mechanism. Secondly, PABPs are displaced from the translation
initiation complex. For example, rotavirus NSP3 displaces PABPs in the interaction with
eIF4G and evicts PABPs to mediate host shutoff. Thirdly, a virus may target PABPs for their
presence in virus-induced host SGs via an unclear mechanism. More work is needed to
understand how the virus regulates PABPs in SGs. Last but not least, PABPs are redistrib-
uted from the cytoplasm into the nucleus to shut off host translation initiation. Different
viruses could use different strategies to achieve the same aim. For example, rotavirus and
herpesvirus use different mechanisms to restrict PABPs in the nucleus.

Although similar measures are taken to target PABPs, the underlying mechanisms
are disparate, and virus replication would be promoted differently (see Table 1). Most
investigations on PABPs focus on it as an initiation factor, but it has additional roles in
RNA metabolism, such as RNA splicing, RNA decay, and others. Whether these addi-
tional ways are served as targets for viral manipulations remains future investigations.
Besides, are there more viral and cellular factors involved? More specifically, an over-
view map of how viruses target PABPs needs to be elucidated. In the meantime, the
cytoplasmic PABPs are the most studied at present. Other members of the PABPs fam-
ily are less explored during viral infections. The specific functions of other PABP family

FIG 5 Redistribution of cytoplasmic PABPs into the infected nucleus. In herpesviruses infected cells, viral
proteins such as ICP27 and UL47 in HSV-1, SOX in KSHV, and BGLF5 in EBV are required to redistribute of
PABPs into the nucleus. This process inhibits cellular translation by decreasing cytoplasmic PABPs. In addition,
EBV EB2 protein promotes viral mRNA export from the nucleus and associate with PABP-eIF4F to promote
translation initiation of viral mRNAs.
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members are still vague and need to be further clarified during viral infection.
According to the current research results, the roles of PABPs were investigated in cell
lines and may vary from case to case. Organoids are recommended to mimic viral
infections in actual circumstances to improve the consistency of the virology study
and warranty fidelity.

PABPs have roles in RNA metabolism, including cellular mRNA decay, mRNA deadeny-
lation, mRNA export, mRNA surveillance. PABPs may regulate viral mRNAs identified by
the innate immune system through pattern recognition receptors (PRRs) (149). How
PABPs mediate, viral mRNAs metabolism is unrevealed. It reminds us that viruses may
target PABPs to metabolize viral RNAs to escape PRRs arrest, suggesting PABPs’ possible
roles in innate immunity, an undiscovered and promising area during viral infections.

Although the importance of PABPs during viral infections has been concerned in
the last decades, their function in infected cells is not fully addressed in many aspects.
With the progress of cell research technology, different views on the roles of PABPs
during viral infection and the whole organism may appear. Here, we have outlined and
discussed the current knowledge of the PABPs during viral infection and provided in-
formation for future study of PABPs.
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