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Abstract

Background: Posterior mapping is an increasingly popular hierarchical Bayesian based method used to infer character
histories and reconstruct ancestral states at nodes of molecular phylogenies, notably of morphological characters. As for all
Bayesian analyses specification of prior values is an integrative and important part of the analysis. He we provide an
example of how alternative prior choices can seriously influence results and mislead interpretations.

Methods/Principal Findings: For two contrasting discrete morphological characters, namely a slow and a fast evolving
character found in the plant family Annonaceae, we specified a total of eight different prior distributions per character. We
investigated how these prior settings affected important summary statistics. Our analyses showed that the different prior
distributions had marked effects on the results in terms of average number of character state changes. These differences
arise because priors play a crucial role in determining which areas of parameter space the values of the simulation will be
drawn from, independent of the data at hand. However, priors seemed to fit the data better if they would result in a more
even sampling of parameter space (normal posterior distribution), in which case alternative standard deviation values had
little effect on the results. The most probable character history for each character was affected differently by the prior. For
the slower evolving character, the same character history always had the highest posterior probability independent of the
priors used. In contrast, the faster evolving character showed different most probable character histories depending on the
prior. These differences could be related to the level of homoplasy exhibited by each character.

Conclusions: Although our analyses were restricted to two morphological characters within a single family, our results
underline the importance of carefully choosing prior values for posterior mapping. Prior specification will be of crucial
importance when interpreting the results in a meaningful way. It is hard to suggest a statistically sound method for prior
specification without more detailed studies. Meanwhile, we propose that the data could be used to estimate the prior value
of the gamma distribution placed on the transformation rate in posterior mapping.
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Introduction

Bayesian inference of character evolution is a novel way to map

characters along phylogenies [1,2,3,4]. It attempts to summarize

unobserved character histories that could have given rise to the

observed data on the tips of a phylogeny. A character history

reveals more information about the evolution of a specific

character than just the reconstruction of ancestral states at the

nodes of the tree. Additionally, it provides information about the

number of changes, the timing and placement, and the type of

change that occurred along the tree(s) [1,4]. In contrast to the

widely used maximum parsimony optimization method, which

optimizes characters by minimizing the number of state changes

across a fixed topology (or on a sample of topologies, e.g.

MrBayes), the Bayesian approach simultaneously accommodates

for both mapping as well as phylogenetic uncertainty, i.e.

alternative reconstructions within and between equally likely trees

respectively [4,5,6]. In addition, it also allows for character states

to change along a branch instead of just at the nodes, which is

especially important for long branches for which the probability of

change is much higher [1,4,7]. Two main methods of Bayesian

inference of character evolution have been advanced differing

generally by the underlying model of trait evolution: that of Pagel

et al. [2] and that of Huelsenbeck et al. [4]. In this study we shall

focus on the latter method termed posterior mapping as

introduced by Huelsenbeck et al. [4]. Posterior mapping was

originally developed for DNA sequence data [3] but its use has

since been extended to morphological characters [4]. For discrete

morphological characters, which are the main focus of this study,

the posterior mapping approach using a continuous-time Markov
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chain and implementing the Mk model of Lewis [8] has been

proposed [1,4]. The continuous-time Markov chain contains a

transition matrix defined by two parameters: the rate of

transformation of the morphological character (h) and a bias

parameter governing the direction of change between each

character state ( ). These Markov evolutionary model parameters

(h and ) are drawn from their posterior distribution. The prior

probability distribution of the rate of transformation h is modelled

as a gamma distribution with parameters aS and bS, while a beta

distribution with parameters aB and bB is placed on the directional

bias . In both cases the values of the parameters a and b refer to

the shape and inverse scale parameters of the gamma distribution

defining the mean (E) and the standard deviation (SD) of the

distributions [4,9]. The characterisation of two prior values

(directional bias and rate of transformation h) is the main

difference with the other method of Bayesian inference of

character evolution as introduced by Pagel et al. [2]. Indeed, in

the Pagel et al. method there is only one rate parameter that is

modelled as a beta distribution [2]. Finally, ancestral state

characters are then estimated based on their marginal posterior

probability [4], which is calculated by integrating over the

uncertainty in all of the other model parameters (tree topology,

branch lengths, etc.).

As for all Bayesian analyses specifying prior values can be

problematic and many researchers feel uneasy in doing so

[10,11,12]. This apprehension could come from a lack of

understanding of the effect of the priors on the final results.

Moreover, in recent studies that apply posterior mapping to study

the evolution of morphological and ecological characters, the

values of the parameters are generally not reported

[13,14,15,16,17] or their impact on the final results is not

addressed [18]. The nature of the beta distribution placed on

the directional bias prior ( ) allows for the use of a so-called flat or

uninformative prior (aB = bB = 1). Probabilities are uniform over

the whole parameter space providing an adequate and widely used

alternative to the lack of prior knowledge. For this study the

influence of the prior on the directional bias ( ) will not be

addressed. In contrast, and most importantly, the gamma

distribution placed on the rate of transformation h cannot

accommodate for uniform priors. Any combination of the two

parameters, aS or bS, will define the mean E(T) and the standard

deviation SD(T) of the prior distribution. For morphological

character evolution, the impact of this prior distribution on the

realizations has received meagre attention and to our knowledge

has not been thoroughly assessed using empirical data. Schultz and

Churchill (1999), using simulated data, showed that certain

combinations of priors on h and can influence the outcome of

simulations. Huelsenbeck et al. [4], applied different transforma-

tion rate priors, a slow and fast mean rate E(T), with a flat prior on

the directional bias ( ), on two different empirical datasets. They

noticed that the posterior probabilities of the character histories

were independent of the prior used. How the priors affect the

outcome of the realizations in terms of average number of

transformations and the posterior probability of a character history

remains unclear. With the advent of user-friendly software like

SIMMAP [19], enabling a more widespread application of this

method, it is important to renew awareness of this issue.

To this end we undertook an empirical study of two

morphological characters found within the flowering plant family

Annonaceae of the early diverging magnoliids [20]. Recent

molecular phylogenetic studies [21,22,23] revealed a well

supported clade with on average twice the level of sequence

divergence (the so-called long branch clade, LBC) when compared

to a second major clade with lower levels of sequence divergence

(the so-called short-branch clade). The LBC is generally

characterized by long branches (Figure 1 a) subtending species-

rich clades [24]. The long branches of the LBC offer an ideal

situation for applying posterior mapping to the study of the

evolution of morphological characters, given the flaws that might

be expected when applying maximum parsimony optimization to

character reconstruction. Two contrasting morphological charac-

ters found within the LBC were selected (Figure 1 b). (1) A

potentially slow evolving character, carpel fusion, which has two

states: apocarpy and syncarpy. Syncarpy is defined as the

congenital fusion of the female reproductive units of the flower

termed carpels [25,26], and has only rarely evolved within the

magnoliids. In Annonaceae, however, syncarpy has evolved in the

ancestor of two strongly supported African sister genera Isolona and

Monodora [25,27,28]. Syncarpy was specifically chosen because one

can ‘intuitively’ infer from the tree that this character evolved

once, and thus allows us to evaluate in a more informed way how

different priors can or can not influence the results. (2) A

potentially faster evolving character: pollen unit, again with two

states: single (pollen composed of a single grain) and compound

(pollen composed of two, four or numerous grains). The single

state is considered ancestral within Annonaceae with reversals

being fairly common [29].

The aim of the present study was to investigate, within

Annonaceae and for the two characters described above, how

prior selection of the transformation rate h can influence certain

important values (e.g. the average number of transformations or

the marginal posterior probability of each ancestral character

states) by subjecting empirical data to the posterior mapping

method. Thus, this study was not designed to compare results

between alternative methods of character optimization. For such

comparisons the reader is referred to Huelsenbeck et al. [4] or

Ekman et al. [30].

Results

Phylogeny
The partition strategy strongly supported under the Bayes factor

was run for five million generations with three independent runs.

The posterior probabilities of all splits were indistinguishable

between independent runs as visualized with AWTY (results not

shown), suggesting convergence between them. In addition, all

three runs reached stationarity after 250,000 generations with all

of the parameters converging to the same values as visualized with

Tracer. The majority rule consensus tree was generally well

resolved and well supported (Fig. 1). For details about the MrBayes

analysis and discussion about the phylogenetic relationships in

Annonaceae resulting from this analysis see Couvreur et al. [28].

Influence of the Rate Prior h
The average number of total transformations as well as the

average number of transformations from one state to another, for

each of the two characters under eight different combinations of

E(T) and SD(T), are summarized in Table 1. For both characters

the average number of total transformations as well as state-to-

state changes is higher with the faster rate prior, i.e. higher E(T).

Thus, for carpel fusion the average total number of transforma-

tions changed from 1.39 (prior set at a low rate: E(T) = 1,

SD(T) = 5) to 8.99 (prior set at a high rate: E(T) = 15, SD(T) = 5). If

SD(T) is narrowed to one, the differences are even greater (1.27 to

14.01). Finally, averages for similar values of E(T) showed marked

differences according to the different values of SD(T), except for

two cases indicated in Table 1 (highlighted in), when the averages

did not differ greatly.

Influence of Priors
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The posterior density distributions of the transformation rate h
are presented in Figures 2 (pollen unit character) and 3 (carpel

fusion character), while the posterior probabilities of the different

rate categories are illustrated in Figure 4. For all graphs, the x-axis

represents the rate value. For Figures 2 and 3, the x-axis is broken

into 60 rate categories and their respective widths are illustrated.

However, for a few combinations of E(T) and SD(T) the mean

value of the range of some categories was extremely small

(,161025). As a result, these categories were never sampled

during the simulation. Those categories were assigned a rate and

sampling value of zero, resulting in less than 60 categories being

represented. For Figure 4, each point represents the frequency at

which the mean value of the each width was sampled after 10,000

simulations, interpreted as the posterior probability of each rate

category to be sampled during a full analysis.

As expected, the mean rate and confidence values ((E(T) and

SD(T), respectively) have an effect on the parameter space

sampled, which is clearly visible when comparing the range of

values between the different x-axes (Figs. 2 and 3). The mean rate

value E(T) determines where in parameter space the values are

sampled while the confidence SD(T) designates the extent of the

range. When the confidence was high (SD(T) = 1; a, c, e, g in

Figs. 2 or 3) the range of rate values sampled in parameter space

was narrow, for example between 0 and 10 for E(T) = 1. In

contrast, with a low confidence, the values that were sampled

encompassed a wider range of rate values between 0 and 35

(SD(T) = 5, b, d, f, h in Figs. 2 and 3).

The posterior density histograms (Figs. 2 and 3) for each

combination of E(T) and SD(T) are overlaid with the correspond-

ing prior gamma density distribution (dashed) as well as a fitted

curve (black). For both characters, the posterior densities are

always influenced by the priors used. This is obvious when looking

at the fitted curves, as they shift from left to right when going from

E(T) = 1 to E(T) = 15 independent of the SD(T) specified.

Certain prior values, however, did provide a better match

between the prior and fitted distributions. This was the case for the

higher rate values for the pollen character (E(T) = 10 or 15; Fig. 2

e–h), or the lower rate values for the carpel character (E(T) = 1;

Table 1. Average number of transformations estimated for each combination of the mean rate value (E(T)) and the level of
confidence (SD(T)) estimated after 1000 simulations on the 201 last trees sample from the MCMC run.

Rate parameter h Bias parameter
Total average transfor-
mations (95% HPD) State-to-state transformations

0)1 1)0

Pollen unit

Parsimony — — 8 6 2

E(T) = 1 SD(T) = 1 3.12 0.49 10.21 [8–15] 7.06 3.34

E(T) = 1 SD(T) = 5 8.16 0.49 22.06 [8–40] 12.26 9.81

E(T) = 5 SD(T) = 1 5.33 0.49 13.59 [8–21] 8.36 5.23

E(T) = 5 SD(T) = 5 7.79 0.49 20.82 [8–42] 11.66 9.15

E(T) = 10 SD(T) = 1 9.96 0.49 26.6 [16–38] 14.24 12.31

E(T) = 10 SD(T) = 5 9.56 0.49 24.04 [8–44] 13 11

E(T) = 15 SD(T) = 1 14.84 0.49 39.43 [26–52] 20.16 19.23

E(T) = 15 SD(T) = 5 12.6 0.49 32.66 [11–55] 17.04 15.62

Carpel fusion

Parsimony — — 1 1 0

E(T) = 1 SD(T) = 1 0.97 0.49 1.27 [1–3] 1.15 0.12

E(T) = 1 SD(T) = 5 1.05 0.49 1.39 [1–3] 1.2 0.19

E(T) = 5 SD(T) = 1 4.65 0.48 3.48 [1–8] 2.18 1.31

E(T) = 5 SD(T) = 5 2.09 0.49 1.91 [1–5] 1.45 0.46

E(T) = 10 SD(T) = 1 9.72 0.44 8.36 [1–16] 4.39 3.97

E(T) = 10 SD(T) = 5 5.42 0.47 4.22 [1–11] 2.57 1.78

E(T) = 15 SD(T) = 1 14.77 0.4 14.01 [5–25] 6.9 7.11

E(T) = 15 SD(T) = 5 10.3 0.44 8.99 [1–20] 4.65 4.34

The maximum parsimony numbers of transformations were taken from a single most parsimonious tree arbitrarily chosen out of the seven found. The bold values
represent a centred posterior distribution around the mean rate as visualized with the posterior distribution graphs.
doi:10.1371/journal.pone.0010473.t001

Figure 1. Phylogenetic relationships within the long branch clade in Annonaceae. a) Phylogram of the majority rule consensus tree of the
last 30,000 trees sampled after five million generations of the MCMCMC run indicating the branch lengths as well as the two major groups recognized
within the Annonaceae: long branch and short branch clade. b) Majority rule consensus tree of the last 30,000 trees sampled after five million
generations of the MCMCMC run. Posterior probabilities under 0.95 are displayed at nodes. Thick branches indicate support .0.95 PP. The
distribution of species with compound pollen (1, black squares) and syncarpy (2, black squares) are represented along the tips of the phylogeny.
Missing squares indicate absent observations; the species was scored as uncertain for that character.
doi:10.1371/journal.pone.0010473.g001
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Fig. 3 a, b). For both characters and for any other combination of

priors tried, the posterior density histograms did not fit the prior

gamma distributions very well (Fig. 2 a–d; Fig. 3 c–h).

The actual sampling frequency (i.e. posterior probability) of each

rate category out of the 10,000 draws is shown in Figure 4 for both

characters. In all cases under a low confidence SD(T) = 5 (except

under E(T) = 15 for the carpel character), the categories around the

same rate values were more thoroughly sampled than any other

region, independent of the prior combination used (Fig. 4 b and d).

For the pollen unit the highest sampling frequency was found for the

categories around the rate value of 10 (Fig. 4 b). For the carpel

fusion character this rate value was around 1 (Fig. 4 d). When a high

confidence was specified (SD(T) = 1), the shape of the frequency

distributions changed with different mean rates. For the pollen unit,

the higher rate categories of the range were the most sampled under

low and medium mean rates, giving a skewed shape to the

distribution (Fig. 4 a). For E(T) = 15, the lower rates categories of the

range were more sampled. For the fast mean rate (E(T) = 10), each

category was more evenly sampled (Fig. 4 a). Inversely, for the

carpel fusion character, the lower categories were always the most

sampled under fast and medium mean rates (Fig. 4 c).

Character History Space and Transformation Bias
The exploration of character history space by the 201,000

realizations is shown in Figures 5 and 6, split according to the

different combinations of E(T) and SD(T). These figures

simultaneously represent all the different character histories, their

respective frequencies, and the transformation bias, as explored

during the analysis. The character history space explored for the

pollen unit (Fig. 5) is much larger than for carpel fusion (Fig. 6),

visible from the difference in number of gain/loss combinations. In

both cases the space explored by the simulation is larger under a

low confidence (SD(T) = 5; Fig. 3 d–f and Fig. 6 d–f) than under a

high confidence (SD(T) = 1; Fig. 5 a–c and Fig. 6 a–c). In other

words, faster transformation scenarios are sampled when our

confidence is low and this is independent of the mean rate prior

used. However, a large majority of the character histories occur

only a few times (low PPc), which is indicated by the bright yellow

and green colours. The highest posterior probabilities (dark red

squares) are returned for character transformation scenarios that

are slightly biased towards gains (0)1), as these are positioned

above the diagonal in all plots. In contrast, the character history

space that is explored is skewed towards a slight excess of losses

over gains. This pattern is similar for all plots in Figures 5 and 6.

The different prior values had a contrasting influence on the

identification of the most probable character history. For carpel

fusion, the same character history (1 gain and 0 losses; Tables 2

and 3, Fig. 6) was assigned the highest PPc independent of the

priors used (except in three extreme cases, Table 3, Fig. 6 c). This

is graphically visible in Figure 6 where the darkest red square is

mainly situated at 1 gain and 0 losses. However, for the pollen

unit, different values of E(T) always return different most probable

character histories (Tables 2 and 3, Fig. 5). Moreover, with

SD(T) = 5, many alternative character histories received an almost

equal PPc value (Table 2). This is also visible in Figure 5 where

numerous dark-red squares cover a large number of squares.

Finally, in Figure 5 d the cloud is broken in two at around 30

transformations from 0 to 1 and 1 to 0. The squares above 30

represent very high rates of transformation (.60 transformations

over the tree).

Discussion

Influence of the prior gamma distribution on h
It has been shown that priors do influence Bayesian inference in

phylogenetic reconstruction [31,32]. Within the realm of Bayesian

character evolution little work has been done on the influence of

priors on the results. Pagel et al. [2], under a slightly different

model of character evolution (see above), showed that alternative

priors could lead to different results, but the reasons for this were

not discussed in details. Within the method of posterior mapping,

the role played by the prior gamma distribution on the

transformation rate h in posterior mapping is still largely unclear

[4,9]. Our study showed that the prior distribution on the rate

parameter h had a significant impact on the results for both

characters analysed. The differences were obvious in the two

results reported here: the average number of transformations of

character states (Table 1) and the most probable character history

(Tables 2 and 3). In the latter case, the prior had a stronger impact

on the pollen character than on the carpel fusion character

(Tables 2 and 3) and will be discussed later. In the former, the

different combinations of E(T) always produced different outcomes

(Table 1). These differences are important to stress as they would

result in alternative evolutionary interpretations of the morpho-

logical character(s) under study. Under a high confidence

(SD(T) = 1), the values of the continuous-time Markov chain are

drawn from significantly different regions in parameter space and

the posterior distributions are generally skewed (Fig. 4, a and c). If

different regions are sampled with a changing E(T), different

character histories will be realized thus leading to the different

observed averages. Under a low confidence regime (SD(T) = 5) the

explanation of the observed averages is more intriguing because

the parameter space sampled between alternative prior values is

equivalent (Fig. 4 b and d). Additionally, the same region of

parameter space is systematically more sampled than others and

this is independent of the prior used (around 10 for the pollen unit

and 1 for the carpel fusion). However, the resulting number of

transformations is clearly different for the alternative rate priors

used (Table 1). These differences can be explained from two

observations. First, this ‘‘same’’ parameter space is not equally

sampled. For example in figure 4 b, for E(T) = 1 sampling is denser

around the lower rate values (left), while for E(T) = 15 sampling is

denser around the higher rate values (right). Only for E(T) = 10 is

the sampling evenly spread out in a normal fashion across

parameter space. The second less obvious observation for

explaining the different results is the width of the rate categories

that are generated with the different priors, or discretization.

Discretization concerns the process of transferring a continuous

distribution (or models) into discrete counterparts. In our specific

case, the continuous gamma distribution is discretized (i.e. broken)

into 60 equally probable categories, i.e. each category has an equal

surface area [4,33]. This effectively means: small widths around

the mean and increasingly larger widths away from the mean (the

Figure 2. Posterior probability density distributions of the transformation rate h for the pollen unit character. Posterior probability
density distributions of each rate category given each combination of E(T) and SD(T) for the pollen unit character. The bars of the histogram represent
the posterior distribution densities given the prior and the data for each rate category. The continuous gamma distribution was made discrete by
breaking it into 60 equally probable rate categories [33]. Each category is represented by the mean of the portion of the gamma distribution included
in the rate category. The total area of the histogram as well as the prior distribution equal one. The posterior density histograms are overlaid with the
corresponding prior gamma density distribution (dashed) as well as a fitted curve (black). x-axis: rate of transformation. y-axis: density scale.
doi:10.1371/journal.pone.0010473.g002
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marginal regions). Each category is then assigned a fixed rate value

equal to the mean of the range. Thus, these widths are directly

dependent on the shape of the prior probability distribution, and

therefore on the values assigned to the parameters aS and bS. It is

the generation of different width ranges within an equal parameter

space for different prior values that also produce the observed

disparities in the average number character transformations. For

example, for the pollen character, categories around the rate value

10, which is the most frequently sampled category for any value of

E(T), present large widths for E(T) = 1 (Fig. 2 b), medium widths

for E(T) = 5 (Fig. 2 d) and smaller widths for E(T) = 10 (Fig. 2 f).

Because each width is represented by its mean, the different

discretizations around the most frequently sampled rate value will

have a direct effect on the average number of transformations as

shown by the results.

Finally, discretization is also responsible for another counterin-

tuitive result. For the pollen unit, a higher average number of

transformations was returned under the small mean rate prior

when compared to the medium one (Table 1), although we would

expect a lower average for the small rate. Figure 2 b shows the

ranges of the two last rate categories generated under E(T) = 1 and

SD(T) = 5, which encompassed a large range of values and were

represented by their mean of 11.78 and 32.24. The latter rate

value is the largest rate category generated. Although it had a low

posterior probability (sampled 65 times out of 10,000 draws), this

was still enough during the course of a long simulation to produce

a few high transformations (.60). These high transformations are

clearly visible in Figure 5 d, where character history space is split

into two at around 30 gains and 30 losses. These high generated

transformations are responsible for returning an average superior

Figure 3. Posterior probability density distributions of the transformation rate h for the carpel fusion character. Posterior probability
density distributions of each rate category given each combination of E(T) and SD(T) for the carpel fusion character. The bars of the histogram represent
the posterior distribution densities given the prior and the data for each rate category. The continuous gamma distribution was made discrete by
breaking it into 60 equal probable rate categories [33]. Each category is represented by the mean of the portion of the gamma distribution included in
the rate category. The total area of the histogram as well as the prior distribution equal one. The posterior density histograms are overlaid with the
corresponding prior gamma density distribution (dashed) as well as a fitted curve (black). x-axis: rate of transformation. y-axis: density scale.
doi:10.1371/journal.pone.0010473.g003

Figure 4. Posterior probabilities for both pollen unit and carpel fusion characters. Posterior probabilities for each rate prior E(T) given a
standard deviation S(T) for both pollen unit and carpel fusion characters. x-axis: rate of transformation. y-axis: sampling frequency ( = posterior
probability) of each discrete rate category.
doi:10.1371/journal.pone.0010473.g004
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to the one for E(T) = 5. For carpel fusion, this broken cloud effect

is also visible but to a lesser extent (Fig. 6, broken at 15 gains and

15 losses), and was not marked enough to produce a superior

average than for E(T) = 5 (Table 1). The broken cloud effect seems

to be related to mean rate values close to zero coupled with high

standard deviations and requires further investigation.

The main conclusion is that priors will exert an indirect and

noticeable effect on the results. These results are significant as the

average number of transformations are the main results provided

by SIMMAP and are the ones that are generally reported and used

for the interpretation of character evolution, e.g. [13].

Levels of Homoplasy
Although we have shown that the prior distribution on the

transformation rate will affect the average number of transforma-

tions, we have also shown that it had a contrasting influence when

identifying the most probable character history (Tables 2 and 3).

For carpel fusion, the same character history was always assigned

the highest PPc independent of the prior used, except with

extremely unrealistic prior combinations (Table 3). On the other

hand, for the pollen unit, different character histories were most

probable between the different values of E(T) as well as within the

same analysis (several sub-equally probable character histories,

Tables 2 and 3). These differences are also visible in the character

history space when using the appropriate prior values. For the

pollen character the red squares (indicating a high PPc) cover a

much wider space (Fig. 5 c and f) than for the carpel fusion

character which is concentrated around one gain - zero losses

(Fig. 6 c and f). One explanation for these differences is the level of

homoplasy present in the data for each character. A character’s

consistency index ci [34] provides a simple measure of the overall

homoplasy of the character [35]. For pollen unit and carpel fusion

the ci was 0.13 and 1.0, respectively. Thus, the character with high

levels of homoplasy (a low ci) had several equally most probable

histories, and when the ci of the character was high, a single most

probable history was significantly favoured. Homoplasy is

positively correlated with the rate of evolution of a character

[36,37]: the higher the rate, the lower the ci. For fast evolving

characters, the levels of homoplasy will always be high and thus

many equally most probable character histories will be found. This

appears to be the case for the pollen character used here.

However, this relationship might not always be straightforward.

For example, the characters studied in Huelsenbeck et al. [4],

seastars with or without larval feeding [38] and, absence or

presence of a horned soldier in aphid species [39], were also shown

to have a high rate of transformation amongst states (E(T) = 10), as

Figure 5. Posterior probabilities for all inferred character histories for the pollen character. Negative logarithm (base 10) of the posterior
probabilities for all character histories that have occurred during the simulation for the pollen character and the combinations E(T) = 1, 5 and 10 and
SD(T) = 1 and 5. The x-axis represents the total number of transformations from 1 to 0 (i.e. number of gains) and the y-axis from 0 to 1 (i.e. number of
losses). It is important to note that as we used the negative logarithm thus the lowest values (dark red) represent the highest PPcs. The colours for the
PPc are not the same across the graphs, as they represent the values for each independent analysis.
doi:10.1371/journal.pone.0010473.g005
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judged from their posterior distributions. In addition, the

characters had a relatively low ci (0.33 for the aphid dataset, and

0.25 for the seastar dataset). However, even under two contrasting

mean rate priors (E(T) = 1 and 10), the same character history had

the highest PPc: four gains and zero losses for larval feeding, one

gain and two losses for horned soldiers. In this case, despite

relatively high levels of homoplasy, one character history was

significantly favoured over the others. Thus, the relationship

between homoplasy and rates of evolution is complex as noted by

Sanderson and Donoghue [35]. In the examples provided by

Huelsenbeck et al. [4], it would appear that even though the

characters were fast evolving and likely to be more homoplasious,

the signal provided by the data was strong. In that case the priors

seemed to have little influence on identifying the most probable

character history as has been previously suggested for Bayesian

analyses in general, e.g. [11]. It is important to stress that this

concerns the most probable character history, a result not

immediately available when using SIMMAP. The exact influence

of the level of homoplasy and the strength of the data on the

outcome of the analysis is still unclear. Further simulation studies

should be undertaken in order to address this question.

Specification of the gamma prior distribution on h
Choosing appropriate priors for Bayesian analyses is a hard

task, inciting ongoing debate [40,41,42]. How should one specify

the parameters of the prior gamma distribution in posterior

mapping? Although our results are based on just one case study,

we think that they do provide useful insights into how priors can

influence the outcome of a posterior mapping analysis. First, there

is a prior mean rate (E(T)) that better suits the data than others.

For example, in all cases with SD(T) = 5, the sampling frequency

was maximal roughly around the same rate value (Fig. 4 b and d),

regardless of the E(T) (just under 10 for the pollen unit and around

1 for carpel fusion). These values could be interpreted as the

‘‘appropriate’’ mean rate for the character given the data. These

appropriate values are also found when the confidence level is

changed. Under a high confidence (e.g. a low SD(T)) we narrow

down the possible parameter space. In that case a skewed posterior

distribution could result in only part (or none) of the ‘‘true’’

parameter space being sampled. Second, we also observed that

when the appropriate transformation rate was selected, little

difference was observed between a high and a low confidence

(SD(T) = 1 or 5) on the average number of transformations

(Table 1). This implies that the mean of the prior rate value (E(T))

is more important than the associated standard deviation (SD(T)).

Thus, in agreement with Huelsenbeck et al. [4], it would seem that

the data contains some information over the rate of transformation

and that a prior distribution generating a skewed posterior

probability distribution is not appropriate given the data. Finally,

as we have shown in Figure 4 b and d and Table 1 choosing a

Figure 6. Posterior probabilities for all inferred character histories for the carpel fusion character. Negative logarithm (base 10) of the
posterior probabilities for all character histories that have occurred during the simulation for the carpel fusion character and the combinations
E(T) = 1, 5 and 10 and SD(T) = 1 and 5. The x-axis represents the total number of transformations from 1 to 0 (i.e. number of gains) and the y-axis from
0 to 1 (i.e. number of losses). It is important to note that as we used the negative logarithm thus the lowest values (dark red) represent the highest
PPcs. The colours for the PPc are not the same across the graphs, as they represent the values for each independent analysis.
doi:10.1371/journal.pone.0010473.g006
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large standard deviation in order to cover all parameter space

coupled with an arbitrary rate is not the appropriate solution,

because uneven sampling and discretization of this parameter

space will still influence the results.

The idealized Bayesian approach dictates that one should

choose priors by using external knowledge independent of the data

at hand. In some cases choosing a prior value on h could be fairly

straightforward. This would be the case for a character such as

carpel fusion. Syncarpy was inferred to have evolved once with no

losses or c. four times with four losses within Annonaceae (Table 1).

Our prior knowledge suggests however that an evolutionary

scenario of four gains is highly improbable and unrealistic because

syncarpy has rarely evolved in magnoliids with reversals being

even rarer [25,27]. In contrast, for some characters prior

knowledge would not be able to clearly indicate which result to

expect. We can be confident that the pollen character evolves

faster than the carpel character (an independent dataset suggested

high homoplasy [29]), but we would be unable to favor one prior

value over the other in a well-informed way (Table 1). In such

cases, specifying prior values can be problematic. One alternative

is to adopt an empirical Bayes estimator approach whereby the

data is used to estimate the parameters of the gamma prior

distribution on h. The empirical Bayes estimator approach has

been used under different models of Bayesian character evolution.

For example, to define the beta prior distribution placed on the

rate parameter, Pagel et al. [2] used three different prior values,

two of which were inferred from the data at hand. Indeed the

parameters were estimated either via maximum likelihood values

or via the likelihood surface [2]. Such an approach would seem to

reduce the problem of prior choice, but introduces problems of its

own [43] that we shall not address here. Whatever the method

used to define the prior values, we suggest checking the resulting

posterior distributions in order to make sure they are evenly

sampled around the specified mean (normal distribution) and not

centred on the highest or lowest categories (skewed distribution).

Although we acknowledge that a normal posterior distribution is

not always the best way to represent uncertainty, we do think that

because of the discretization method used (see above), a skewed

distribution will lead to erroneous reconstructions. The choice of

the normal distribution is mainly based on the way parameter

space is discretized, which is centred on the mean. Finally, it will

be important to report the values of the priors used during any

study as this will allow others to repeat the analysis under different

prior assumptions.

Table 3. The first six character histories with the highest
posterior probability (PPc) for each combination of E(T) = 10
and 15 and their respective SD(T).

Pollen unit Carpel fusion

0)1 1)0 PPc 0)1 1)0 PPc

E(T) = 10
SD(T) = 1

14 10 0.037 4 3 0.134

13 9 0.035 3 2 0.13

15 11 0.033 5 4 0.105

12 8 0.03 2 1 0.088

14 11 0.029 6 5 0.066

13 10 0.027 7 6 0.034

E(T) = 10
SD(T) = 5

9 5 0.03 1 0 0.3

10 6 0.029 2 1 0.22

8 4 0.029 3 2 0.125

11 7 0.027 4 3 0.065

7 3 0.025 5 4 0.032

12 8 0.024 2 0 0.031

E(T) = 15
SD(T) = 1

39 63 0.020 6 5 0.074

39 6 0.019 5 4 0.069

37 75 0.019 7 6 0.064

37 57 0.019 4 3 0.051

36 52 0.018 8 7 0.050

36 45 0.018 9 8 0.034

E(T) = 15
SD(T) = 5

14 10 0.016 3 2 0.120

13 9 0.016 2 1 0.112

12 8 0.015 4 3 0.103

15 11 0.015 5 4 0.074

16 12 0.014 1 0 0.062

11 7 0.014 6 5 0.050

doi:10.1371/journal.pone.0010473.t003

Table 2. The first six character histories with the highest
posterior probability (PPc) for each combination of E(T) = 1
and 5 and their respective SD(T).

Pollen unit Carpel fusion

0)1 1)0 PPc 0)1 1)0 PPc

E(T) = 1 SD(T) = 1 6 2 0.307 1 0 0.867

7 3 0.157 2 1 0.063

7 2 0.103 2 0 0.042

8 4 0.075 3 2 0.007

8 3 0.041 1 1 0.007

6 3 0.036 3 1 0.005

E(T) = 1 SD(T) = 5 6 2 0.062 1 0 0.848

7 3 0.056 2 1 0.067

8 4 0.049 2 0 0.036

9 5 0.042 3 2 0.015

10 6 0.032 1 1 0.006

11 7 0.021 3 1 0.005

E(T) = 5 SD(T) = 1 7 3 0.118 1 0 0.295

8 4 0.115 2 1 0.285

9 5 0.084 3 2 0.145

6 2 0.066 4 3 0.055

10 6 0.05 2 0 0.035

8 5 0.044 3 1 0.033

E(T) = 5 SD(T) = 5 7 3 0.06 1 0 0.695

6 2 0.056 2 1 0.138

8 4 0.052 2 0 0.045

9 5 0.042 3 2 0.04

10 6 0.033 3 1 0.013

11 7 0.027 4 3 0.013

doi:10.1371/journal.pone.0010473.t002
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Many more questions remain to be answered and especially how

exactly will the priors affect the results in certain situations still

needs to be explored: for example how will the priors affect the

results with different degrees of homoplasy, rate heterogeneity of a

morphological character, tree shape, sampling of taxa and

characters. Answering these questions using simulated data would

allow for a better understanding of the precise role priors play in

posterior mapping.

Materials and Methods

Phylogenetic analyses
The results presented here are derived from a DNA sequence

data matrix of the Annonaceae family [28] totalling 66 taxa

sampled across the family. The dataset was composed of six

chloroplastic markers, three non-coding (trnL-trnF, trnS-trnG and

psbA-trnH) and three coding (ndhF, rbcL and partial matK), totalling

7945 characters. Gaps were coded as separate characters. All

phylogenetic analyses were run using the Metropolis-coupled

Monte Carlo Markov chain (MCMCMC) algorithm implemented

in MrBayes, ver. 3.1.2 [44], under the best partitioning strategy

identified using the Bayes factor [45] and following Brandley et al.

[46]. For each partition, the best performing evolutionary model

was identified using the Akaike information criterion (AIC [47])

using MrModeltest [48]. Three separate runs (with one cold and

three hot chains) of five million generations each were undertaken

and stationarity as well as convergence between the MCMC runs

was checked using both Tracer v. 1.3 [49] and the online program

AWTY [50].

Influence of the Transformation Rate Prior
The impact of alternative prior distributions on the transfor-

mation rate (h) was studied by subjecting the carpel fusion and

pollen characters to the posterior mapping method as implement-

ed in the program SIMMAP version 1.0 beta 2.3 (build 12092006

[19]). Both characters were scored for each taxon following

Couvreur et al. [28]. Both characters were unordered.

SIMMAP allows the user to specify two parameters (aS and bS)

that define the prior gamma distribution placed on the

transformation rate h and one parameter (aB) for the beta

distribution placed on the directional bias . For the latter, a flat

prior was used in all analyses (aB =bB = 1). To compare the effect

of the prior distributions on h we must be sure to compare them

equally, i.e. make sure they have either the same mean (E(T)) or

standard deviation (SD(T)). For the prior gamma distribution we

have E(T)~
aS

bS

and SD(T)~

ffiffiffiffiffiffiffi
aS

bS
2

r
[4,33]. Formulating these

equations as a function of aS and bS leads to aS~
E(T)2

SD(T)2
and

bS~
E(T)2

SD(T)2
. This formula allows us to find the values of the

parameters aS and bS for any required combination of E(T) and

SD(T).

The simulation of the continuous-time Markov chain was

realized 1,000 times over the last 201 trees imported from the

MrBayes analysis for both characters. Eight different combinations

of E(T) and SD(T) for the prior distribution on h were analysed. A

slow, medium, fast and very fast mean rate (E(T) = 1, 5, 10 and 15

respectively) were each combined with a high and low confidence

(SD(T) = 1 and 5, respectively). Note that these values and

associated terminology were chosen relative to the biology of the

morphological characters considered for this specific analysis. The

total number of character transformations, and the number of

transformations between each state were averaged over all

realizations. Finally, the actual number of times a particular

character history occurred throughout the 201,000 realizations

was calculated (for example, how many times was ‘‘one gain and

one loss’’ simulated). A perl script (Vriesendorp and Couvreur,

unpublished) was written in order to extract that information from

the SIMMAP output files. Dividing the number of occurrences by

the total number of realizations gives the posterior probability of

each character history (abbreviated as PPc, not to be confused with

the PP of the nodes in the phylogenetic tree). To reduce the large

range of values between PPcs (5e26 to 0.9) the negative logarithm

of the PPc for each of the characters histories was plotted on a 2D

graph using Kyplot (Koishi Yoshioka, v.2 beta 15, www.

woundedmoon.org/win32/kyplot.html).

We also evaluated the influence of the priors on the posterior

distribution. The posterior distribution for each combination of

E(T) and SD(T) was estimated by undertaking 10,000 realizations

using the ‘‘number of realizations sampled from priors’’ function

in SIMMAP. This approach estimates the posterior distribution of

the parameters by sampling the prior without undertaking the full

length analysis. The posterior distribution for each combination

was then visualized in Tracer v. 1.3 [49] by converting the

SIMMAP output file to a Tracer file using the python script

‘‘convert2tracer.py’’ found on the SIMMAP website (Bollback,

http://www.simmap.com). The prior gamma distribution was

broken or discretized into 60 rate categories, each of which

represents an equal probability density [33]. As the areas under

the probability curve are equalized, the resulting categories have

different widths. For each combination of E(T) and SD(T) two

different graphs were produced. A posterior density histogram was

normalized by dividing the number of counts within each rate

category by the width of that category, with the total surface area

of the rectangles equalling one. This representation allows for the

overlay of the prior gamma probability density as a reference.

Smooth curves were fitted using the software in R and based on

Eilers [51]. Moreover, this provides a visualization of how

parameter space is discretized (broken down) given each

combination of E(T) and SD(T).

A second graph was generated that represents the number of

times each rate category (represented by its mean) was sampled

out of 10,000 draws, i.e. the posterior probability of each

category following Huelsenbeck et al. [4]. This graph differs from

the previous one in that we no longer take the width of the rate

into account, and by overlapping the posterior distribution for

each E(T) we can clearly identify the regions of parameter space

that are more sampled than other under the alternative priors

chosen.

Maximum parsimony optimization results were also provided as

a reference only. The majority rule consensus tree from the

Bayesian analysis was used for subsequent analyses using Mesquite

v. 1.11 [52]. Both characters were treated as unordered.
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