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Background: Korean Red Ginseng has been used for several decades to treat many diseases, enhancing
both immunity and physical strength. Previous studies have documented the therapeutic effects of
ginseng, including its anticancer, antiaging, and anti-inflammatory activities. These activities are medi-
ated by ginsenosides present in the ginseng plant. Ginsenoside Rg3, an effective compound from red
ginseng, has been shown to have antiplatelet activity in addition to its anticancer and anti-inflammatory
activities. Platelets are important for both primary hemostasis and the repair of the vessels after injury;
however, they also play a crucial role in the development of acute coronary diseases. We prepared
ginsenoside Rg3-enriched red ginseng extract (Rg3-RGE) to examine its role in platelet physiology.
Methods: To examine the effect of Rg3-RGE on platelet activation in vitro, platelet aggregation, granule
secretion, intracellular calcium ([Ca2þ]i) mobilization, flow cytometry, and immunoblot analysis were
carried out using rat platelets. To examine the effect of Rg3-RGE on platelet activation in vivo, a collagen
plus epinephrine-induced acute pulmonary thromboembolism mouse model was used.
Results: We found that Rg3-RGE significantly inhibited collagen-induced platelet aggregation and [Ca2þ]i
mobilization in a dose-dependent manner in addition to reducing ATP release from collagen-stimulated
platelets. Furthermore, using immunoblot analysis, we found that Rg3-RGE markedly suppressed
mitogen-activated protein kinase phosphorylation (i.e., extracellular stimuli-responsive kinase, Jun N-
terminal kinase, p38) as well as the PI3K (phosphatidylinositol 3 kinase)/Akt pathway. Moreover, Rg3-
RGE effectively reduced collagen plus epinephrine-induced mortality in mice.
Conclusion: These data suggest that ginsenoside Rg3-RGE could be potentially be used as an antiplatelet
therapeutic agent against platelet-mediated cardiovascular disorders.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cardiovascular diseases (CVDs), such as thrombosis, athero-
sclerosis, and myocardial infarction, are the primary causes of
morbidity and mortality in Western countries. Platelets, derived
from megakaryocytes as anucleate cells, circulate in the blood-
stream for approximately 10 d and are crucial for primary hemo-
stasis and prevention of posttraumatic blood loss. When blood
vessels are damaged, agonists bind their cognate platelet mem-
brane G-protein-coupled receptors (GPCR), such as GPVI
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(glycoprotein VI), aIIbb3, and GPIb, leading to platelet activation and
a reduction of Ca2þ mobilization. Several paracrine and autocrine
mediators, such as adenosine diphosphate (ADP), thromboxane A2,
epinephrine, and thrombin, initiate platelet activation. However, in
thrombotic diseases, such as atherosclerosis, abnormal platelet
activation can result in thrombus formation [1e4]. At present, the
drugs available for treatment of thrombotic diseases have serious
side effects, such as bleeding [5], leading to a need for a safe and
more effective antithrombotic agent.
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Panax ginseng has been used for more than 2,000 yr to treat
different ailments and enhance immunity. Ginseng contains
numerous active compounds, including ginsenosides, peptides,
polysaccharides, mineral oils, and fatty acids [6]. Recently, several
studies have focused on single ginsenosides. Among them, ginse-
noside Rg3 is well known for the treatment of numerous diseases,
such as hypertension, diabetes mellitus, and breast cancer [7e9].
Ginsenoside Rg3’s two enantiomers, ginsenosides 20(R)-Rg3 and
20(S)-Rg3, vary in the spatial arrangement of the OH on the chiral
center at carbon 20; the S form generally has a much higher anti-
oxidant activity compared with the R form [10].

In our previous studies, we showed that dihydroginsenoside
Rg3 mediates antiplatelet activity via ERK (extracellular stimuli-
responsive kinase) signaling [11]; however, the antiplatelet activ-
ity of Rg3-enriched red ginseng extract (Rg3-RGE) remained un-
known. In this study, we characterized the modulatory activity of
Rg3-RGE on platelet function.

2. Materials and methods

2.1. Chemicals

Rg3-RGE was obtained from Korea Ginseng Corporation (Dae-
jeon, Korea). In brief, red ginseng (stem/root¼ 75:25) was extrac-
ted with water followed by extraction with 55% ethanol. A
concentrated extract was prepared by multiple extractions.
Consequently, the extract was subjected to GC-MS and the resulting
extract constituent profile is shown in Table 1, which confirms that
the extract is Rg3-enriched red ginseng extract. Collagen was ob-
tained from Chrono-Log Co. (Havertown, PA, USA). Fura-2/AM and
dimethyl sulfoxide were purchased from Sigma Chemical Co. (St.
Louis, MO, USA). ATP (adenosine triphosphate) assay kits were
obtained from Biomedical Research Service Center (Buffalo, NY,
USA). Fibrinogen Alexa Fluor 488 conjugate was purchased from
Molecular Probes (Eugene, OR, USA). Antibodies directed against
total-ERK1/2 (p44/42), phospho-ERK1/2 (p44/42), total-JNK,
phospho-JNK, total-p38, phosphor-p38, total-PI3K (phosphatidyli-
nositol 3 kinase) p85/p55, phospho-PI3K p85/p55, total-Akt
(Ser473), phospho-Akt (Ser473), total-MKK4 (mitogen-activated
protein kinase kinase 4), and phospho-MKK4 were purchased from
Cell Signaling (Beverly, MA, USA). All chemicals used were of re-
agent grade.

2.2. Animals

Male SpragueeDawley rats (8 wk old) and male C57BL/6J mice
(8 wk old) were purchased from Orient Co. (Busan, Korea). Rats and
mice were housed in an air-conditioned animal room with a light/
dark cycle of 12/12 h at a temperature of 22� 2�C and humidity of
50�10%, and were acclimated to the environment 1 wk prior to
experiment initiation. All animal-related experiments were
Table 1
Rg3-enriched red ginseng extract constituent profile

Ginsenosides Contents (mg/g)

Rb1 3.86
20(S)-Rg3 44.91
Rc 1.20
Rb2 1.53
Rd 1.60
Rf 1.28
Rh1 3.71
20(S)-Rg2 3.55
20(R)-Rg3 6.78
Total 67.41
performed according to the guidelines of the National Institute of
Health and were approved by the Ethics Committee of the College
of Veterinary Medicine, Kyungpook National University (Daegu,
Korea).

2.3. Platelet preparation

Platelet preparation was conducted at room temperature. After
collection, blood was transferred to an anticoagulant citrate
dextrose solution (21mM citric acid, 85mM trisodium citrate, and
83mM dextrose) and centrifuged at 170g for 7 min to isolate
platelet-rich plasma (PRP). Platelets were then isolated from PRP by
centrifugation at 350g for 7 min. Platelet concentration was
adjusted to 3�108/mL with Tyrode buffer (137mM NaCl, 12mM
NaHCO3, 5.5mM glucose, 2mM KCl, 1mM MgCl2, and 0.3mM
NaHPO4, pH 7.4).

2.4. Platelet aggregation assay

Platelet aggregation was measured using light transmission
aggregometry (Chrono-Log Co.) as previously described [12].
Washed platelets were pretreated with Rg3-RGE, or vehicle control,
at 37�C for 2 min in the presence of 1mM CaCl2 followed by the
induction of aggregation with collagen. The mixture was further
incubated with constant stirring at 1,200 rpm for 5 min and
observed for aggregation.

2.5. Scanning electron microscopy analysis

A field emission scanning electronmicroscope (SU8220; Hitachi,
Kanagawa, Japan) was used for aggregated platelet analysis. After
the platelet aggregation assay, platelets were fixed with 0.5%
paraformaldehyde (1st fixation) and washed three times with
phosphate-buffered sulfate, and then fixed with osmium tetroxide
(2nd fixation). Samples were then dehydrated using various con-
centrations of ethanol, then freeze-dried and analyzed using elec-
tron microscopy.

2.6. Intracellular calcium measurement

PRP was isolated from blood by centrifugation at 170g for 7 min
and loaded with 5mM Fura-2/AM for 1 h at 37�C. Fluorescently
labeled platelets were then pretreated with Rg3-RGE for 2 min at
37�C and stimulated with agonist for 5 min. Fluorescence was
recorded with a fluorescence spectrofluorometer (F-2500; Hitachi).

2.7. ATP and serotonin release assay

The platelet aggregate supernatant was isolated from the
platelet aggregate mixture by centrifugation at 12,000 rpm for
5 min at 4�C. ATP secretion was measured with an ATP assay kit
(Biomedical Research Service Center) using a luminometer (Glo-
Max20/20; Promega, Madison, WI, USA), and serotonin release was
measured with a serotonin ELISA kit (Labor Diagnostika Nord
GmbH & Co., Nordhorn, Germany) according to manufacturer’s
instructions.

2.8. Flow cytometry

Fibrinogen binding and P-selectin expression was measured
using flow cytometry as previously described [13]. Briefly, washed
platelets were pretreated with Rg3-RGE and stimulated with
agonist for 5 min in the presence of anti-CD62P (P-selectin) and
fluorescein isothiocyanate-labeled (FITC) antifibrinogen antibody.
Platelets were then fixed with 0.5% paraformaldehyde. Flow



Fig. 1. Rg3-RGE inhibits collagen-induced platelet aggregation. (A) Washed platelets were pretreated with Rg3-RGE or vehicle for 2 min in the presence of 1mM CaCl2, and
stimulated with collagen for 5 min. (B) After the platelet aggregation reaction, scanning electron microscopy was performed. Representative scanning electron microscopy images of
platelets with (a) no treatment, (b) treated with collagen 1.25 mg/mL, (c) treated with Rg3-RGE 50 mg/mLþ collagen 1.25 mg/mL, (d) treated with 100 mg/mL Rg3-RGEþ collagen
1.25 mg/mL, and (e) treated with 200 mg/mL Rg3-RGEþ collagen 1.25 mg/mL. Graph represents the mean� SD of at least four independent experiments. **p< 0.01, ***p< 0.001
compared to the agonist control. Rg3-RGE, Rg3-enriched red ginseng extract; SD, standard deviation.
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cytometric analysis was performed using the FACS Aria III flow
cytometer (Becton Dickinson Immunocytometry Systems, San Jose,
CA, USA), and data were analyzed using CellQuest software (Becton
Dickinson Immunocytometry Systems).

2.9. Immunoblotting

After terminating platelet aggregation, lysis buffer (PRO-PREP;
iNtRON Biotechnology, Seoul, Korea) was added to the mixture. A
BCS assay (PRO-MEASURE; iNtRON Biotechnology) was used to
measure protein concentration. Total platelet proteinwas separated
by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred to polyvinylidene difluoride (PVDF) membranes.
PVDF membranes were then incubated with primary and second-
ary antibodies conjugated to horseradish peroxidase, and antibody
binding was visualized using enhanced chemiluminescence
(Advansta Inc., Menlo Park, CA, USA).
2.10. Acute pulmonary thromboembolism assay

The collagen plus epinephrine-induced acute pulmonary
thromboembolism (APT) study was carried out in mice as previ-
ously described [14]. Briefly, mice were divided into three groups
(n¼ 10), saline-treated and unchallenged, saline-treated and
collagen plus epinephrine-challenged, and Rg3-RGE-treated and
collagen plus epinephrine-challenged. Rg3-RGE treatment was
administered by oral injection 3 d prior to collagen plus epineph-
rine challenge. Two hours after the final Rg3-RGE dose, mice were
then challenged with 0.1 mL of a mixture containing 500 mg/mL of
collagen and 60 mg/mL of epinephrine by intravenous tail vein in-
jection. Mouse mortality was monitored for a duration of 15 min,
and data represent the percentage of mice surviving in the
respective treatment group. At the end of each experimental ses-
sion, the surviving mice were euthanized using an overdose of
anesthesia.
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Fig. 2. The inhibitory effect of Rg3-RGE on collagen-induced [Ca2þ]i increase. Washed
platelets were loaded with a calcium fluorophore (5mM, Fura-2/AM) for 1 h. Fura 2/
AM-loaded platelets were pretreated with Rg3-RGE for 2 min at 37�C and stimulated
with collagen (1.25 mg/mL). The results represent the mean� SD of at least four in-
dependent experiments. *p< 0.05 and ***p< 0.001 versus control. [Ca2þ]i, intracellular
calcium; Rg3-RGE, Rg3-enriched red ginseng extract; SD, standard deviation.
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2.11. Lung histology

Two minutes after thrombotic challenge, mice were quickly
euthanized using an overdose of anesthesia, and lungs were
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Fig. 3. Rg3-RGE-mediated decrease in secretion of a granules. After platelet aggregation wa
flow cytometry was performed using the FACS Aria III flow cytometer. (A) Representative flow
(c) Rg3-RGE 50 mg/mLþ collagen 1.25 mg/mL, (d) 100 mg/mL Rg3-RGEþ collagen 1.25 mg/m
inhibitory effect of Rg3-RGE on P-selectin exposure. ***p< 0.001 versus control. Rg3-RGE, R
perfused with a fixing solution (10% formalin bufferedwith calcium
carbonate). The trachea was ligated and harvested together with
the lungs, and the organs were soaked in cold saline and fixed in
10% formalin for 24 h. The lungs were then embedded in paraffin,
and sections (5e6 mm thick) were cut and stained with hematox-
ylin and eosin for thrombus identification. The samples were
observed under a light microscope (Axio LAb A1; Carl Zeiss
MicroImaging, Jena, Germany) by a blinded histopathologist, where
a minimum of 10 fields were observed for every specimen. The
magnification used was 100�.

2.12. Statistical analysis

Statistical significance was measured using oneeway analysis of
variance followed by Dunnett’s post hoc test (SAS Institute Inc.,
Cary, NC, USA). The data are presented as mean� standard devia-
tion. A p value� 0.05 was considered statistically significant.

3. Results

3.1. Effect of Rg3-RGE on collagen-induced platelet aggregation

To determine whether platelet aggregation is inhibited by Rg3-
RGE, we used a collagen-induced platelet aggregation assay. Using
light transmission aggregometry, we found that Rg3-RGE treatment
***

***

   +         +        +
50      100    200

3 104 105 101 102 103 104 105

101 102 103 104 105

e intensity

b c

e

s completed, the platelets were incubated with anti-CD62P antibody for P-selectin and
cytometric analysis of five treatment groups (a) no treatment, (b) collagen 1.25 mg/mL,

L, and (e) 200 mg/mL Rg3-RGEþ collagen 1.25 mg/mL. (B) Bar graph summarizing the
g3-enriched red ginseng extract.
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strongly inhibited collagen-induced platelet aggregation in a dose-
dependent manner (Fig. 1A). Furthermore, scanning electron mi-
croscopy confirmed our findings, showing a clear dose-dependent
decrease in aggregation (Fig. 1B).
3.2. Effect of Rg3-RGE on intracellular calcium mobilization

Calcium mobilization is crucial for platelet activation and the
elevation of intracellular calcium ([Ca2þ]i) levels triggers multiple
signaling events. To determine whether Rg3-RGE reduces the
collagen-induced increase of [Ca2þ]i, we used a fluorescent Ca2þ

indicator, Fura-2/AM. We found that Rg3-RGE treatment markedly
decreased collagen-induced [Ca2þ]i in a dose-dependent manner
(Fig. 2), suggesting that Rg3-RGE inhibits platelet aggregation by
blocking calcium mobilization.
3.3. Effect of Rg3-RGE on granule secretion

Platelets contain both a and dense granules that store factors
that are important for hemostasis when released via platelet acti-
vation. To determinewhether Rg3-RGE inhibits a granule secretion,
we examined P-selectin expression by flow cytometry. Rg3-RGE
inhibited P-selectin expression in a dose-dependent manner
(Fig. 3). To determine whether Rg3-RGE also inhibited collagen-
stimulated dense granules secretion, we measured ATP and sero-
tonin release. Collagen (1.25 mg/mL) treatment alone strongly
increased ATP and serotonin secretion from dense granules; how-
ever, platelets pretreated with Rg3-RGE had significantly decreased
ATP and serotonin secretion in a dose-dependent manner (Fig. 4).
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Fig. 4. Rg3-RGE-mediated decrease in secretion of dense granules. After platelet ag-
gregationwas terminated, the concentration of ATP and serotonin was measured in the
supernatant. (A) The concentration of ATP in collagen-stimulated platelets treated with
Rg3-RGE was measured using a luminometer. (B) Levels of serotonin from platelets
stimulated with collagen and treated with Rg3-RGE were measured using ELISA.
***p< 0.001 versus control. ATP, adenosine triphosphate; ELISA, enzyme-linked
immunosorbent assay; Rg3-RGE, Rg3-enriched red ginseng extract.
3.4. Effect of Rg3-RGE on activation of integrin aIIbb3

Platelet activation leads to a conformational change in integrin
aIIbb3, fibrinogen binding, and aggregation [15]. To determine
whether Rg3-RGE inhibits aIIbb3 activation and fibrinogen binding,
flow cytometry was used to analyze platelets preincubated with
various concentrations of Rg3-RGE and FITC-conjugated anti-
fibrinogen antibody. Rg3-RGE inhibited fibrinogen binding in a
dose-dependent manner, blocking the process of inside-out
signaling (Fig. 5).

3.5. Effect of Rg3-RGE on mitogen-activated protein kinase and
MKK4 phosphorylation

Collagen stimulated rat platelet mitogen-activated protein ki-
nases (MAPKs) include c-Jun N-terminal kinase (JNK), extracellular
stimuli-responsive kinase 1/2 (ERK1/2), and p38- [16e18]. To
elucidate the underlying mechanism by which Rg3-RGE inhibits
platelet aggregation, we examined the phosphorylation of down-
stream intracellular signaling molecules including MAPKs and
mitogen-activated protein kinase kinase 4 (MKK4). We found that
Rg3-RGE decreased phosphorylation of ERK1/2, JNK, and p38
(Fig. 6). In addition, Rg3-RGE also inhibited the phosphorylation of
MKK4, an upstream signaling molecule of JNK (Fig. 6).

3.6. Effect of Rg3-RGE on PI3KeAkt phosphorylation

The PI3K/Akt pathway plays a crucial role in platelet function,
including activation, adhesion, migration, and aggregation [19]. To
examine whether Rg3-RGE affects PI3K/Akt phosphorylation in
collagen-activated platelets, we used immunoblot analysis. Our
data show that Rg3-RGE markedly inhibited collagen-induced
PI3KeAkt signaling in a dose-dependent manner (Fig. 7).

3.7. Rg3-RGE protects mice from thrombosis

To determine whether Rg3-RGE protects mice from thrombosis,
we used a collagen plus epinephrine-induced APT mouse model.
After an intravenous injection of the collagen plus epinephrine, we
found that the mortality of mice treated with Rg3-RGE was
significantly lower compared to that of the control mice (Fig. 8A).
Histologic analysis of slices of isolated lungs collected 2 min after
APT induction showed that the percentage of vessels occluded by
platelet thrombi was significantly lower in Rg3-RGE-treated mice
than in control mice (Fig. 8B). These data show that Rg3-RGE plays a
crucial role in preventing thrombus formation in vivo.

4. Discussion

CVDs are a group of diseases that involve the blood vessels or
the heart. Recently, CVDs, such as coronary artery disease, throm-
bosis, and acute myocardial infarction, have become the primary
cause of death in developed countries. An increase in thrombus
formation is likely due to the increasing prevalence of high blood
pressure, diabetes, obesity, and high cholesterol. Currently,
numerous studies are focusing on platelet function for the treat-
ment and prevention of CVD. Previous studies have shown that
antiplatelet therapy reduces mortality and morbidity in acute
myocardial infarction [20,21]. Platelets, small fragments of mega-
karyocytes that exist in the bloodstream for 7e10 d, play a crucial
role in primary hemostasis and wound healing, but have also been
implicated in inflammation, angiogenesis, and tumor growth and
metastasis [22e24]. Platelets harbor both a granules and dense
granules, which contain proteins and adhesion factors. When
platelets are stimulated, the granule contents are released, binding
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their cognate receptors on the platelet plasma membrane leading
to aggregation. However, abnormal thrombus formation can result
from alterations in platelet homeostasis, leading to serious car-
diovascular ailments.

P. ginseng Meyer, a Korean ginseng, is an established traditional
herbal medicine for health improvement. The biological activities
of ginseng include vital energy recovery, antioxidant activity, and
immunity and memory enhancement [25e28]. Recently, an in-
crease in health interest has been observed in Korea, and consumer
demand for red ginseng is rapidly boosting the dietary supplement
market [29]. In a previous study, we showed that ginsenoside-Rg3,
an active component of ginseng, has a strong antiplatelet activity
Fig. 8. Analysis of thrombus formation. Mice were pretreated with Rg3-RGE by oral
injection for 3 days. (A) Two hours after the final Rg3-RGE dose, mice were challenged
with a collagen plus epinephrine mixture and checked for survival at 15 min. (B)
Representative histology images (100�) of H&E-stained lungs from mice treated with
(a) vehicle, (b) collagen and epinephrine mixture, and (c) with Rg3-RGE 50 mg/kg and
collagen and epinephrine mixture. Arrows indicate occlusive thrombi in pulmonary
vessels. ***p< 0.001 compared to the agonist-treated group. H&E, hematoxylin and
eosin; Rg3-RGE, Rg3-enriched red ginseng extract.
mediated by the ERK pathway [11]. In this study, we hypothesized
that Rg3-RGE blocks platelet-induced thrombus formation. We first
tested whether Rg3-RGE inhibits collagen-induced platelet aggre-
gation. As expected, our results showed that Rg3-RGE dramatically
inhibited collagen-induced platelet aggregation in a dose-
dependent manner. To elucidate the underlying inhibitory mech-
anism of Rg3-RGE, we analyzed downstream signaling pathways.
Platelet function, including degranulation, actin cytoskeleton
restructuring, and thrombus formation, is regulated by the eleva-
tion of intracellular calcium levels [30]. To determine whether Rg3-
RGE regulates intracellular calcium levels, we performed a calcium
assay using a fluorescence spectrophotometer. The data show that
Rg3-RGE significantly decreased a rise in intracellular calcium
levels in response to collagen-induced platelet activation.

Platelets contain abundant protein-rich a granules, which
contain hemostatic, angiogenic, antiangiogenic, necrotic factor,
growth factor, and adhesive proteins that help in the healing pro-
cess. Platelets also contain less abundant dense granules, which
contain small nonprotein molecules. Degranulation and release of
granule contents improve platelet activation and intracellular
signaling [31]. We found that Rg3-RGE significantly inhibited
degranulation, hindering aggregation.

Aggregation of platelets is concomitant with the inside-out
signaling event that induces a conformational change in integrin
aIIbb3 to increase its affinity to its ligand, fibrinogen. When platelets
become activated, inside-out signaling induces a conformational
change in integrin aIIbb3, allowing serum fibrinogen binding, which
leads to aggregation. Rg3-RGE markedly inhibited fibrinogen
binding and blocked inside-out signaling, blocking aggregation.
Activation of integrin aIIbb3 and secondary mediator secretion are
mediated by PI3K and PLC. Because the PI3K pathway regulates
fibrinogen binding to integrin aIIbb3 [32], we tested if Rg3-RGE
altered downstream signaling events in the PI3K/Akt pathway.
Previous studies have shown that PI3K inhibitors can prevent
integrin aIIbb3-mediated adhesion and thrombus formation [33].
Adam et al [34] has showed that MAPKs, such as JNK1, ERK2, and
p38, are expressed in platelets and activated by many agonists.
Additionally, ERK2 was found to strengthen collagen-stimulated
platelet activation, and its activation was reliant on ADP secretion
and TXA2 production by collagen-stimulated aggregated platelets
[17]. Moreover, the phosphorylation of MAPKs trigger platelet
degranulation. The function of MKK4 is linked to the JNK signaling
pathway, as it is upstream of JNK [35]. Our study suggests that Rg3-
RGE has the potential to suppress GPVI downstream signaling
events, such as the MAPK and PI3K/Akt pathway, leading to the



D. Jeong et al / Antiplatelet effects of Rg3-RGE 555
potential for future therapeutics to focus on GPVI antagonism. Our
data show that Rg3-RGE is a potent antithrombotic agent, capable
of inhibiting intracellular signaling pathways that mediate platelet
activation.

Collagen and epinephrine, standard agonists for inducing
platelet activation, have been used to study defects in platelet
activation and their respective properties in in vivo thrombosis [36].
As expected, we found that an injection of collagen plus epineph-
rine rapidly induced a fatal pulmonary embolism in the majority of
control mice; however, the mice treated with Rg3-RGE were pro-
tected against thromboembolism, indicating that Rg3-RGE is
capable of modulating platelet function and inhibiting thrombus
formation.
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