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Abstract In this paper we provide for a first time, to our knowledge, a mathemati-
cal model for imaging an anisotropic, orthotropic medium with polarization-sensitive
optical coherence tomography. The imaging problem is formulated as an inverse scat-
tering problem in three dimensions for reconstructing the electrical susceptibility of
the medium using Maxwell’s equations. Our reconstruction method is based on the
second-order Born-approximation of the electric field.
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1 Introduction

Optical coherence tomography (OCT) is an imaging technique producing high-
resolution images of the inner structure of biological tissues. Standard OCT uses
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broadband, continuous wave light for illumination and the images are obtained by
measuring the time delay and the intensity of the backscattered light from the sample.
For a detailed description of OCT systems we refer to the books (Bouma and Tearney
2002; Drexler and Fujimoto 2015) and for a mathematical modeling we refer to Elbau
et al. (2015).

Apart form standard OCT, there exist also functional OCT techniques such as the
polarization-sensitive OCT (PS-OCT) which considers the differences in the polariza-
tion state of light to determine the optical properties of the sample. PS-OCT is based on
polarization-sensitive low coherence interferometry established by Hee et al. (1992)
and then first applied to produce two-dimensional OCT images (de Boer et al. 1997,
1998). In this work, we consider the basic scheme of a PS-OCT system which consists
of a Michelson interferometer with the addition of polarizers and quarter-wave plates
(QWP).

More precisely, a linear polarizer is added after the source and the linear (horizontal
or vertical) polarized light is split into two identical parts by a polarization-insensitive
beam splitter (BS). In the reference arm the light is reflected by a mirror and in the
sample arm the light is incident on the medium. At the BS, the back-reflected beam
and the backscattered light from the sample, in an arbitrary polarization state, are
recombined. The recombined light passes through a polarizing BS which splits the
output signal into its horizontal and vertical components to bemeasured at twodifferent
photo detectors. See Fig. 1 for an illustration of this setup.

To describe the change in the polarization state of the light due to its propagation
into the sample we adopt the analysis based on the theory of electromagnetic waves
scattered by anisotropic inhomogeneous media (Colton and Kress 2013; Wolf and
Foley 1989). We assume that the dielectric medium is linear and anisotropic. In addi-
tion, we impose the property that themedium is invariant under reflection by the x1−x2
plane. A medium with this property is called orthotropic in the mathematical com-
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Fig. 1 Schematic representation of the light travelling in a time-domain PS-OCT system. In the reference
and sample arms are placed quarter-wave plates (QWP) at specific orientations
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munity (Cakoni and Colton 2014) or monoclinic in the material science community
(Torquato 2002).

The medium is also considered as weakly scattering and we present the solution
in the accuracy of the second-order Born-approximation. As we are going to see
later, we consider higher-order approximation in order to be able to recover all the
material parameters. We describe the change in the polarization state of the light by
the Jones matrix formalism which is applicable since OCT detects the coherent part
of the electric field of the backscattered light (Jiao and Wang 2002). As in standard
OCT systems, the backscattered light is detected in the far field.

In the medical community, the sample is usually described by a general retarder
and the change in the polarization state of the light returning from the sample can be
modelled by a Jones matrix (Hitzenberger et al. 2001; Jiao andWang 2002). However,
even though the produced images are satisfactory they are mainly used qualitatively.
The usage of these images comes only secondarily to quantify the optical parameters
by image processing techniques.

In this work we are interested in the quantitative description of PS-OCT. To do so,
we have first to describe mathematically the system properly. Thus, we represent the
polarized scattered field as solution to the full-wave Maxwell’s equations. This has
not yet been applied to PS-OCT, since for isotropic media, the Born-approximation
decouples the effects of the optical properties of the sample from the polarization state
of the scattered field. However, this analysis for anisotropic media provides enough
information to reconstruct the electric susceptibility of themedium. The scattered field
satisfies then an integral equation of Lippmann–Schwinger type. Under the far-field
approximation and the assumption of a homogeneous background medium we obtain
a system of integral equations for the unknown optical parameters.

In the mathematical literature, the scattering problem by anisotropic objects has
been widely considered over the last decades (Beker and Umashankar 1989; Geng
et al. 2003; Graglia and Uslenghi 1984; Papadakis et al. 1990). Recently, the connec-
tion between the inverse problem to reconstruct the refractive index and the interior
transmission problem has been investigated (Cakoni et al. 2010; Cakoni and Had-
dar 2007). For the specific case of an orthotropic medium we refer the reader to
the book (Cakoni and Colton 2014) and to Colton et al. (1997) and Potthast (1999)
for results concerning the uniqueness and existence of solutions of the inverse prob-
lem.

The paper is organized as follows: In Sect. 2, we derive the integral representation of
the scattered field for an orthotropic medium in the accuracy of the second-order Born-
approximation in the far-field zone. In Sect. 3,we describemathematically the standard
PS-OCT system using the Jones matrix formalism and we derive the expression for
the cross-spectral density. The system of equations for all the components of the
susceptibility is presented in the last section using two incident illuminations.

Notation

In this paper, we use the following conventions:
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– Let f :R → C be integrable, then the one-dimensional Fourier-transform is
defined by

f̂ (ω) =
∫
R

f (t)eiωt dt, for all ω ∈ R.

– Let f :R → C be integrable, then the one-dimensional inverse Fourier-transform
is defined by

f̌ (t) = 1

2π

∫
R

f (ω)e−iωt dω, for all t ∈ R.

– Let f :R3 → C be integrable, then the three-dimensional Fourier-transform is
defined by

f̃ (k) =
∫
R3

f (x)e−i〈k,x〉 dx, for all x ∈ R
3.

2 The direct scattering problem

In absence of external charges and currents, the propagation of electromagnetic waves
in a non-magnetic medium is mathematically described byMaxwell’s equations relat-
ing the electric and magnetic fields E :R×R

3 → R
3 and H :R×R

3 → R
3 and the

electric displacement D :R × R
3 → R

3 by

∇ · D(t, x) = 0, ∇ · H(t, x) = 0, t ∈ R, x ∈ R
3,

∇ × E(t, x) = − 1
c

∂H
∂t (t, x), ∇ × H(t, x) = 1

c
∂D
∂t (t, x), t ∈ R, x ∈ R

3,
(1)

where c is the speed of light. Maxwell’s equations are not sufficient to uniquely deter-
mine the fields D, E and H . Therefore additional material parameters have to be
specified:

Definition 1 An anisotropic medium is called linear dielectric if there exists a func-
tion, called the electric susceptibility,

χ ∈ C∞
c (R × R

3;R3×3), with χ(τ, x) = 0 for all τ < 0, x ∈ R
3,

satisfying

D(t, x) = E(t, x) +
∫
R

χ(τ, x)E(t − τ, x) dτ. (2)

A linear dielectric medium is called orthotropic (Cakoni and Colton 2014; Colton
et al. 1997) if it admits the special symmetric form

χ =
⎛
⎝χ11 χ12 0

χ12 χ22 0
0 0 χ33

⎞
⎠ . (3)
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Application of the Fourier transform to Maxwell’s equations (1) and taking into
account (2), it follows that the Fourier-transform Ê of E satisfies the vector Helmholtz
equation

∇ × ∇ × Ê(ω, x) − ω2

c2
(1 + χ̂(ω, x))Ê(ω, x) = 0, ω ∈ R, x ∈ R

3. (4)

Definition 2 We call an electric field Ei :R × R
3 → R

3 a causal initial field (CIF)
with respect to some domain Ω ⊆ R

3 if

1. Its Fourier transform with respect to time solves Maxwell’s equations (1) with a
susceptibility χ = 0, that is,

∇×∇×Ê
i
(ω, x)−ω2

c2
Ê
i
(ω, x) = 0, and ∇·Êi

(ω, x) = 0, ω ∈ R, x ∈ R
3,

(5)
2. and satisfies supp Ei (t, ·) ∩ Ω = ∅ for every t ≤ 0.

The second condition means that Ei does not interact with the medium contained in
Ω until the time t = 0.

Example 1 Let Ω ⊂ R
3 be an open set, such that supp χ(t, ·) ⊂ Ω for all t ∈ R.

Moreover, let q ∈ R
2 × {0} (denoting the polarization vector), f ∈ C∞

c (R) and

E0(t, x) = q f
(
t + x3

c

)
, (6)

such that

supp E0(t, ·) ∩ Ω = ∅ for every t ≤ 0.

Then E0 is a CIF.

Proof To see this note that for arbitrary q ∈ R
3 we get

∇ × ∇ × E0 = ∇ ×
(
1

c
f ′ (t + x3

c

)
e3 × q

)
= 1

c2
f ′′ (t + x3

c

)
e3 × (e3 × q)

= − 1

c2
f ′′ (t + x3

c

)
q = − 1

c2
∂t t E0.

And for the particular choice q ∈ R
2 × {0} we even have that ∇ · E0 = 0. This shows

that E0 is a solution of Maxwell’s equation. The second assertion is an immediate
consequence of the second assumption. ��
Theorem 1 Let Ei be a CIF-function and assume that the susceptibility χ represents
a dielectric, orthotropic medium. Then,

1. there exists a solution E (together with H) of Maxwell’s equations (1) which
satisfies

E(t, x) = Ei (t, x), t ≤ 0, x ∈ R
3. (7)
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2. For every x ∈ R
3 the function

g : R → C ,

ω �→ (Ê − Ê
i
)(ω, x),

can be extended to a square integrable, holomorphic function on the upper half
plane

H = {ω ∈ C | �(ω) > 0}.

3. Ê solves the Lippmann–Schwinger integral equation

Ê(ω, x) = Ê
i
(ω, x) +

(
ω2

c2
1 + ∇∇·

) ∫
R3

G(ω, x − y)χ̂(ω, y)Ê(ω, y) d y

=: Êi
(ω, x) + G[χ̂ Ê](ω, x) , (8)

where

G(ω, x) = ei
ω
c |x|

4π |x| , x �= 0, ω ∈ R

is the fundamental solution of the scalar Helmholtz equation.

The integral operator G is strongly singular and we address its properties in the last
section.

Proof From the initial condition (7) it follows for every solution E of Maxwell’s
equations (1) which fulfills (7) that the inverse Fourier-transform of g satisfies

ǧ(t) = 0 for all t ≤ 0.

Thus, the second assertion is a direct consequence of the Paley–Wiener theorem
(Papoulis 1962).

To prove the first part, note that the electric field Ê is uniquely defined by (4)
together with the assumption that the function g can be for every x ∈ R

3 extended to
a square integrable, holomorphic function on the upper half plane.

Finally, the solution of Eq. (4) can be written as the solution of the integral Eq. (8),
see Cakoni and Colton (2014) and Potthast (2000). ��

2.1 Born and far-field approximation

We assume that the medium is weakly scattering, meaning that χ̂ is sufficiently small

(Chew 1990; Colton and Kress 2013) such that the incident field Ê
i
is significantly

larger than Ê − Ê
i
.
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Definition 3 The first order Born-approximation of the solution Ê of the Lippmann–
Schwinger equation (8) is defined by

Ê
1 = Ê

i + G[χ̂ Ê
i ]. (9)

The second order Born-approximation is defined by

Ê
2 = Ê

i + G[χ̂ Ê
1]. (10)

Inserting (9) into (10) gives

Ê
2 = Ê

i + G[χ̂ Ê
i ] + G

[
χ̂G[χ̂ Ê

i ]
]
, (11)

or in coordinate writing

Ê
2
(ω, x) = Ê

i
(ω, x) + ω2

c2

∫
R3

G(ω, x − y)χ̂(ω, y)Ê
i
(ω, y) d y

+ ω4

c4

∫
R3

∫
R3

G(ω, x − y)χ̂(ω, y)G(ω, y − z)χ̂(ω, z)Ê
i
(ω, z) dz d y,

(12)
where now G is the Green tensor of Maxwell’s equations (Haddar 2004; Hazard and
Lenoir 1996)

G(ω, x − y) = G(ω, x − y)1 + c2

ω2∇∇ · (G(ω, x − y)1).

The physical meaning of the second order Born-approximation is that at a point x
the total field Ê

2
contains all single and double scattering events.

In an OCT setup, the measurements are performed in a distance much bigger com-
pared to the size of the sample. Thus, setting x = ρϑ, ρ > 0 and ϑ ∈ S

2, we can
replace the above expression by its asymptotic behaviour for ρ → ∞, uniformly in
ϑ, see for instance Elbau et al. (2015, Equation (4.1)), resulting to

Ê
2
(ω, ρϑ) = Ê

i
(ω, ρϑ) + G∞[χ̂ Ê

i ](ω, ρϑ) + G∞ [
χ̂G[χ̂ Ê

i ]
]
(ω, ρϑ). (13)

Here we have introduced the operator

G∞[ f ](ω, ρϑ) := −ω2ei
ω
c ρ

4πρc2

∫
R3

ϑ × (ϑ × f (ω, y)) e−i ωc 〈ϑ, y〉 d y, (14)

defined for functions f :R × R
3 → R

3.
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3 Polarized-sensitive OCT

We describe the standard PS-OCT system in the context of aMichelson interferometer
first presented by Hee et al. (1992).

The detector array is givenbyD = R
2×{d}withd > 0 sufficiently large.Moreover,

we specify the CIF function to be E0 as defined in Example 1 and we assume that
E0(t, x) = 0 for t ≥ 0 and x ∈ D.

Wedescribe now the change in the polarization state of the light through thePS-OCT
system. The effect of the polarization-insensitive beam splitter (BS) is not considered
in this work since it only reduces the intensity of the beam by a constant factor. For
simplicity, we place the sample and the mirror around the origin and the detector at
the BS, for more details see Elbau et al. (2015, Section 3.3). The BS splits the light
into two identical beams entering both arms of the interferometer.

Reference arm: The light (at some negative time) passes through a zero-order
quarter-wave plate (QWP) oriented at angle φ1 to the incident linear
polarization. It is reflected by a perfect mirror placed in x3 = l and
then passes through the QWP again, at time t = 0, see the right
picture in Fig. 2. We formulate this process as a linear operator

J l [E0](t, x) = E0,ref (l; t, x), (15)

to be specified later. Then, the reference field El takes the form

El(t, x) =
{
E0(t, x) + E0,ref (l; t, x), if t > 0, x3 > lR,

E0(t, x), if t ≤ 0, x3 > lR .
(16)

Sample arm: The incoming light passes through a QWP (oriented at a different
angle φ2) at some time t < 0, placed in the plane given by the
equation x3 = lQ . This process results to a field

J [E0](t, x) = E0,inc(t, x), (17)

that until t = 0 does not interact with the medium, see the left
picture in Fig. 2.

Detector: The electric field E which is obtained by illuminating the sample
with the incident field E0,inc is combinedwith the reference field El .

We assume here that the backscattered light does not pass through
theQWPagain. At every point on the detector surfaceDwemeasure
the two intensities (Elbau et al. 2015)

I j (l, ξ) =
∫ ∞

0
E j (t, ξ)El

j (t, ξ) dt, ξ ∈ D, j ∈ {1, 2}.

We assume that we do not measure the incident fields at the detector, meaning
E0(t, ξ) = E0,inc(t, ξ) = 0 for t > 0 and ξ ∈ D and recalling (16) we obtain
El − E0 = 0 for t ≤ 0, resulting to
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x3 = lQ

x3 = lR

x3 = l

Sample Ω

Mirror
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Fig. 2 The two scattering problems in PS-OCT. On the left picture the incoming light in the sample arm
passes through a QWP and is incident on the medium. On the right picture, in the reference arm, the light
is back-reflected by a mirror (passing twice a QWP)

I j (l, ξ) =
∫ ∞

0
(E j − E0,inc

j )(t, ξ)(El
j − E0

j )(t, ξ) dt

=
∫
R

(E j − E0,inc
j )(t, ξ)(El

j − E0
j )(t, ξ) dt. (18)

WeusePlancherel’s theorem, and since E ∈ R
3 it follows that Ê(−ω, ·) = Ê(ω, ·).

Thus, the above formula can be rewritten as

I j (l, ξ) = 1

2π

∫
R

(Ê j − Ê0,inc
j )(ω, ξ)(Êl

j − Ê0
j )(ω, ξ) dω

= 1

2π

∫ 0

−∞
(Ê j − Ê0,inc

j )(−ω, ξ)(Êl
j − Ê0

j )(−ω, ξ) dω

+ 1

2π

∫ ∞

0
(Ê j − Ê0,inc

j )(ω, ξ)(Êl
j − Ê0

j )(ω, ξ) dω

= 1

π
�

∫ ∞

0
(Ê j − Ê0,inc

j )(ω, ξ)(Êl
j − Ê0

j )(ω, ξ) dω. (19)

3.1 Jones calculus

Here we describe the operators J l and J , introduced in (15) and (17), respectively.
We consider the fields in the frequency domain. Then, for positive frequencies we can
apply the Jones matrix method (keeping also the zero third component of the fields) in
order to model the effect of the QWP’s on the polarization state of light. We assume
that the properties of the QWP’s are frequency independent and that the light is totally
transmitted through the plate surface.
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Definition 4 We define

J l [v](ω, x) = J2(φ1)v(ω, x) ei
ω
c 2(x3−l)

, for ω > 0,

J [v](ω, x) = J(φ2)v(ω, x), for ω > 0,
(20)

where

J(φ) =
⎛
⎝cosφ − sin φ 0
sin φ cosφ 0
0 0 1

⎞
⎠

⎛
⎝1 0 0
0 −i 0
0 0 1

⎞
⎠

⎛
⎝ cosφ sin φ 0

− sin φ cosφ 0
0 0 1

⎞
⎠ ,

is the rotated Jones matrix for a QWP with the fast axis oriented at angle φ (Gerrard
and Burch 1975).

The above definition summarizes what we described before: In the reference arm,
the incoming field passes through the QWP (at angle φ1) is reflected by the mirror
and then passes through the QWP again. The field travels additionally the distance
2(x3 − l). In the sample arm, the field passes only through the QWP at angle φ2.

We consider the PS-OCT system, presented first by Hee et al. (1992) and then
considered by Hitzenberger et al. (2001) and Schoenenberger et al. (1998), where
φ1 = π/8 and φ2 = π/4. Then, we obtain

Ê
0,ref

(l;ω, x) = J l [Ê0](ω, x) = η f̂ (ω) ei
ω
c (x3−2l)

, for ω > 0,

Ê
0,inc

(ω, x) = J [Ê0](ω, x) = p f̂ (ω) e−iωc x3, for ω > 0,
(21)

where η = J2(π/8) q and p = J(π/4) q. We observe that Ê
0,ref

is still linearly
polarized at angle π/4 with the linear (horizontal or vertical) initial polarization state
and Ê

0,inc
describes a circularly polarized light.

Now we can define our approximated data. We approximate in (19) the term Ê j −
Ê0,inc

j by Ê2
j − Ê0,inc

j and for the term Êl
j − Ê0

j we consider (16) and (21).

Definition 5 We call

I 2j (l, ξ) = η j

π
�

∫ ∞

0
(Ê2

j − Ê0,inc
j )(ω, ξ) f̂ (−ω)ei

ω
c (2l−ξ3) dω. (22)

the second order approximated measurement data of OCT.

4 The inverse problem of recovering the susceptibility

The problem we address here, is to recover χ̂ from the knowledge of I2(l, ξ) for
l ∈ R, ξ ∈ D. First, we show that the measurements provide us with expressions
which depend on χ̂ non-linearly.
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Proposition 1 Let E0(t, x) be given by the form (6) with q3 = 0 and let the mea-
surement data I 2j be given by (22). Then, for every ω ∈ R+\{0} with f̂ (ω) �= 0, the
expression

η j

[
G∞ [

χ̂
(
p e−i ωc y3 + G[χ̂ p e−i ωc z3 ]

)]]
j
(ω, ρϑ)

= 1

c| f̂ (ω)|2
∫
R

I 2j (l, ρϑ)e−i ωc (2l−ρϑ3) dl (23)

holds for all j ∈ {1, 2}, and ϑ ∈ S
2+ := {μ ∈ S

2 | μ3 > 0}.

Proof We consider Eq. (13) where now Ê
i
is replaced by Ê

0,inc
for ω > 0. Then, we

get

(Ê
2 − Ê

0,inc
)(ω, ρϑ) = f̂ (ω)G∞ [

χ̂
(
p e−i ωc y3 + G[χ̂ p e−i ωc z3]

)]
(ω, ρϑ). (24)

We apply the inverse Fourier transform with respect to l in (22), to obtain

∫
R

I 2j (l, ξ)e−i ω̃c 2l dl = cη j

2

∫ ∞

0
(Ê2

j − Ê0,inc
j )(ω, ξ) f̂ (−ω)e−iωc ξ3δ(ω − ω̃) dω

+ cη j

2

∫ ∞

0
(Ê2

j − Ê0,inc
j )(ω, ξ) f̂ (−ω)e−iωc ξ3δ(ω + ω̃) dω

(25)
which for ω̃ > 0, f̂ �= 0 and η j �= 0, using that E and f are real valued, results to

(Ê2
j − Ê0,inc

j )(ω, ξ) = 1

η j c f̂ (−ω)

∫
R

I 2j (l, ξ)e−i ωc (2l−ξ3) dl.

This identity together with (24), results asymptotically to (23). ��
We observe here that we want to reconstruct four four-dimensional functions from

two three-dimensional measurement data. Thus, we have to consider some additional
assumptions on the medium in order to cancel out the lack of dimensions and handle
the non-linearity of (23) with respect to χ̂ .

Assumption 1 Specific illumination: The support of the initial pulse is small enough
such that the optical parameters in this spectrum can be assumed constant with respect
to frequency.

Medium: The susceptibility can be decomposed into two parts, a background sus-
ceptibility which is constant and assumed to be known and a part that counts for the
local variations of the susceptibility and can be seen as deviation from the constant
value.

Then, the expression (3) admits the special form

χ̂(ω, x) = χ0 + ε ψ(x),
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where

χ0 = χ0

⎛
⎝1 1 0
1 1 0
0 0 1

⎞
⎠ , and ψ =

⎛
⎝ψ11 ψ12 0

ψ12 ψ22 0
0 0 ψ33

⎞
⎠ ,

for some known χ0 ∈ R, a small parameter ε > 0 and ψi j ∈ C∞
c (R3;C).

In the following, we consider this type of media, which is typical for biological
tissues, and we assume in addition that the behavior of the homogeneous medium
(ε = 0) is known. Then, as a consequence, also the measured data from PS-OCT are
known, let us call them I0, andwe can assume the following form for themeasurements

I 2j (l, ξ) = I0 + εMj (l, ξ), l ∈ R, ξ ∈ D, j ∈ {1, 2}, (26)

for some known functions Mj .

Proposition 2 Let the assumptions of Proposition 1 and the additional Assumption 1
hold. We define v = ω

c (ϑ + e3), ϑ ∈ S
2+. Then, the spatial Fourier transform of the

matrix-valued function ψ : R3 → C
3×3, satisfies the equations

η j

[
ϑ ×

(
ϑ ×

((
ψ̃(v) + χ0K[ψ̃](v) + K†[ψ̃](v)χ0

)
p
))]

j
= m̃ j (v), j ∈{1, 2},

(27)
where

m̃ j (v) := m j (ω,ϑ) = − 4πρc

ω2| f̂ (ω)|2
∫
R

Mj (l, ρϑ)e−i ωc (2l−ρ(ϑ3−1)) dl. (28)

The operators K and K† are defined by

K[ f ](v) :=
∫
R3

K z(v; k) f (k) dk, K†[ f ](v) :=
∫
R3

f (k)K y(v; k) dk, (29)

for functions f :R3 → C
3×3, with kernels

Kα(ω
c (ϑ + e3); k) = ω2

c2(2π)3

∫
Ω

∫
Ω

G(ω, y − z)e−i ωc (z3+〈ϑ, y〉)ei〈k,α〉 dz d y,

for α = z, y.

Proof We substitute χ̂ , considering Assumption 1, and (26) in (23) and we equate the
first order terms ψ and M to obtain

η j

[
G∞ [

ψ
(
p e−i ωc y3 + G

[
χ0 pe

−i ωc z3
])]]

j
(ω, ρϑ)

+ η j

[
G∞ [

χ0G
[
ψ p e−i ωc z3

]]]
j
(ω, ρϑ)

= 1

c| f̂ (ω)|2
∫
R

Mj (l, ρϑ)e−i ωc (2l−ρϑ3) dl. (30)
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In order to analyse the left hand side of the above equationwe consider the definition
(14) and the analytic form (12). Then, we rewrite (30) as

η j

[∫
Ω

ϑ × (ϑ × (ψ( y) p)) e−i ωc 〈ϑ+e3, y〉 d y

+ ω2

c2

∫
Ω

∫
Ω

ϑ × (
ϑ × (

χ0G(ω, y − z)ψ(z) p
))
e−i ωc (z3+〈ϑ, y〉) dz d y

+ ω2

c2

∫
Ω

∫
Ω

ϑ × (
ϑ × (

ψ( y)G(ω, y − z)χ0 p
))
e−i ωc (z3+〈ϑ, y〉) dz d y

]
j

= m j (ω,ϑ),

where m j is given by (28). Taking the Fourier transform of ψ with respect to space,
we get

η j

[
ϑ ×

(
ϑ ×

(
ψ̃(ω

c (ϑ + e3)) p
))

+ ω2

c2(2π)3

∫
R3

∫
Ω

∫
Ω

ϑ ×
(
ϑ ×

(
χ0G(ω, y − z)ψ̃(k) p

))

×e−i ωc (z3+〈ϑ, y〉)ei〈k,z〉 dz d y dk

+ ω2

c2(2π)3

∫
R3

∫
Ω

∫
Ω

ϑ ×
(
ϑ ×

(
ψ̃(k)G(ω, y − z)χ0 p

))
e−i ωc (z3+〈ϑ, y〉)

× ei〈k, y〉 dz d y dk
]
j
= m j (ω,ϑ). (31)

This equation for m̃(v) := m(ω,ϑ), using the definitions of the integral operators
(29) admits the compact form (27). ��

Regarding the integral operators appearing in (29), we prove the following property.

Lemma 2 The integral operators K, K† : (L2(Ω))3×3 → (L2(S2))3×3, defined by
(29), are compact.

Proof We consider the following decomposition

K[ f ](ω
c (ϑ + e3)) = ω2

c2(2π)3

∫
R3

∫
Ω

∫
Ω

G(ω, y − z)

×e−i ωc (z3+〈ϑ, y〉)ei〈k,z〉 f̃ (k) dz d y dk

= ω2

c2

∫
Ω

∫
Ω

G(ω, y − z)e−i ωc (z3+〈ϑ, y〉) f (z) dz d y

=
∫

Ω

e−i ωc 〈ϑ, y〉
(

ω2

c2
1

∫
Ω

G(ω, y − z)e−i ωc z3 f (z) dz

+∇∇ ·
∫

Ω

G(ω, y − z)e−i ωc z3 f (z) dz
)

d y

=
∫

Ω

e−i ωc 〈ϑ, y〉
(

ω2

c2
1

∫
Ω

G(ω, y − z)e−i ωc z3 f (z) dz
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+∇∇ ·
∫

Ω

G(0, y − z)e−i ωc z3 f (z) dz

+∇∇ ·
∫

Ω

(G(ω, y − z) − G(0, y − z)) e−i ωc z3 f (z) dz
)

d y.

The above expression in compact form reads

K[ f ](v) = F
[
(G + G0 + G1)[e−i ωc z3 f ]

]
(v),

for the operators

F [ f ](θ) :=
∫

Ω

e−i ωc 〈ϑ, y〉 f ( y) d y,

G[ f ](x) := ω2

c2

∫
Ω

G(ω, x − y) f ( y) d y,

G0[ f ](x) := ∇∇ ·
∫

Ω

G(0, x − y) f ( y) d y,

G1[ f ](x) := ∇∇ ·
∫

Ω

(G(ω, x − y) − G(0, x − y)) f ( y) d y.

The operator F : L2(Ω) → L2(S2) is a modification of the usual far-field oper-
ator with smooth kernel, thus compact. The operators G : L2(Ω) → L2(Ω)

and G1 : (L2(Ω))3×3 → (L2(Ω))3×3 are also compact due to their weakly sin-
gular kernels, see for instance (Colton and Kress 2013; Potthast 2000), and the
operator G0 : (L2(Ω))3×3 → (L2(Ω))3×3 is bounded (Colton et al. 2007). Thus
K : (L2(Ω))3×3 → (L2(S2))3×3 is also compact. The same arguments hold also for
the operator K†. ��

Now, we are in position to formulate the inverse problem: Recover from the expres-
sions

η j

[
ϑ ×

(
ϑ ×

((
ψ̃(v) + χ0K[ψ̃](v) + K†[ψ̃](v)χ0

)
p
))]

j
, j ∈ {1, 2},

the matrix-valued function ψ : Ω → C
3×3, assuming that we have measurements for

every incident polarization.
Let us now specify the polarization vectors η and p. We choose two different

incident polarization vectors q(1) = e1 and q(2) = e2, and using the formulas (21) we
obtain the vectors

η(1) =
√
2

2

⎛
⎝1
1
0

⎞
⎠ , p(1) = 1

2

⎛
⎝1 − i
1 + i
0

⎞
⎠ ,

η(2) =
√
2

2

⎛
⎝ 1

−1
0

⎞
⎠ , p(2) = 1

2

⎛
⎝1 + i
1 − i
0

⎞
⎠ .

(32)
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Remark 1 To find, for instance, the form of the incident wave p(1) f̂ (ω) e−iωc x3, for
ω > 0, in the time domain we have to extend it for negative frequencies and consider
its inverse Fourier transform. Then, we have

E(1)(t, x) =: 1

2π

∫ ∞

0
p(1) f̂ (ω) e−iωc x3e−iωt dω

+ 1

2π

∫ 0

−∞
p(1) f̂ (ω) e−iωc x3e−iωt dω

= 1

2π

∫ ∞

0
p(1) f̂ (ω) e−iωc x3e−iωt dω

+ 1

2π

∫ ∞

0
p(1) f̂ (ω) e−iωc x3e−iωt dω

= 1

π
�

∫ ∞

0
p(1) f̂ (ω) e−iωc x3e−iωt dω

If the small spectrum is centered around a frequency ν, we approximate f̂ (ω) �
δ(ω − ν), for ω > 0, to obtain

E(1)(t, x) = 1

π
�

{
p(1)e−iν(

x3
c +t)

}

= 1

2π

⎛
⎜⎝
cos(ν( x3c + t)) − sin(ν( x3c + t))

cos(ν( x3c + t)) + sin(ν( x3c + t))
0

⎞
⎟⎠

= 1√
2π

⎛
⎜⎝
cos(π

4 + ν( x3c + t))

sin(π
4 + ν( x3c + t))

0

⎞
⎟⎠ .

We see that E(1) describes also a circularly polarized wave with a phase shift.

If we neglect the zeroth third components, we observe that η(1), η(2) ∈ R
2 and

p(1), p(2) ∈ C
2 form a basis in R

2 and C
2, respectively. The following result shows

that measurements for additional polarization vectors q do not provide any further
information.

Proposition 3 Letϑ ∈ S
2+ be fixed and q = q(1), q(2).Then, theEq. (27) is equivalent

to the system of equations

[
PϑY p(1)

]
1

= b(1)
1 ,

[
PϑY p(1)

]
2

= b(1)
2 ,

[
PϑY p(2)

]
1

= b(2)
1 ,

[
PϑY p(2)

]
2

= −b(2)
2 ,

(33)

where Y := ψ̃(v) + χ0K[ψ̃](v) +K†[ψ̃](v)χ0, b
(k)
j := −√

2m̃(k)
j , k, j = 1, 2, and

Pϑ denotes the orthogonal projection in direction ϑ . The upper index on the data
counts for the different incident polarizations.
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Proof We consider (q, j) ∈ {(q(1), 1), (q(1), 2), (q(2), 1), (q(2), 2)}. Then, the sys-
tem of Eq. (27) is equivalent to the four equations

η
(1)
1 [ϑ × (ϑ × Y p(1))]1 = m̃(1)

1 , η
(1)
2 [ϑ × (ϑ × Y p(1))]2 = m̃(1)

2 ,

η
(2)
1 [ϑ × (ϑ × Y p(2))]1 = m̃(2)

1 , η
(2)
2 [ϑ × (ϑ × Y p(2))]2 = m̃(2)

2 .
(34)

Indeed, for arbitrary polarization q = c1q(1) + c2q(2), c1, c2 ∈ R the expression
η j [ϑ × (ϑ × Y p)] j can be written as a linear combination of the four expressions

m̃(k)
j , k, j = 1, 2:

η1[ϑ × (ϑ × Y p)]1 = [c1η(1) + c2η
(2)]1[ϑ × (ϑ × Y(c1 p(1) + c2 p(2)))]1

= c21η
(1)
1 [ϑ × (ϑ × Y p(1))]1 + c1c2η

(1)
1 [ϑ × (ϑ × Y p(2))]1

+ c1c2η
(2)
1 [ϑ × (ϑ × Y p(1))]1 + c22η

(2)
1 [ϑ × (ϑ × Y p(2))]1

= c21η
(1)
1 [ϑ × (ϑ × Y p(1))]1 + c1c2η

(2)
1 [ϑ × (ϑ × Y p(2))]1

+ c1c2η
(1)
1 [ϑ × (ϑ × Y p(1))]1 + c22η

(2)
1 [ϑ × (ϑ × Y p(2))]1

= (c21 + c1c2)m̃
(1)
1 + (c22 + c1c2)m̃

(2)
1 ,

and similarly

η2[ϑ × (ϑ × Y p)]2 = (c21 − c1c2)m̃
(1)
2 + (c22 − c1c2)m̃

(2)
2 .

Decomposing Y p = 〈ϑ,Y p〉 ϑ + PϑY p, where Pϑ ∈ R
3×3 denotes the orthogonal

projection in direction ϑ , and using that

ϑ × (ϑ × Y p) = ϑ × (ϑ × PϑY p) = 〈ϑ, PϑY p〉 ϑ − PϑY p = −PϑY p,

the system of Eq. (34) considering (32) can be written in the form (33). ��
We see that Proposition 3, for Y(v) = ψ̃(v) + χ0K[ψ̃](v) + K†[ψ̃](v)χ0, where

v = ω
c (ϑ + e3),ϑ ∈ S

2+, shows that the data m̃(k)
j (v) for k, j = 1, 2 and two

different polarization vectors q = e1 and q = e2 uniquely determine the projections
[PϑY p(k)] j for k, j ∈ {1, 2}.

Moreover, measurements for additional polarizations q do not provide any further
informations so that at every detector point, corresponding to a direction ϑ ∈ S

2+, only
the four elements [PϑY p(k)] j , k, j = 1, 2, of the projection influence the measure-
ments.

Remark 2 In contrast to standard OCT where three polarization vectors were needed,
see Elbau et al. (2015, Proposition 11), and to first order Born-approximation where
Y = ψ̃, as we are going to see in the following, the above measurements due to the
special form of Y allow for reconstructing all the unknowns functions ψi j .
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Proposition 4 Let ϑ ∈ S
2∗ := {μ ∈ S

2 | μ1 �= μ2, μ3 > 0}. For two given incident
polarisation vectors q(1) and q(2), the system of equations (33) is equivalent to a
Fredholm type system of integral equations

(1 + C)

⎛
⎝ψ̃11

ψ̃12

ψ̃22

⎞
⎠ = b, (35)

for some compact operator C : (L2(Ω))3 → (L2(S2))3 and known right hand side b
depending on the OCT data. Given the solution of (35), the component ψ̃33 satisfies
a Fredholm integral equation of the first kind

Cψ̃33 = b, (36)

where C : L2(Ω) → L2(S2) is a compact operator and b depends on the solution of
(35).

Proof In order to reformulate equations (33), first we consider an arbitrary vector p
and we split the expression PϑY p into the sum

PϑY p = (1 − ϑϑ�)ψ̃ p + (1 − ϑϑ�)χ0K[ψ̃] p + (1 − ϑϑ�)K†[ψ̃] χ0 p, (37)

omitting for simplicity the v dependence of the unknown ψ̃ .

The first term on the right hand side admits the decomposition

(1− ϑϑ�)ψ̃ p =
⎛
⎝p1(1 − ϑ2

1 ) −p1ϑ1ϑ2 + p2(1 − ϑ2
1 ) −p2ϑ1ϑ2

−p1ϑ1ϑ2 −p2ϑ1ϑ2 + p1(1 − ϑ2
2 ) p2(1 − ϑ2

2 )

−p1ϑ1ϑ3 −p1ϑ2ϑ3 − p2ϑ1ϑ3 −p2ϑ2ϑ3

⎞
⎠

⎛
⎝ψ̃11

ψ̃12

ψ̃22

⎞
⎠ ,

where we observe the independence on ψ̃33. To analyse the other two terms, we
consider (29) and define the operators acting now on the components of the matrix-
valued function f :

Kk j [ f ](v) :=
∫
R3

[K z]k j (v; k) f (k) dk, K†
k j [ f ](v) :=

∫
R3

[K y]k j (v; k) f (k) dk,

for k, j = 1, 2, 3. Since we are interested only in the first two components of PϑY p
and the calculations are rather lengthy we are going to omit the third component in
the following expressions. The second term on the right hand side of (37) reads

(1 − ϑϑ�)χ0K[ψ̃] p = χ0

⎛
⎝p1L11 p1L12 + p2L11 p2L12
p1L21 p1L22 + p2L21 p2L22

∗ ∗ ∗

⎞
⎠

⎛
⎝ψ̃11

ψ̃12

ψ̃22

⎞
⎠ ,

where

Lk j := (1 − ϑ2
k − ϑ1ϑ2)(K1 j + K2 j ) − ϑkϑ3K3 j , k, j = 1, 2.
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The only term where ψ̃33 appears is the last one (as expected), namely

(1 − ϑϑ�)K†[ψ̃] χ0 p = χ0(p1 + p2)

×
⎛
⎝(1 − ϑ2

1 )M1 −ϑ1ϑ2M1 + (1 − ϑ2
1 )M2 −ϑ1ϑ2M2 −ϑ1ϑ3M3

−ϑ1ϑ2M1 (1 − ϑ2
2 )M1 − ϑ1ϑ2M2 (1 − ϑ2

2 )M2 −ϑ2ϑ3M3
∗ ∗ ∗ ∗

⎞
⎠

×

⎛
⎜⎜⎝

ψ̃11

ψ̃12

ψ̃22

ψ̃33

⎞
⎟⎟⎠ ,

where

M j :=K†
j1 + K†

j2, j = 1, 2, 3.

We can combine now all the above formulas to obtain

PϑY p = (I( p) + χ0L( p) + χ0(p1 + p2)M) y,

where

I( p) =
⎛
⎝p1(1 − ϑ2

1 ) −p1ϑ1ϑ2 + p2(1 − ϑ2
1 ) −p2ϑ1ϑ2 0

−p1ϑ1ϑ2 −p2ϑ1ϑ2 + p1(1 − ϑ2
2 ) p2(1 − ϑ2

2 ) 0
∗ ∗ ∗ ∗

⎞
⎠ ,

L( p) =
⎛
⎝p1L11 p1L12 + p2L11 p2L12 0
p1L21 p1L22 + p2L21 p2L22 0

∗ ∗ ∗ ∗

⎞
⎠ ,

M =
⎛
⎝(1 − ϑ2

1 )M1 −ϑ1ϑ2M1 + (1 − ϑ2
1 )M2 −ϑ1ϑ2M2 −ϑ1ϑ3M3

−ϑ1ϑ2M1 (1 − ϑ2
2 )M1 − ϑ1ϑ2M2 (1 − ϑ2

2 )M2 −ϑ2ϑ3M3

∗ ∗ ∗ ∗

⎞
⎠ ,

(38)
and y = (

ψ̃11, ψ̃12, ψ̃22, ψ̃33
)�

.

Then, the system of Eq. (33), considering (32) reads

[(I( p(1)) + χ0L( p(1)) + χ0M) y]1 = b(1)
1 , (39a)

[(I( p(1)) + χ0L( p(1)) + χ0M) y]2 = b(1)
2 , (39b)

[(I( p(2)) + χ0L( p(2)) + χ0M) y]1 = b(2)
1 , (39c)

[(I( p(2)) + χ0L( p(2)) + χ0M) y]2 = −b(2)
2 . (39d)

We observe that in all equations the coefficient in front of the operator M is
the same, which is the only operator applying on the fourth component of y. In
addition, from (38), we see that ϑ2M14 = ϑ1M24. Thus, in order to eliminate y4 we
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reformulate the above system as follows: we subtract from Eq. (39a) the Eq. (39c),
from Eq. (39b) the Eq. (39d) and from ϑ2· (39a) the equation ϑ1· (39b), resulting to

[(I( p(1) − p(2)) + χ0L( p(1) − p(2))) y]1 = b(1)
1 − b(2)

1 ,

[(I( p(1) − p(2)) + χ0L( p(1) − p(2))) y]2 = b(1)
2 + b(2)

2 ,

ϑ2[(I( p(1)) + χ0L( p(1)) + χ0M) y]1
−ϑ1[(I( p(1)) + χ0L( p(1)) + χ0M) y]2 = ϑ2b

(1)
1 − ϑ1b

(1)
2 .

The above system in compact form reads

(Ĩ + N ) ỹ = b̃, (40)

where

Ĩ = i

2

⎛
⎝ 2(ϑ2

1 − 1) 2(1 + ϑ1ϑ2 − ϑ2
1 ) −2ϑ1ϑ2

2ϑ1ϑ2 2(ϑ2
2 − ϑ1ϑ2 − 1) 2(1 − ϑ2

2 )

−ϑ2(1 + i) ϑ1(i + 1) + ϑ2(1 − i) −ϑ1(1 − i)

⎞
⎠ ,

N = iχ0

⎛
⎝−L11 L11 − L12 L12

−L21 L21 − L22 L22
N1 N2 N3

⎞
⎠ ,

ỹ =
⎛
⎝y1
y2
y3

⎞
⎠ , b̃ =

⎛
⎜⎝

b(1)
1 − b(2)

1

b(1)
2 + b(2)

2

ϑ2b
(1)
1 − ϑ1b

(1)
2

⎞
⎟⎠ ,

and

N1 := 1
2 [(1 + i)(ϑ1ϑ2L21 − ϑ2

2L11) − 2iϑ2M1],
N2 := 1

2 [(1 − i)(ϑ2
2L11 − ϑ1ϑ2L21) − (1 + i)(ϑ2

2L12 − ϑ1ϑ2L22)

− 2iϑ2M2 + 2iϑ1M1],
N3 := 1

2 [(1 − i)(ϑ2
2L12 − ϑ1ϑ2L22) + 2iϑ1M2].

We compute the determinant of Ĩ which is given by

det(Ĩ) = − i
8

(
−ϑ3

1 + ϑ2
1ϑ2 − ϑ1ϑ

2
2 + ϑ1 + ϑ3

2 − ϑ2

)

= − i
8 (ϑ2 − ϑ1)(ϑ

2
1 + ϑ2

2 − 1).

Recall that ϑ ∈ S
2+, meaning ϑ3 > 0. Then, if in addition we impose that ϑ1 �= ϑ2 for

all ϑ ∈ S
2+, the matrix Ĩ is invertible with Ĩ−1 = det(Ĩ)−1adj(Ĩ). Then, Eq. (40)

can be written in the form
(1 + Ĩ−1N ) ỹ = Ĩ−1

b̃, (41)

which is the Fredholm integral equation of the second kind (35), for C := Ĩ−1N ,

and b := Ĩ−1
b̃. Once (41) is solved for y1, y2 and y3 we can choose one of the four
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equations from the system (39) resulting to a Fredholm integral equation of the first
kind for the unknown y4 now:

M3y4 = b,

for some known function b, depending on ỹ and b̃. This is Eq. (36) for C := M3.

The compactness of the integral operators C and C follows from the compactness
of the operators K and K†, see Lemma 2, since they are operators that act on the
components of the matrix-valued function. ��
Remark 3 Equation (36) reflects the ill-posedness of the inverse problem, due to the
compactness of the integral operator.

5 Conclusions

In this work we have formulated the inverse problem of recovering the electric
susceptibility of a non-magnetic, inhomogeneous orthotropic medium, placed in a
polarized-sensitive optical coherence tomograph (PS-OCT) as a system of Fredholm
integral equations (both of first and second kind). Under the assumptions of a non-
dispersive, weakly scattering medium with small background variations we have
shown that we can reconstruct all the coefficients of the matrix-valued susceptibil-
ity, given the data for two different incident polarization vectors. This paper can be
seen, on one hand, as a first attempt to model mathematically PS-OCT and on the other
hand, as a theoretical basis for an upcoming paper where the numerical validation of
the proposed method will be examined.
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