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Abstract.  L-carnitine (LC) is well known for its antioxidant activity. In this study, we explored the potential mechanistic 
effects of LC supplementation on aged bovine oocytes in vitro. We showed that in-vitro maturation could enhance the 
subsequent developmental capacity of aging oocytes, when supplemented with LC. After in vitro fertilization, the blastocyst 
formation rate in the aged oocytes post-LC treatment significantly increased compared to that in untreated aged oocytes 
(29.23 ± 2.20% vs. 20.90 ± 3.05%). Furthermore, after LC treatment, the level of intracellular reactive oxygen species in aged 
oocytes significantly decreased, and glutathione levels significantly increased, compared to those in untreated aged oocytes. 
Mitochondrial membrane potential, the percentage of early apoptotic oocytes, and caspase-3 activity were significantly 
reduced in LC-treated aged oocytes compared to those in untreated aged oocytes. Furthermore, during in vitro aging, the 
mRNA levels of the anti-apoptotic genes, Bcl-xl and survivin in LC-treated aged oocytes were significantly higher than those 
in untreated aged oocytes. Overall, these results indicate that at least in in vitro conditions, LC can prevent the aging of bovine 
oocytes and improve the developmental capacity of bovine embryo.
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Mammalian oocytes are arrested in the metaphase of the second 
meiosis (MII) phase, where they await fertilization. If no 

fertilization occurs within an appropriate time, the quality of oocytes 
gradually deteriorates, a process termed as “postovulatory aging” [1]. 
In humans and livestock, it is well known that postovulatory aging of 
oocytes may affect the results of assisted reproductive technologies 
(ARTs), such as artificial insemination [2], in vitro fertilization (IVF) 
[3, 4], and intracytoplasmic sperm injection [5, 6]. In bovine, both in 
vivo and in vitro aging of oocytes can result in reduced fertilization 
and embryonic development [2, 3, 7–10]. Extensive research on 
aged bovine oocytes may help in the development of a method to 
prevent aging in matured bovine oocytes, resulting in improved 
efficacy of ARTs.

It has been demonstrated that, following ovulation, intracellular 
reactive oxygen species (ROS) accumulation increases in oocytes 
with time [11, 12]. Oocytes exhibit an intracellular defense [(via 
the antioxidant glutathione (GSH)] mechanism against an oxidative 
attack. However, this defense response decreases with aging after 
ovulation [13]. Thus, aging oocytes after ovulation undergo oxidative 
stress due to an increase in ROS level, and a decrease in antioxidant 
defenses, causing multiple oxidative damages in cell structures, 

including lipid peroxidation of membranes, enzyme inactivation, 
protein oxidation, and DNA damage [14, 15]. The imbalance between 
ROS and their normal scavenger antioxidants leads to oxidative stress, 
which adversely affects embryonic development through structural 
and functional alterations. Increased production of ROS in aging 
oocytes reduces intracellular ATP concentration [16] and glutathione 
disulfide ratio [17–19]. This outcome adversely affects fertilization 
and subsequent embryonic development, thereby increasing the risk of 
an early miscarriage and abnormal development of offspring [20, 21].

L-carnitine (LC), the biologically active form of carnitine 
(3-hydroxy-4-N-trimethyl amino butyrate, C7H15NO3), is a natu-
rally occurring, vitamin-like water-soluble quaternary ammonium 
compound. It is mainly synthesized from the amino acids lysine 
and methionine, in the liver. LC is required to transport fatty acids 
from the cytosol to the mitochondria during the breakdown of lipids 
(fats), to generate metabolic energy. As an antioxidant, LC neutralizes 
free radicals, especially superoxide anions, and protects cells from 
oxidative damage-induced apoptosis [22]. Although the effects of 
LC on the in vitro development of bovine embryos [23], pig embryos 
[24], and mouse embryos [25] have been previously reported, there 
are no reports regarding the effects of LC on aging bovine oocytes.

The best mature culture period for bovine embryo production is 
20–22 h. Upon extension of this period, the blastocyst formation rate 
relatively decreases [3]. Previous studies have considered bovine 
oocytes at about 30 h after in-vitro maturation (IVM), as aged or 
slightly aged and used them to investigate age-related changes 
[8, 26, 27]. Oocytes after 30 h of IVM showed a low blastocyst 
development rate [8].

In the present study, aging bovine oocytes treated with LC were 
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evaluated for ROS and GSH levels, mitochondrial membrane potential 
(ΔΨm), early apoptosis levels, and caspase-3 activity indicators in 
order to identify whether LC treatment improved the performance 
of oocytes. The aim of this study was to investigate the potential of 
LC in delaying aging via reducing oxidative stress in bovine oocytes.

Materials and Methods

All the chemicals and reagents used for this study were purchased 
from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise stated.

IVM and aging of bovine oocytes
Bovine ovaries were collected from a local abattoir and transported 

to the laboratory within 2 h at 38ºC in phosphate buffered saline 
(PBS). Bovine cumulus-oocyte complexes (COCs) were aspirated 
from small antral follicles (2–8 mm in diameter). Oocytes surrounded 
by intact cumulus layers were washed 5 times in IVM medium 
composed of TCM199 (Earle’s salts; 11150-59, Gibco, NY, USA), 
0.57 mmol/l cysteine, 10% fetal bovine serum (FBS), 10 μg/ml 
follicle-stimulating hormone, 0.04 mg/ml pyruvate, 1 μg/ml estradiol, 
10 ng/ml epidermal growth factor, and 1% penicillin-streptomycin 
solution. The COCs were randomly divided into the following three 
groups: fresh, aged, and aged + LC. The fresh group was cultured in 
IVM medium (200 μl) for 24 h, the aged group was cultured in IVM 
medium (200 μl) for 30 h, and the aged + LC group was cultured 
with 2.5 mM LC (L-carnitine hydrochloride; C0283) [28] during the 
entire 30 h duration of IVM (200 μl) in a humidified atmosphere of 
5% CO2 at 38.5°C. The IVM dishes had 4 wells per plate (10034; 
SPL Lifesciences, Pocheon, Korea) and all the oocytes were covered 
with mineral oil. A frozen stock solution of LC was used.

IVF and embryo culture
After the fresh, aged, and aged + L-carnitine groups were cultured 

for 24, 30, and 30 h, respectively, the matured oocytes were washed 
and cultured in fertilization medium (100 μl) (IVF100; Research 
Institute for the Functional Peptides, Higashine, Japan), overlaid with 
mineral oil, and incubated in a humidified atmosphere of 5% CO2 at 
38.5°C. Frozen bull semen straws were thawed by immersing them 
in a water bath at 37.5°C for 30 sec. The sperm was then centrifuged 
twice with Brackett Oliphant (BO) medium at 25°C at 1000 rpm 
for 6 min. The BO medium comprised of 6.63 mg/ml NaCl, 0.299 
mg/ml KCl, 0.25 mg/ml CaCl2, 0.12 mg/ml NaH2PO4, 0.11 mg/ml 
MgCl2, 2.1 mg/ml NaHCO3, 2.5 mg/ml glucose, 2.98 mg/ml HEPES, 
3.88 mg/ml caffeine, 0.01 mg/ml heparin, 0.13 mg/ml pyruvate, 
and 6.25 mg/ml bovine serum albumin (BSA; fatty acid-free BSA; 
A8806). The matured oocytes were co-incubated with spermatozoa 
in fertilization medium for 6 h in a humidified atmosphere of 5% 
CO2 at 38.5°C. After fertilization (day 0), the presumptive zygotes of 
the three groups were washed three times with 0.4% BSA in Charles 
Rosenkrans medium (CRI) (fatty acid-free BSA; A8806; BSA-CRI), 
maintained in BSA-CRI medium (10 μl), overlaid with mineral oil, 
and cultured to the 8-cell stage (72 h). CRI medium comprised 6.7 
mg/ml NaCl, 0.23 mg/ml KCl, 2.2 mg/ml NaHCO3, 0.15 mg/ml 
L-glutamine, 0.05 mg/ml gentamycin, 0.01 ml Non-Essential Amino 
Acid (MEM), 0.02 ml Amino Acid (BME), 0.04 mg/ml pyruvate, and 
0.55 mg/ml L (+)-Lactate. Subsequently, oocytes in the three groups 

were washed three times using 10% FBS in CRI (Gibco; 04-002-1B), 
placed in 10% FBS-CRI medium (10 μl), overlaid with mineral oil, 
and cultured to the blastocyst stage (96 h).

Terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 
5′-triphosphate (dUTP) nick-end labeling (TUNEL) assay

TUNEL assay was used to measure the intracellular apoptosis 
rates of blastocysts using the In Situ Cell Death Assay Kit (Cat 
#11684795910, Roche Diagnostics, Mannheim, Germany). The day-7 
blastocysts were fixed in 3.7% paraformaldehyde for 30 min at 25°C 
and then permeabilized by incubating in 0.5% Triton X-100 at 37.5°C 
for 30 min. Following this, they were blocked in PBS containing 
1% BSA (BSA-PBS) for 1 h. The embryos were then incubated 
with fluorescein-conjugated dUTP and terminal deoxynucleotidyl 
transferase enzyme for 1 h at 37.5°C, and subsequently washed 
three times with 0.1% BSA-PBS. Post end labeling, the embryos 
were treated with 10 µg/ml Hoechst 33342 for 20 min at 37.5°C, 
washed three times with 0.1% BSA-PBS, and mounted onto glass 
slides. Images were captured by fluorescence microscopy (Nikon, 
Tokyo, Japan) using the blue (for DNA) and green fluorescence 
filters (for apoptosis), and analyzed by ImageJ software [29]. The 
apoptosis index was denoted as the percentage of TUNEL-positive 
nuclei based on the total number of nuclei.

Measurement of ΔΨm, ROS, and GSH levels
To assess ΔΨm, denuded MII-stage oocytes were incubated with 

2 μM JC-1 (Invitrogen, Waltham, MA, USA) for 1 h at 37.5°C in 
the dark. The ΔΨm of oocytes was then calculated as the ratio of red 
fluorescence intensity (J-aggregates; corresponding to activated mito-
chondria) to green fluorescence intensity (J-monomers; corresponding 
to inactive mitochondria) using ImageJ software. The fluorescence 
intensity of the resulting oocytes was analyzed using a fluorescence 
microscope (Nikon). ROS levels were measured by a 2′,7′-dichloro-
fluorescein assay (H2DCFDA; Thermo Fisher Scientific, Waltham, 
MA, USA). In brief, denuded MII-stage oocytes were cultured in 
0.1% BSA-PBS containing 10 μM H2DCFDA for 15 min at 37.5°C in 
the dark, and then visualized at an excitation of 485 nm and emission 
of 535 nm. GSH levels were quantified with the CellTracker™ Blue 
dye (4-chloromethyl-6, 8-difluoro-7-hydroxycoumarin, CMF2HC; 
Invitrogen). In brief, denuded MII-stage oocytes were incubated in 
0.1% BSA-PBS medium containing 10 μM CMF2HC for 15 min at 
37.5°C in the dark, and then visualized at an excitation of 371 nm 
and emission of 464 nm. The fluorescence intensity (1 sec after the 
shutter opening with 10 msec exposure for H2DCFDA; 3 sec after 
the shutter opening with 100 msec exposure for CMF2HC) of the 
resulting oocytes was analyzed by fluorescence microscopy (Nikon) 
using ImageJ.

Immunofluorescence and Annexin V-FITC assay
Approximately 10 oocytes from each of the three (fresh, aged, 

and aged + LC) groups were washed in 0.1% BSA-PBS, fixed for 
30 min in 3.7% formaldehyde in PBS with 1% Polyvinyl alcohol 
(PVA), and permeabilized with 0.5% Triton X-100 in 1% BSA-PBS 
for 30 min at room temperature. The oocytes were then blocked 
using 1% BSA-PBS. Next, the oocytes were incubated with rabbit 
anti-caspase-3 antibody (Sigma-Aldrich) at 4°C overnight, followed 
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by incubation with an Alexa Fluor 488-conjugated secondary antibody 
(1:200; Sigma-Aldrich) for 1–2 h at 25°C. Hoechst 33342 (10 µg/
ml in PBS) was used for DNA counterstaining.

An Annexin V-fluorescein isothiocyanate (FITC) Apoptosis 
Detection Kit (Vazyme, Nanjing, China) was used to stain the 
oocytes with Annexin V- FITC to detect the externalization of 
phosphatidylserine in early apoptotic MII oocytes, according to 
the manufacturer’s instructions. Briefly, 20–30 MII oocytes were 
washed three times in 0.1% BSA-PBS and then incubated for 30 min 
in the dark at room temperature in 100 µl binding buffer containing 
5 µl Annexin V-FITC. The oocytes were again washed three times 
in 0.1% BSA-PBS, following which Hoechst 33342 (10 µg/ml in 
PBS) was used for DNA counterstaining. Oocytes were then mounted 
on a glass slide. Annexin-V-positive oocytes were identified using 
a confocal microscope (Zeiss LSM 710 META; Carl-Zeiss Jena, 
Germany). Specifically, a green circle observed on the cellular 
membrane indicated the presence of an Annexin-V-positive oocyte.

Real-time reverse transcriptase-polymerase chain reaction 
(RT-PCR)

MII oocytes were harvested, and mRNA was extracted from each 
of the 15 oocyte pools using the DynaBeads mRNA Direct Kit (Cat 
#61012; Dynal Asa, Oslo, Norway) according to the manufacturer’s 
instructions. cDNA was synthesized by reverse transcription of mRNA 
using oligo(dT)12-18 primers and SuperScript III reverse transcriptase 
(Invitrogen). RT-PCR was performed using KAPA SYBR® FAST kit 
(KK4601; Kapa Biosystem, Salt River Cape Town, South Africa), 
wherein each reaction contained 10 μl SYBR Green, 1 μl of each 
forward and reverse primers, and 2 μl of cDNA template (10 ng/
μl) in a final reaction volume of 20 µl. The amplification cycle was 
programmed as follows: 95°C for 3 min, followed by 40 cycles of 
95°C for 3 sec, 60°C for 30 sec, and 72°C for 20 sec. The target 
genes were B-cell lymphoma-extra-large (Bcl-xl), Bcl-2-associated 
X (Bax), and survivin. Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) was used as a reference gene. The primer sequences used 
to amplify each gene are listed in Table 1. mRNA quantification data 
were analyzed using the 2−ΔΔCT method.

Statistical analyses
Statistical analysis was performed by one-way analysis of variance 

(ANOVA), followed by least significant difference (LSD) test, using 
SPSS software, version 19.0 (SPSS, Chicago, IL, USA). Figures were 
generated using the GraphPad Prism software package (version 6.01; 
GraphPad, La Jolla, CA, USA). Data are expressed as the mean ± 
standard deviation (SD). P < 0.05 was considered to be statistically 
significant. The total number (N) of oocytes/embryos used in each 
group are shown in the data columns and replicates (R) in each 
experiment are mentioned in the figure legends.

Results

Effect of LC on the development and quality of aged bovine 
oocytes in vitro

The aim of our study was to determine whether LC supplementation 
could maintain the quality of aged oocytes, especially for subsequent 
embryo development after IVF (Fig. 1A). The blastocyst formation 

rate in the aged + LC group was comparable to that in the fresh 
group (29.23 ± 2.20% vs. 31.37 ± 2.93%; Fig. 1B), while the rate 
in the aged group was significantly lower than that in the aged + LC 
group (20.90 ± 3.05% vs. 29.23 ± 2.20%; Fig. 1B). Moreover, the 
number of cells per blastocyst in the aged + LC group was higher 
compared to that in the aged group (97.29 ± 17.70 vs. 72.10 ± 6.44; 
Fig. 1C), but similar to that in the fresh group (97.29 ± 17.70 vs. 
103.3 ± 15.06; Fig. 1C). Furthermore, the apoptotic rate of blastocysts 
derived from the aged + LC group was lower than that of blastocysts 
derived from the aged group (1.08 ± 0.12 vs. 1.52 ± 0.14; Fig. 1D).

Effect of LC on ROS and GSH levels in aged bovine oocytes  
in vitro

Oxidative stress is a potential threat to developmental potential; 
therefore, we evaluated ROS levels, as shown in Fig. 2A. The ROS 
levels in aged oocytes were significantly higher than those in LC-
treated aged oocytes (1.73 ± 0.31 vs. 1.07 ± 0.29; Fig. 2B), while the 
levels in LC-treated oocytes were similar to those in fresh oocytes 
(1.07 ± 0.29 vs. 1 ± 0.21; Fig. 2B). Though GSH levels vary among 
different cell types, it exerts a powerful antioxidant function in 
protecting cells against oxidative stress damage. Thus, quantification 
of intracellular GSH was performed, as shown in Fig. 2C. The 
GSH levels in aged oocytes were significantly lower than those in 
LC-treated oocytes (0.67 ± 0.19 vs. 0.81 ± 0.20; Fig. 2D), while the 
levels in LC-treated aged oocytes were significantly lower than those 
in fresh oocytes (0.81 ± 0.20 vs. 1 ± 0.13; Fig. 2D).

Effect of LC on the ΔΨm of aged bovine oocytes in vitro
In cells, the mitochondria play a crucial role in maintaining normal 

metabolic functions [30]. Thus, we evaluated mitochondrial function 
(as indicated by ΔΨm) during in vitro aging of oocytes, with and 
without LC treatment. Representative images of JC-1 staining are 
shown in Fig. 3A. The ΔΨm of the aged group was higher than that 
of the fresh group (3.49 ± 1.30 vs. 1.33 ± 0.41; Fig. 3B), while the 
ΔΨm of the aged + LC group was lower than that of the aged group 
(3.49 ± 1.30 vs. 1.69 ± 0.61; Fig. 3B).

Effect of LC on caspase-3 activity in aged bovine oocytes  
in vitro

As caspase-3 is an important apoptosis marker, we measured the 
caspase-3 activity in aging oocytes (Fig. 4A). The caspase-3 activity 

Table 1. Sequences of primers used for RT-PCR

Genes Primer sequences Product size (bp)
Bax F: AGAAGGATGATCGCAGCTGTG 198

R: AGTCCAATGTCCAGCCCATG
Survivin F: GCCAGATGACGACCCCATAG 199

R: GGCACAGCGGACTTTCTTTG
Bcl-xl F: AGGCAGGCGATGAGTTTGAA 159

R: AGAAAGAGGGCCAVAATGCGA
Gapdh F: ACAGTCAAGGCAGAGAACGG 235

R: GGTTCACGCCCATCACAAAC

The annealing temperature for all reactions was 60°C. F: forward 
primer, R: reverse primer.
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of LC-treated aged oocytes was significantly lower than that of 
untreated aged oocytes (1.08 ± 0.38 vs. 1.54 ± 0.78; Fig. 4B). The 
level of caspase-3 in fresh oocytes was significantly lower than that 

in aged oocytes (1.00 ± 0.30 vs. 1.54 ± 0.78; Fig. 4B), but similar 
to that in LC-treated aged oocytes.

Fig. 2. Effect of L-carnitine (LC) on ROS and GSH levels in aged bovine oocytes in vitro. (A) Oocytes were stained with H2DCFDA to detect the 
intracellular levels of ROS. Scale bar: 100 µm, R = 3. (B) Oocytes were stained with Tracker Blue CMF2HC dye to detect the intracellular levels 
of GSH. Scale bar: 100 µm, R = 3. (C) and (D) The relative intracellular levels of ROS and GSH in bovine oocytes from the three groups (fresh, 
aged, and aged + LC). Statistically significant differences are represented with different letters (P < 0.05).

Fig. 1. Effect of L-carnitine (LC) on the development and quality of aged bovine oocytes in vitro. (A) Blastocyst formation on day 7. Scale bar: 100 µm. 
(B) Blastocyst rate. R = 5. (C) Total cell number in each day-7 blastocyst. R = 3. (D) The rate of cell apoptosis in the day-7 blastocysts, R = 3. 
Statistically significant differences are represented with different letters (P < 0.05).
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Effect of LC on the level of early apoptosis in aged bovine 
oocytes in vitro

Oocyte aging is accompanied by apoptosis. Therefore, we detected 
the proportion of aged oocytes undergoing early apoptosis by the 
Annexin V-FITC assay. In this assay, a green circle indicating the 
position of the oocyte on the outer cell membrane was defined as 
Annexin V-positive (Figs. 5A and 5B). The results showed that 
the percentage of oocytes undergoing early apoptosis in the fresh 
group was significantly lower than that in the aged group (12.43 ± 
3.09% vs. 38.97 ± 10.38%; Fig. 5C), but was similar to that in the 

LC-treated aged group (12.43 ± 3.09% vs. 18.23 ± 5.09%; Fig. 5C).

Effect of LC on the mRNA levels of apoptosis-related genes in 
aged bovine oocytes in vitro

To determine the effect of LC on the mRNA levels of apoptosis-
related genes, we measured the transcript levels of Bcl-xl, Bax, and 

Fig. 3. Effect of L-carnitine (LC) on the mitochondrial membrane potential (ΔΨm) of aged bovine oocytes in vitro. (A) Representative fluorescent images 
of JC-1-stained oocytes after in vitro aging. Scale bar: 200 µm, R = 3. (B) Quantification of JC-1 fluorescence intensity. Statistically significant 
differences are represented with different letters (P < 0.05).

Fig. 4. Effect of L-carnitine (LC) on the caspase-3 activity of aged bovine 
oocytes in vitro. (A) Representative images showing caspase-3 
activity in fresh, aged, and LC-treated aged MII oocytes. Scale bar: 
200 μm, R = 3. (B) Quantified fluorescence intensity for caspase-3 
in oocytes. Statistically significant differences are represented with 
different letters (P < 0.05).

Fig. 5. Effect of L-carnitine (LC) on the percentage of early 
apoptotic aged bovine oocytes in vitro. (A) Negative 
control. (B) Annexin V-positive. (C) The percentage of 
Annexin V-positive oocytes in the fresh, aged, and aged 
+ LC groups. Scale bar: 100 μm, R = 3. Statistically 
significant differences are represented with different 
letters (P < 0.05).
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survivin in the oocytes from each group (Fig. 6). The mRNA levels of 
Bcl-xl and survivin were significantly lower in the aged oocytes than 
those in the fresh oocytes. However, the mRNA levels of Bcl-xl and 
survivin in LC-treated aged oocytes were higher than those in aged 
oocytes. No significant differences in survivin transcript levels were 
observed between the LC-treated aged oocytes and fresh oocytes. 
Moreover, the mRNA levels of Bcl-xl were significantly lower in 
the aged + LC group than those in the fresh group, while the mRNA 
levels of Bax were significantly lower in the aged + LC and aged 
groups than those in the fresh group. No significant difference in Bax 
transcript level was observed between the aged + LC and aged groups.

Discussion

Oocyte aging is a complex and irreversible biological process that 
may lead to several changes in the structure and functional states of 
mammalian oocytes, including DNA damage, reduced fertilization 
rates, abnormal mitochondrial structure, oxidative damage, and 
early oocyte apoptosis [31, 32, 33]. Here, we demonstrated that LC 
treatment may effectively delay the aging of oocytes and enhance 
subsequent embryo development.

Oocyte quality is a major determinant of subsequent embryo 
development. Oocyte aging has been shown to severely reduce 
the quality of oocytes, significantly affecting embryo development 
before and after implantation [1, 34]. To demonstrate that LC can 
improve oocyte quality and delay oocyte aging, we investigated 
the in vitro developmental capacity of oocytes after IVF. We found 
that prolonged IVM significantly impaired blastocyst formation. A 
higher proportion of bovine embryos developed into blastocysts in 
LC-treated aged oocytes compared to that in untreated aged oocytes 
after IVF, following IVM treatment for 30 h. Previous studies have 
shown that LC supplementation can increase blastocyst formation 
rates [28, 35]. Furthermore, we determined the number of cells in 
day-7 blastocysts, and found that the number of cells per blastocyst 
in the aged + LC group was higher than that in the aged group. The 
results of TUNEL assay showed that the aged + LC group showed 
a smaller percentage of apoptotic cells in the blastocyst at 30 h than 
the aged group. Previous studies have shown that increased DNA 
fragmentation in developing aged oocytes has negative effects on 
subsequent embryonic development, resulting in developmental arrest 
and apoptosis [1, 12, 36]. Our results indicate that LC can maintain 
the capacity of aged oocytes to develop into the blastocyst stage and 
downregulate apoptosis in the resultant blastocysts.

Oocyte quality is usually affected by oxidative stress or oxidative 
damage [37, 38]. As the oocyte ages, ROS accumulate [39]. GSH 
levels are a key factor affecting the quality of oocytes. GSH is known 
to be present in varying amounts in a diverse range of cells and exerts 
strong antioxidant effects to protect cells against oxidative stress-
induced damage [40]. It has been reported that ROS accumulate in 
oocytes during aging, and affect their subsequent fertilization capacity 
[41]. Previous studies have shown the beneficial effects of LC as an 
antioxidant that reduces ROS levels during oocyte maturation and 
increases ATP content and GSH levels [24, 42]. In our study, results 
showed that LC supplementation decreased ROS levels and increased 
GSH levels in aging oocytes, indicating that LC may improve the 
quality of aging oocytes via reducing oxidative stress.

Mitochondria play a crucial role in maintaining cellular meta-
bolic functions [43]. As oocytes age after ovulation, the impaired 
mitochondrial function may seriously affect the quality of oocytes. 
Therefore, we carried out a mitochondrial membrane potential assay 
to evaluate the mitochondrial membrane potential of aged oocytes. 
A previous study reported a lower ΔΨm in bovine oocytes after an 
extended IVM time of up to 30 h [36]. Another study showed that 
the ΔΨm and ATP content of oocytes subjected to 40 h of IVM were 
higher than those in oocytes subjected to 20 h of IVM [44]. After 30 
h of IVM, the oocytes presented an intermediate value [44]. In our 
study, the ΔΨm of the aged group rapidly increased, while that of 
the aged+LC group markedly decreased. However, we were unable 
to elucidate a direct relationship between the enhanced ΔΨm and 
low developmental competence of bovine oocytes. Thus, further 
research is required to investigate the ΔΨm of embryos (2-cell stage, 
4-cell stage, 8-cell stage, and morula stage) derived from oocytes 
from extended IVM culture.

Previous studies have shown that in vitro aged oocytes are affected 
by oxidative stress, which can result in apoptosis [31, 45]. Further, 
previous reports also indicate that LC has antioxidant properties, 
whereby it reduces oxidative stress by enhancing the activity of 
several antioxidant enzymes like superoxide dismutase and glu-
tathione peroxidase [42, 46]. Meanwhile, studies have shown that 
LC upregulates glutathione peroxidase (GPx) and downregulates 
superoxide dismutase 2 (SOD2) at mRNA level in oocytes and 
embryos [35]. We presumed that LC may prevent apoptosis due 
to its resistance to oxidation. Phosphatidylserine on the outer cell 
membrane is a marker of early apoptosis in mature oocytes. Annexin 
V has a high binding affinity to phosphatidylserine, therefore we 
used the Annexin V-FITC Apoptosis Detection Kit to detect early 
apoptosis in aged oocytes [47]. Our results showed that LC treat-
ment decreased the percentage of early apoptotic cells, which is in 
accordance with a previous finding that antioxidants reduce the level 
of early apoptosis in aging oocytes [48]. Caspase-3 is a member of 
the cysteine-aspartic protease (caspase) family [49]. Caspases are 

Fig. 6. Effect of LC on apoptosis-related gene expression in aged bovine 
oocytes in vitro. The relative mRNA levels of apoptosis-related 
genes encoding Bcl-xl, Bax, and survivin, as analyzed by RT-
PCR; R = 3. Statistically significant differences are represented 
with different letters (P < 0.05).
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crucial mediators of programmed cell death (apoptosis). Among them, 
caspase-3 is a frequently activated death protease that catalyzes the 
specific cleavage of many key cellular proteins [50]. The sequential 
activation of caspases plays an important role in apoptosis [51]. 
Previous research has shown that caspase-3 activity is associated 
with oocyte quality [52]. Bcl-xl, which belongs to the Bcl-2 family, 
prevents apoptosis by blocking the leakage of cytochrome c through 
the mitochondrial membrane pores [53]. Survivin is the smallest 
member of the inhibitor of apoptosis protein family, which regulates 
cell cycle/apoptosis balance [54]. A previous study showed that 
oocyte aging eventually leads to cell death via an apoptotic pathway 
characterized by phosphatidylserine externalization [47], caspase 
activation [55], accumulation of the apoptotic signaling protein Bax, 
suppression of Bcl-xl [56, 57], and DNA fragmentation [58]. In our 
study, the mRNA levels of Bcl-xl and survivin were significantly 
lower in the aged group than those in the fresh and aged + LC 
groups. No significant differences in survivin transcript levels were 
observed between the aged + LC and fresh groups. Moreover, the 
mRNA levels of Bcl-xl were significantly lower in the aged + LC 
group than those in fresh group. These results suggest that LC may 
affect the mRNA levels of apoptosis-related genes.

Finally, our results, as well as previous reports [28, 42] suggest 
that LC is not only likely to be involved in mitochondrial function 
and lipid metabolism, but is also involved in regulation of other 
vital cellular functions, such as apoptosis, which may enhance the 
developmental capacity of aged oocytes.

In conclusion, our results demonstrate that treating aging oocytes 
with LC may improve oocyte quality and maintain their developmental 
capacity. We thus propose LC as a suitable agent to delay oocyte 
aging in vitro and to prevent the developmental loss of bovine oocytes 
in ARTs.
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