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Abstract 

Background:  Psoriasis is a condition in which skin cells build up and form itchy scales and dry patches. It is also 
considered a common lifelong disease with an unclear pathogenesis. Furthermore, an effective cure for psoriasis is 
still unavailable. Reductive apoptosis of keratinocytes and immune infiltration are common in psoriasis. This study 
aimed to explore underlying functions of key apoptosis-related genes and the characteristics of immune infiltration in 
psoriasis. We used GSE13355 and GSE30999 to screen differentially expressed apoptosis related genes (DEARGs) in our 
study. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and gene set enrichment 
analysis (GSEA) were performed using clusterProfiler package. Protein–protein interaction (PPI) network was con-
structed to acquire key DEARGs. Transcription factor (TF)–target and miRNA–mRNA network analyses, drug sensitiv-
ity prediction, and immune infiltration were applied. Key DEARGs were validated using real-time quantitative PCR 
(RT-qPCR).

Results:  We identified 482 and 32 DEARGs from GSE13355 and GSE30999, respectively. GO analysis showed that 
DEARGs were commonly enriched in cell chemotaxis, receptor ligand activity, and signaling receptor activator activ-
ity. KEGG pathway analysis indicated that viral protein interaction with cytokine and cytokine receptor was maxi-
mally enriched pathway. The GSEA analysis of GSE13355 and GSE30999 demonstrated a high consistency degree of 
enriched pathways. Thirteen key DEARGs with upregulation were obtained in the PPI network. Eleven key DEARGs 
were confirmed using RT-qPCR. Additionally, 5 TFs and 553 miRNAs were acquired, and three novel drugs were pre-
dicted. Moreover, Dendritic.cells.activated exhibited high levels of immune infiltration while Mast.cells.resting showed 
low levels of immune infiltration in psoriasis groups.

Conclusion:  Results of this study may reveal some insights into the underlying molecular mechanism of psoriasis 
and provide novel targeted drugs.
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Background
Psoriasis is a common lifelong dermatological disease 
with prevalence varied from 0.14% to 1.99% of the popu-
lation worldwide [1, 2]. Approximately 125 million people 

worldwide suffer from psoriasis, and this number contin-
ues to show a gradual increasing trend [3–5]. Psoriasis is 
often associated with systemic illnesses, such as hyper-
tension, diabetes, and coronary heart diseases [3, 6], and 
remarkably reduces the physical and mental health and 
quality of life while increasing the economic burden of 
patients [3]. Psoriasis is a polygenic disease caused by 
the interaction of multiple factors, such as genetics and 
environment [6, 7]. Although the exact pathogenesis of 
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psoriasis is unclear, abnormal proliferation of keratino-
cytes and disruption of the immune system are central to 
its pathogenesis [8]. Therefore, exploring gene functions 
and underlying characteristics of immune infiltration in 
psoriasis is necessary.

Keratinocytes manifest abnormal proliferation and 
a marked inhibition of apoptosis [9]. The inhibition of 
apoptosis is related to imbalances in epidermal homeo-
stasis and results in psoriatic hyperplasia [9, 10]. Thus, 
apoptosis-related genes (APRs) also play a vital role in 
the pathogenesis. Although mine differential genes have 
been extensively investigated with the progress of bioin-
formatics analysis, studies on the function of APRs are 
limited [11, 12]. For instance, Gao et  al. revealed seven 
hub genes, namely, HERC6, ISG15, MX1, RSAD2, OAS2, 
OASL, and OAS3. Choudhary et  al. reported the top 
10 hub genes (CCNB1, CCNA2, CDK1, IL1B, CXCL8, 
MKI67, ESR1, UBE2C, STAT1, and STAT3) but they 
failed to distinguish between their properties.

Immune system imbalance plays an important role 
in the formation of psoriatic lesions [13]. Keratinocytes 
and innate immune cells, such as macrophages, plas-
macytoids, and dendritic cells, are activated to secrete 
inflammatory factors (TNF-α, IFN-γ, etc.), which activate 
myeloid dendritic cells and then migrate to lymph nodes, 
under the stimulation of external factors [13, 14]. These 
dendritic cells can in turn activate T lymphocytes. Acti-
vated T cells secrete a variety of cytokines that interact 
with keratinocytes, neutrophils, and macrophages to 
induce a local persistent inflammatory response, which 
finally leads to the formation of psoriatic lesions [15].

In this study, we screened Differentially Expressed 
Apoptosis-Related Genes (DEARGs) associated with 
psoriasis and explored functions of DEARGs through a 
comprehensive bioinformatics analysis.

Results
Data selection and DEG screening
We first illustrated the flowchart of current study (Fig. 1), 
and then collated data according to the GEO data plat-
form (Table 1). The comparison of psoriasis and control 
groups showed that the sample size is relatively bal-
anced, thereby indicating the basis of statistical analysis. 
We obtained 297 up-regulated and 339 down-regulated 
genes using R software after normalizing the gene expres-
sion matrix of GSE13355, as shown in the volcano dia-
gram in Fig.  2a. Additionally the top 10 genes with 
maximal significant differences were then annotated. The 
DEG heatmap of GSE13355 shows NN and PP represent 
control group and psoriasis group respectively (Fig. 2b). 
Similarly, 38 up-regulated and 3 down-regulated genes 
were obtained after normalizing GSE30999, as shown 
in the volcano diagram in Fig. 2c. The DEG heatmap of 

Fig. 1  Flowchart of current study. GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, 
Gene Set Enrichment Analysis; TF, Transcription Factor

Table 1  Data information summary

GEO accession Platforms Sample

GSE13355 GPL570 NN 64

PP 58

GSE30999 GPL570 NL 85

LS 85
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GSE30999 shows NL and LS represent control group and 
psoriasis group respectively (Fig. 2d).

Identification and functional analysis of DEARGs
The ARG list was downloaded from the GeneCards 
database, and then DEARGs were screened from DEGs 
of GSE13355 and GSE30999. The results showed that 
482 and 32 DEARGs existed in GSE13355 (Fig.  3a) 
and GSE30999 (Fig. 3b) respectively. GO (Table 2) and 
KEGG (Table  3) functional enrichment analyses were 
performed on DEARGs in the two datasets respectively. 

The results of GO showed that DEARGs in GSE13355 
were mainly related to leukocyte chemotaxis, cell 
chemotaxis, leukocyte chemotaxis, and signaling recep-
tor activator activity (Fig.  4a). Meanwhile, the results 
of KEGG demonstrated that DEARGs in GSE13355 
were mainly enriched in viral protein interaction with 
cytokine and cytokine receptor, cytokine − cytokine 
receptor interaction, and chemokine signaling pathway 
(Fig.  4b). Similarly, the GO enrichment of GSE30999 
showed that DEARGs was generally enriched in cell 
chemotaxis, receptor ligand activity, and signaling 
receptor activator activity (Fig. 4c). The KEGG enrich-
ment of GSE30999 demonstrated that DEARGs were 

Fig. 2  The differential analysis of GSE13355 and GSE30999. a Volcano plot of GSE13355 (Red, green and blue represent up-regulated, 
down-regulated and no differential genes, respectively). b Heatmap of GSE13355 (Blue indicates psoriasis group, and red indicates control group). 
c Volcano plot of GSE30999(Red, green and blue represent up-regulated, down-regulated and no differential genes, respectively). d Heatmap of 
GSE30999 (Blue indicates psoriasis group, and red indicates control group). NN, normal skin from controls; PP, involved skin from psoriatic patients; 
NL, non-lesional skin; LS, psoriasis lesions; NS, no significance
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mainly enriched in viral protein interaction with 
cytokine and cytokine receptor, rheumatoid arthritis, 
and IL − 17 signaling pathway (Figs. 4d and 5).

Gene set enrichment analysis (GSEA)
GSEA was conducted for the two datasets. “c2.cp.kegg.
v7.0.symbols.gmt” was selected as the reference gene 
set and FDR was set to < 0.25, with p < 0.05 indicat-
ing the significant enrichment pathway (Table  4). The 
GSEA results showed that GSE13355 mainly existed in 
up-regulated pathways of allograft_rejection, E2F_tar-
gets, and IL6_JAK_STAT3_signaling (Fig.  5a) and was 
also significantly enriched in down-regulated pathways 
of androgen_response, bile_acid_metabolism, epithe-
lial_mesenchymal_transition (Fig.  5b). In the same way, 
the GSEA results of GSE30999 indicated a high similarity 
with the results of GSE13355 (Fig. 5c and d).

Construction of protein–protein interaction (PPI) network
The Venn diagram in Fig. 6a showed that GSE13355 and 
GSE30999 presented 19 common DEARGs. STRING 
database was then utilized to conduct PPI analysis on 
the 19 DEARGs. Finally, 13 DEARGs demonstrated the 
following PPI relationships: CXCL8, CCL20, CXCL1, 
CXCL13, S100A12, GZMB, IL19, ATP12A, FOSL1, 
HYAL4, RHCG, SERPINB4, and TCN1 (Fig. 6b, Table 5, 
and supplementary data1). The number of interaction 

was visualized in each DEARG in Fig. 6b. Cytoscape was 
applied to visualize their network in Fig. 6c.

TF–target, miRNA–mRNA network analysis and drug 
sensitivity prediction
JUN, ATF4, CEBPD, NFKB1 and RELA were obtained 
as TFs, with corresponding targets of FOSL1, CHAC1, 
CCL20, CXCL8, CXCL1, and TNIP3 through the 
TRRUST database for TF prediction of 19 DEARGs. 
Their regulatory relationships were visualized as a regula-
tory network chart (Fig. 7a). The IC50 of 138 drugs was 
then predicted using the ridge regression model, and the 
three final classes of drugs with p < 0.05 were A.770041, 
GNF.2, and WO2009093972 (Fig. 7b). Finally, the miRNA 
of DEARGs was predicted using the TargetScan database. 
A total of 553 miRNAs were predicted to exhibit regula-
tory relationships with 18 DEARGs. A network visualiza-
tion graph was established according to the regulatory 
relationships (Fig. 7c).

Relationship of immune infiltration with psoriasis 
and control samples
Immune infiltration analysis was performed between 
psoriasis and control samples in GSE13355 and 
GSE30999 datasets on the basis of CIBERSORT algo-
rithm. An immune infiltration heatmap was illustrated 
for GSE13355. Only Macrophages.M2, Mast.cells.rest-
ing, T.cells.gamma.delta and other cells expressed in 

Fig. 3  Screening differentially expressed apoptosis related genes (DEARGs) in two datasets via venn diagrams. a Intersection analysis of 
differentially expressed genes (DEGs) and apoptosis-related genes (ARGs) in GSE13355. b Intersection analysis of differentially expressed genes 
(DEGs) and apoptosis-related genes (ARGs) in GSE30999. APR, Apoptosis-Related Gene; DEG, Differentially Expressed Gene
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Table 2  GO enrichment summary

GEO accession ONTOLOGY ID Description p.adjust

GSE13355 BP GO:0,071,621 granulocyte chemotaxis 6.96E-14

BP GO:0,030,595 leukocyte chemotaxis 1.07E-13

BP GO:0,030,593 neutrophil chemotaxis 1.08E-13

BP GO:0,097,530 granulocyte migration 1.08E-13

BP GO:1,990,266 neutrophil migration 4.03E-13

CC GO:0,034,774 secretory granule lumen 0.000156318

CC GO:0,060,205 cytoplasmic vesicle lumen 0.000156318

CC GO:0,031,983 vesicle lumen 0.000156318

CC GO:0,035,580 specific granule lumen 0.000744119

CC GO:1,904,724 tertiary granule lumen 0.010042724

MF GO:0,008,009 chemokine activity 3.80E-10

MF GO:0,042,379 chemokine receptor binding 2.32E-09

MF GO:0,005,125 cytokine activity 4.05E-09

MF GO:0,048,018 receptor ligand activity 8.87E-08

MF GO:0,030,546 signaling receptor activator activity 8.87E-08

GSE30999 BP GO:0,061,844 antimicrobial humoral immune response medi-
ated by antimicrobial peptide

0.000144534

BP GO:0,030,593 neutrophil chemotaxis 0.000391472

BP GO:1,990,266 neutrophil migration 0.000391472

BP GO:0,019,730 antimicrobial humoral response 0.000391472

BP GO:0,071,621 granulocyte chemotaxis 0.000391472

MF GO:0,008,009 chemokine activity 0.000206153

MF GO:0,042,379 chemokine receptor binding 0.000343157

MF GO:0,005,125 cytokine activity 0.001695148

MF GO:0,045,236 CXCR chemokine receptor binding 0.004049588

MF GO:0,048,018 receptor ligand activity 0.004049588

Table 3  KEGG enrichment summary

GEO accession ID Description p.adjust qvalue Count

GSE13355 hsa04061 Viral protein interaction with cytokine and cytokine receptor 1.13E-09 9.21E-10 10

hsa04060 Cytokine-cytokine receptor interaction 1.88E-06 1.53E-06 11

hsa04062 Chemokine signaling pathway 3.62E-06 2.94E-06 9

hsa04657 IL-17 signaling pathway 3.62E-06 2.94E-06 7

hsa05164 Influenza A 0.001870867 0.001518523 6

hsa04622 RIG-I-like receptor signaling pathway 0.003759724 0.003051647 4

hsa05160 Hepatitis C 0.008015124 0.006505618 5

hsa05146 Amoebiasis 0.011253432 0.009134047 4

hsa04620 Toll-like receptor signaling pathway 0.011253432 0.009134047 4

hsa05171 Coronavirus disease—COVID-19 0.029315198 0.0237942 5

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 0.029315198 0.0237942 3

GSE30999 hsa04061 Viral protein interaction with cytokine and cytokine receptor 0.000671079 0.000591225 5

hsa05323 Rheumatoid arthritis 0.003891546 0.003428479 4

hsa04657 IL-17 signaling pathway 0.003891546 0.003428479 4

hsa04060 Cytokine-cytokine receptor interaction 0.027838544 0.024525948 5

hsa04062 Chemokine signaling pathway 0.034931897 0.030775241 4

hsa05146 Amoebiasis 0.039637888 0.034921252 3

hsa04064 NF-kappa B signaling pathway 0.039637888 0.034921252 3
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most samples were retained in the heatmap. Among 
them, Macrophages.M2 and Mast.cells.resting pre-
sented high levels of infiltration in control groups, 
while T.cells.gamma.delta, Dendritic.cells.activated, 
T.cells.CD8, T.cells.CD4.naïve, and NK.cells.resting 
exhibited high levels of infiltration in psoriasis groups 
(Fig.  8a). Figure  8b showed the comparison of groups 
for 22 immune cells with significant differences. The 
heatmap and comparison of groups for 22 immune 
cells showed significant differences among Mast.cells.
resting, T.cells.gamma.delta, Dendritic.cells.activated, 
T.cells.CD8, T.cells.CD4.naive, and NK.cells.resting.

The immune infiltration heatmap for GSE30999 
showed significant differences among T.cells.follicu-
lar.helper, Dendritic.cells.activated, T.cells.CD8, Mac-
rophages.M2, Neutrophils, Dendritic.cells.resting, 
NK.cells.activated, Mast.cells.resting, T.cells.CD4.mem-
ory.resting, Monocytes, T.cells.CD4.naïve. B.cells.mem-
ory, and Plasma.cells (Fig.  8c). The combined results of 

the comparison between groups presented high levels of 
infiltration of B.cells.memory, T.cells.CD4.memory.rest-
ing, NK.cells.activated, and Dendritic.cells.resting in con-
trol groups as well as high levels of infiltration of T.cells.
follicular.helper, Dendritic.cells.activated, and Mast.cells.
resting in psoriasis groups (Fig. 8d).

Overall, Dendritic.cells.activated demonstrated high 
levels of immune infiltration and Mast.cells.resting 
exhibited low levels of immune infiltration in psoriasis 
groups.

Validation via RT‑qPCR
Expression levels of 13 key DEARGs were validated using 
RT-qPCR (n = 3). The results of RT-qPCR indicated 
that the transcription levels of CXCL8, CCL20, CXCL1, 
CXCL13, S100A12, GZMB, IL19, ATP12A, HYAL4, SER-
PINB4, and TCN1 were significantly up-regulated and 

Fig. 4  Functional analysis of DEARGs. a GO enrichment analysis of GSE13355. b KEGG pathway enrichment analysis of GSE13355. c GO enrichment 
analysis of GSE30999. d KEGG pathway enrichment analysis of GSE30999. (X horizontal axis represents the proportion of DEARGs enriched in GO 
team. The color of the dots indicates the adj.p value: the redder the color, the smaller the adj.p value; the bluer the color, the larger the adj.p value. 
The size of the dots implies the number of enriched genes). DEARGs, Differentially Expressed Apoptosis Related Genes; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes
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FOSL1 and RHCG were down-regulated in M5 groups 
(Fig. 9).

Discussion
An effective cure for psoriasis is still unavailable [4] and 
its pathogenesis remains poorly defined given that mul-
tiple factors come into play [16]. The reductive apoptosis 
of keratinocytes is a common phenomenon in psoriatic 
lesions [9, 17]. Many APRs are involved in the patho-
genesis of psoriasis [18]. Hence, exploring the molecular 
mechanism of APRs is necessary to achieve novel thera-
peutic targets. We identified and further explored the 
functions of 482 and 32 DEARGs from GSE13355 and 
GSE30999 respectively, to predict three novel targeted 
drugs. Meanwhile, characteristics of immune infiltration 
in psoriasis were comprehensively analyzed.

A total of 514 DEARGs were screened from the two 
datasets of GSE13355 and GSE30999. GO annotation 

and KEGG pathway analyses of genes were performed 
to investigate their further functions. The results of GO 
annotation showed that DEARGs were typically enriched 
in cell chemotaxis, receptor ligand activity, and signaling 
receptor activator activity in both datasets. The results of 
KEGG pathway indicated that the viral protein interac-
tion with cytokine and cytokine receptor was the pathway 
with maximum enrichment. These results are different 
from the findings of previous studies [11, 12, 19]. For 
example, Choudhary et al. reported that keratinocyte dif-
ferentiation and positive regulation of cytokine produc-
tion were the respective biological process and molecular 
function with maximum enrichment and the cytokines-
cytokine receptor was the pathways with maximum 
enrichment. GSEA analysis for GSE13355 and GSE30999 
presented that the high degree of consistency between 
the results of the two datasets. Thus, the consistency of 
GSEA results verified the validity of screened DEARGs.
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Thirteen key DEARGs with upregulation were derived 
in the PPI network, including CXCL8, CCL20, CXCL1, 
CXCL13, S100A12, GZMB, IL19, ATP12A, FOSL1, 
HYAL4, RHCG, SERPINB4, and TCN1. Eleven key 
DEARGs, namely, CXCL8, CCL20, CXCL1, CXCL13, 
S100A12, GZMB, IL19, ATP12A, HYAL4, SERPINB4, 
and TCN1, were confirmed via RT-qPCR. Among these 
genes, CXCL8, CCL20, CXCL1, CXCL13, and S100A12 
have been extensively investigated [19–21]. Meanwhile, 
studies on GZMB, IL19 and SERPINB4 are lacking. To 
the best of our knowledge, ATP12A, HYAL4 and TCN1 
in psoriasis remain unverified. Based on the literatures, 
ATP12A is the nongastric form of H + /K + -ATPase 
and plays an important role in respiratory diseases [22]. 
HYAL4 is a member of the hyaluronidases (HYAL) 

family, which is named as such due to their ability to 
degrade hyaluronan. HYAL4 is produced by mast cells 
and plays a particular role in maintaining α-granule 
homeostasis [23]. Transcobalamin (TCN1) is a vitamin 
B12-binding protein usually highly expressed in tumor 
tissues and linked to aggressive tumor behavior and 
poor prognosis [24].

Nineteen DEARGs were used to construct TF–tar-
get and miRNA–mRNA network. The action mecha-
nism of upstream transcription factors and downstream 
miRNA was easily mined when network relationships 
of 19 DEARGs were built. This complex network rela-
tionships also indicated numerous genes involved in the 
pathogenesis of psoriasis. Three novel targeted drugs, 
namely, A.770041, GNF.2, and WO2009093972, were 
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predicted using the ridge regression model. A.770041, a 
compound with selective inhibitor for Lck, can block T 
cell activation and IL-2 production [25]. Some studies 
have shown that A.770041 can function similar to cyclo-
sporin A to prevent acute transplant rejection [25, 26]. 

GNF-2, an allosteric inhibitor of Bcr-Abl, is a new anti-
cancer drug to treat resistant chronic myelogenous leu-
kemia [27]. At present, the novel drug WO2009093972 
still remains unverified. Therefore, A.770041, GNF.2, and 
WO2009093972 are possible targeted drugs for psoriasis 
that require further exploration.

Furthermore, characteristics of immune infiltra-
tion in psoriasis were analyzed. Various immunocytes 
involved in psoriasis form a complex network cen-
tered on T lymphocytes [15]. Compared with normal 
control groups, our results showed that high levels of 
immune infiltration of Dendritic.cells.activated and 
low levels of immune infiltration of Mast.cells.rest-
ing in psoriasis groups. Studies have indicated that 
dendritic cells are the driver of psoriasis that trigger a 
series of inflammatory responses [28]. Dendritic cells 
are the source of cytokines (TNF-α, IFN-γ, etc.) that 
play a crucial role in the pathogenesis of psoriasis 
[28, 29].

However, this study presents the following limi-
tations. First, some datasets such as GSE14905, 
GSE34248, GSE41745, and GSE40033, were not used 

Table 4  GSEA enrichment summary

GEO accession Description enrichmentScore p.adjust qvalues

GSE13355 HALLMARK_UV_RESPONSE_DN 0.68935443 2.32E-14 1.07E-14

HALLMARK_MYOGENESIS 0.550084315 4.60E-07 2.13E-07

HALLMARK_EPITHELIAL_MESEN-
CHYMAL_TRANSITION

0.525871045 5.78E-06 2.68E-06

HALLMARK_ANDROGEN_
RESPONSE

0.551362878 0.000681724 0.000315746

HALLMARK_BILE_ACID_METAB-
OLISM

0.524178209 0.000957271 0.000443368

HALLMARK_ESTROGEN_
RESPONSE_EARLY

0.445622304 0.002960129 0.001371007

HALLMARK_ADIPOGENESIS 0.4346647 0.004371523 0.002024705

HALLMARK_APICAL_JUNCTION 0.381580348 0.085395013 0.039551374

HALLMARK_HYPOXIA 0.375876996 0.091103722 0.042195408

GSE30999 HALLMARK_MYOGENESIS 0.587947 6.57E-07 4.29E-07

HALLMARK_UV_RESPONSE_DN 0.469064 0.018812 0.012277172

HALLMARK_ANDROGEN_
RESPONSE

0.435298 0.142857 0.093233083

HALLMARK_BILE_ACID_METAB-
OLISM

0.414859 0.161175 0.105187754

HALLMARK_KRAS_SIGNAL-
ING_DN

0.382145 0.131416 0.085766364

HALLMARK_ESTROGEN_
RESPONSE_EARLY

0.374304 0.181319 0.118334297

HALLMARK_APOPTOSIS -0.43498 0.181319 0.118334297

HALLMARK_P53_PATHWAY​ -0.43389 0.148644 0.097009525

HALLMARK_KRAS_SIGNAL-
ING_UP

-0.44073 0.131416 0.085766364

HALLMARK_GLYCOLYSIS -0.4613 0.064001 0.041769207

Table 5  The information of 13 DEARGs

Gene Symbol Count Change

CXCL8 8 Up

CCL20 5 Up

CXCL1 4 Up

CXCL13 4 Up

S100A12 3 Up

GZMB 2 Up

IL19 2 Up

ATP12A 1 Up

FOSL1 1 Up

HYAL4 1 Up

RHCG 1 Up

SERPINB4 1 Up

TCN1 1 Up
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for analysis due to different sample types or platforms. 
Second, the sample size in this study was insufficient. 
Future investigations can attempt to integrate multi-
ple databases to increase the sample size. Third, we 
lack relevant clinical studies and cannot combine clin-
ical information for analysis. Fourth, although experi-
ments with skin tissue samples were not performed in 
this study, future explorations should include this, to 
improve the reliability of the results. Therefore, fur-
ther studies with additional samples and experiments 
are required to illustrate the role of key DEARGs and 
underlying mechanism of psoriasis.

The results of our study may reveal some insights into 
underlying molecular mechanisms of psoriasis and pro-
vide novel targeted drugs.

Conclusions
This study explored functions of key APRs and 
analyzed underlying characteristics of immune 
infiltration of psoriasis through a comprehen-
sive bioinformatics analysis. We identified 13 key 
DEARGs associated with psoriasis via GEO datasets 
analysis. Moreover, dendritic cells play an important 
role in the initiation of psoriasis. Notably, A.770041, 
GNF.2, and WO2009093972 are possible novel 

Fig. 7  Relevant network construction and drug sensitivity prediction of DEARGs. a The TF–target network construction of DEARGs by TRRUST 
database (Green nodes are predicted TFs, red nodes are DEARGs that can be used as target genes). b Visualization of three classes of drugs with 
p < 0.05 (A.770041, GNF.2 and WO2009093972). c The miRNA–mRNA regulatory network construction of DEARGs by TargetScan database (Red 
nodes indicate DEARGs, blue nodes represent associated miRNAs, and green lines stand for the regulatory relationships between DEARGs and 
miRNAs). DEARGs, Differentially Expressed Apoptosis Related Genes
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Fig. 8  Analysis and visualization of immune infiltration. a Heatmap of immune infiltration with high expression in GSE13355. b Box line plot of 
immune infiltration with significant differences in GSE13355. c Heatmap of immune infiltration with high expression in GSE30999. d Box line plot of 
immune infiltration with significant differences in GSE30999. (Red represents psoriasis groups, blue represents control groups, *, p < 0.05; **, p < 0.01; 
***, p < 0.001). NN, normal skin from controls; PP, involved skin from psoriatic patients; NL, non-lesional skin; LS, psoriasis lesions

Fig. 9  The RT-qPCR results of 13 DEARGs. The transcription levels of CXCL8, CCL20, CXCL1, CXCL13, S100A12, GZMB, IL19, ATP12A, HYAL4, SERPINB4, 
and TCN1 were significantly up-regulated in M5 groups; however, the transcription levels of FOSL1 and RHCG were down-regulated in M5 groups. 
(Red represents M5 groups, blue represents normal control groups, *, p < 0.05; **, p < 0.01; ***, p < 0.001). DEARGs, Differentially Expressed Apoptosis 
Related Genes
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targeted drugs for psoriasis in the future. However, 
additional experiments are needed to support fur-
ther our findings.

Methods
Data download and preprocessing
Original data of GSE13355 [30] and GSE30999 [31] 
were downloaded from GEO (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/) using the GeoQuery package [32]. All 
samples in the two datasets were from homo sapiens 
based on GPL570 ([HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array). The GSE13355 
dataset contained 58 lesion skin samples from psoriatic 
patients and 64 normal skin samples from healthy con-
trols, while the GSE30999 dataset included 85 paired 
lesion and non-lesion skin samples from psoriatic 
patients, all of which were included in this study. Orig-
inal data of GSE13355 and GSE30999 were read using 
the affy package [33] to obtain their gene expression 
matrices. Ethical approval is not necessary because this 
study does not contain any studies with human partici-
pants or animals performed by any of the authors.

Screening and functional analysis of differentially 
expressed apoptosis‑related genes (DEARGs)
The limma package [34] was used to screen differ-
entially expressed genes (DEGs) of GSE13355 and 
GSE30999. The ggplot2 and pheatmap packages were 
utilized to illustrate a volcano plot and heatmap of 
DEGs with a cut-off value setting of adj.p value < 0.05 
and |log2FC|> 1. The APR list was downloaded from 
GeneCards database (http://​www.​genec​ards.​org/) 
[35], and DEARGs were screened from DEGs. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses of 
DEARGs were performed using the clusterProfiler 
package [36]. The gene set enrichment analysis (GSEA) 
of gene expression matrix was also conducted using the 
clusterProfiler package, and “c2.cp.kegg.v7.0.symbols.
gmt” was selected as the reference gene set, while a 
false discovery rate (FDR) < 0.25 and p < 0.05 were con-
sidered statistically significantly.

Protein–protein interaction network construction
The VennDiagram package [37] was applied to illus-
trate the Venn diagram of DEARGs in GSE13355 and 
GSE30999. The STRING (https://​string-​db.​org/) database 
[38] was used to construct the PPI network for common 
DEARGs in the two datasets, and the NetworkAnalyzer 
in Cytoscape [39] was utilized to analyze related attrib-
utes of nodes in the network.

TF–target, miRNA–mRNA network analysis, and drug 
sensitivity prediction
DEARG-related transcription factors (TFs) were pre-
dicted using TRRUST database (https://​www.​grnpe​dia.​
org/​trrust/) [40], and the TF–target network was visual-
ized via Cytoscape software. A ridge regression model 
was subsequently used to predict the half-maximal inhib-
itory concentration (IC50) of 138 drugs through pRRo-
phetic package [41]. Finally, DEARG-associated miRNAs 
were predicted and a miRNA–mRNA regulatory network 
was built using TargetScan database(http://​www.​targe​
tscan.​org/​vert_​71/) [42].

Analysis of immune infiltration
CIBERSORT algorithm [43] is based on linear support 
vector regression, deconvolves the transcriptome expres-
sion matrix, and thereby estimates the composition and 
abundance of immunocytes in mixed cells. We uploaded 
the gene expression matrix to CIBERSORT and filtered 
out the samples with p < 0.05 to obtain the immune infil-
tration matrix. A heat map was established using the 
pheatmap package to show the distribution of 22 immu-
nocytes in each sample. Immune infiltration between dif-
ferent subgroups in the two datasets was illustrated using 
the ggpubr package and visualized at p < 0.05.

Validation with RT‑qPCR
Cultured HaCaT cells were treated with 10  ng/ml of M5 
(IL-22, TNF-a, IL-17A, IL-1a, and Oncostatin M) (Pepro-
Tech) for 48 h. Untreated and treated cells were regarded 
as normal control (NC) groups and psoriasis cell model 
(M5) groups respectively. Total RNA was extracted using 
TRIpure total RNA extraction reagent (#EP013, ELK Bio-
technology, China) and reverse transcribed with EntiLink™ 
1st Strand Cdna Synthesis Kit (#EQ003, ELK Biotechnol-
ogy, China). The RNA expression was detected according 
to the manual of the StepOne™ Real-Time PCR System 
(Life technologies) using EnTurbo™ SYBR Green PCR 
SuperMix (#EQ001, ELK Biotechnology, China). Primer 
sequences were presented in Supplementary Table 1.

Statistical analysis
R software (version 4.0.0, http://r-​proje​ct.​org/) was used 
to analyzed the data. T-testing was applied to compare 
the expression levels of 13 key DEARGs between nor-
mal control (NC) groups and psoriasis cell model (M5) 
groups. The ggplot2 package was utilized to perform the 
T-testing (*, p < 0.05; **, p < 0.01; ***, and p < 0.001).

Abbreviations
DEARGs: Differentially Expressed Apoptosis Related Genes; GO: Gene Ontol-
ogy; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene Set 
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Enrichment Analysis; PPI: Protein–Protein Interaction; TF: Transcription Factor; 
RT-qPCR: Real-time quantitative PCR; APRs: Apoptosis-Related Genes; GEO: 
Gene Expression Omnibus; DEGs: Differentially Expressed Genes; NN: Normal 
skin from controls; PP: Involved skin from psoriatic patients; NL: Non-lesional 
skin; LS: Psoriasis lesions; BP: Biological progress; CC: Cellular component; MF: 
Molecular Function.
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