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The assessment of resting-state functional connectivity has become an important tool in studying brain
disease mechanisms. Here we use magnetoencephalography to longitudinally evaluate functional connectiv-
ity changes in relation to clinical measures of disease progression in Parkinson's disease (PD).
Using a source-space based approach with detailed anatomical mapping, functional connectivity was
assessed for temporal, prefrontal and high order sensory association areas known to show neuropathological
changes in early clinical disease stages.
At baseline, early stage, untreated PD patients (n = 12) had lower parahippocampal and temporal delta band
connectivity and higher temporal alpha1 band connectivity compared to controls. Longitudinal analyses over
a 4-year period in a larger patient group (n = 43) revealed decreases in alpha1 and alpha2 band connectivity
for multiple seed regions that were associated with motor or cognitive deterioration.
In the earliest clinical stages of PD, delta and alpha1 band resting-state functional connectivity is altered in
temporal cortical regions. With disease progression, a reversal of the initial changes in alpha1 and additional
decreases in alpha2 band connectivity evolving in a more widespread cortical pattern. These changes in
functional connectivity appear to reflect clinically relevant phenomena and therefore hold promise as a
marker of disease progression, with potential predictive value for clinical outcome.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Parkinson's disease (PD) is characterized by neuropathological
changes that extend beyond the nigrostriatal system and involve
cortical regions in a progressive manner from early disease stages
onward (Braak et al., 2003; Lim et al., 2009). Clinically, the phenotype
of PD is heterogeneous and can be classified into distinct subtypes
that have a different progression of both motor and non-motor
symptoms over time (Eggers et al., 2012; Foltynie et al., 2002; van
Rooden et al., 2011). A better understanding of the pathophysiologi-
cal mechanisms underlying these symptoms is essential both for
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prognostic purposes and the development of targeted treatment
strategies.

Coordinated and integrated activity of different brain regions is
required for a variety of cognitive and motor functions (Bullmore
and Sporns, 2012; Schnitzler and Gross, 2005; Varela et al., 2001).
The synchronization of activity between distributed brain regions is
assumed to reflect functional interactions between brain regions
and is referred to as functional connectivity (Aertsen et al., 1989;
Friston, 2001). The assessment of functional connectivity has become
an important tool in the study of pathophysiological mechanisms in a
variety of brain disorders such as Alzheimer's disease (AD), epilepsy
and brain tumors (Stam and van Straaten, 2012; Uhlhaas and
Singer, 2006).

In PD, functional connectivity has been studied by means of
electro- (EEG) and magnetoencephalography (MEG) in patients
with advanced as well as early-stage disease. Excessive resting-state
cortico-cortical coupling characterizes both early-stage and advanced-
stage non-demented patients (Silberstein et al., 2005; Stoffers et al.,
2008a). In contrast, Parkinson's disease dementia (PDD) is associated
with decreases in functional connectivity (Bosboom et al., 2009;
Ponsen et al., 2013). The results of these cross-sectional studies suggest
served.
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that changes in functional connectivity evolve over the course of the
disease in relation to clinical (both motor and non-motor) symptom-
atology. However, this has not yet been confirmed in a longitudinal
study.

An important limitation in interpreting the results of most previous
neurophysiological studies lies in the fact that functional connectivity
was calculated at the sensor-level. Consequently, the spatial distribu-
tion of the connectivity patterns has to be interpreted with care, as
volume conduction and field spread may hinder correct relation to an-
atomical substrates. To overcome these problems, we developed a
new methodological approach using an atlas-based source space
in combination with beamforming and a functional connectivity
estimator, the Phase Lag Index (PLI) that is insensitive to the effects of
field spread and volume conduction (Hillebrand et al., 2012). This
allows for improved anatomical interpretability of MEG functional
connectivity data from distinct cortical regions as well as a comparison
with results obtained fromother imagingmodalities, notably functional
magnetic resonance imaging (fMRI).

In the present study we used the newly developed source-space
method to longitudinally investigate the resting-state functional
connectivity patterns of eight cortical seed regions including
temporal, prefrontal and high order sensory association areas. The
selection of these seed regions was based on their progressive
neuropathological involvement in the early clinical stages of PD
(Alafuzoff et al., 2009; Braak and Del Tredici, 2009; Braak et al.,
2003) and we hypothesized that these regions would display changes
in overall functional connectivity with the rest of the brain over time
that would be related to motor and/or cognitive measures of disease
progression.

2. Materials and methods

2.1. Participants

Participants were selected from a longitudinal study cohort in
which a total of 70 patients (disease duration 0–13 years, including
18 early stage drug-naïve (de novo) patients) with idiopathic PD
and 21 healthy controls (age-matched to the de novo patients)
were included at baseline (Stoffers et al., 2007). After an interval of
4.3 ± 0.8 (mean ± standard deviation) years, 59 patients and 16
controls completed follow-up measurements. Three patients had
passed away and 13 participants (8 patients and 5 controls) were
lost to follow-up. Ten PD patients and a single control had relatively
severe artifacts during MEG registration and were therefore excluded
from further analysis. Six patients had no MRI performed at the
follow-up evaluation, and a single control had an MRI scan with
extensive white matter lesions. The latter subjects were also excluded
from the current source-space based analysis, leaving baseline and
follow-up measurements in 43 (including 12 initially de novo) PD
patients and 14 controls for further analyses.

All participants gave written informed consent to the research
protocol, which was approved by the medical ethical committee of
the VU University Medical Center. Ethics review criteria conformed
to the Helsinki declaration.

2.2. Participant characteristics

Disease duration was calculated on the basis of the patients'
subjective estimate of the time of occurrence of the first motor
symptoms. Unified Parkinson's Disease Rating Scale motor ratings
(UPDRS-III) (Fahn and Elthon, 1987) were obtained in the “ON”
medication state by a trained physician. Global cognitive function
was assessed using the Cambridge Cognitive Examination (CAMCOG)
scale (Roth et al., 1986). The presence of dementia was evaluated
according to the clinical criteria recommended by the Movement
Disorder Society Task Force (Dubois et al., 2007). Education level
was determined using the International Standard Classification of
Education (ISCED) (UNESCO, 1997). The total dose of dopaminomimetics
was converted to a so-called levodopa equivalent daily doses (LEDD)
as described previously (Olde Dubbelink et al., 2013). Levodopa was
always used in combination with a peripheral decarboxylase
inhibitor. At the time of the follow-up evaluation, two patients
were using rivastigmine.

2.3. Specific neuropsychological evaluation

Specific cognitive, mainly frontal and temporal, functions were
assessed using a set of neuropsychological tasks. Three tasks were
taken from the Cambridge Neuropsychological Test Automated
Battery (CANTAB), a computerized test battery (CANTAB Eclipse 2.0,
Cambridge Cognition, Cambridge, UK). Tasks included were spatial
span (SSP; outcome measure: spatial span length, reflecting frontal
cognitive function), spatial working memory (SWM; outcome
measures: total errors and strategy, reflecting frontal cognitive
function), and pattern recognition memory (PRM; outcome measure:
correct responses, reflecting temporal cognitive function). Addition-
ally, the Vienna perseveration task (VPT) was administered (Vienna
Test System, Dr. G. Shuhfried GmbH, Mödling, Austria), measuring
the amount of perseveration in the generation of random motor
behavior (reflecting frontal cognitive function). Verbal fluency
(reflecting temporal cognitive function) was assessed using the
1 minute semantic fluency test (animals), which is part of the
CAMCOG examination.

2.4. Data acquisition

MEG data were recorded in an eyes-closed resting-state condition
for 5 min with a sample rate of 312.5 (baseline) or 625 (follow-up)
Hz, while subjects were in the “ON” medication state, as described
previously (Olde Dubbelink et al., 2013). Structural T1-weighted MR
imaging was performed in all subjects (baseline: 1.0 T, Impact,
Siemens, Erlangen, Germany; follow-up: 3.0 T, Signa, GE healthcare,
Waukesha, USA). Vitamin E capsules were placed at the same
anatomical landmarks where head position coils had been placed
during MEG-registration.

2.5. Data preprocessing

Follow-upMEG-datawere downsampled to 312.5 Hz. Subsequently,
both baseline and follow-up datasets were split up into epochs of 4096
samples (13.11 s). Channels and epochs containing artifacts were
discarded after visual inspection (KOD). On average 2.4 (range: 2–7)
channels and 3.1 (range: 0–13) epochs were discarded. An atlas-based
beamformer approach (Hillebrand et al., 2012) was used to project
MEG sensor signals to an anatomical framework consisting of 78 cortical
regions identified by means of automated anatomical labeling (AAL)
(Gong et al., 2009; Tzourio-Mazoyer et al., 2002) (Inline Supplementary
Table S1). For this purpose, MRI and MEG data were co-registered for
each subject through identification of the same anatomical landmarks
(left and right pre-auricular points and nasion). Only data with an
estimated co-registration error b 1.0 cm were accepted for further
analysis. MRI-data was then spatially normalized to a template MRI
using the SEG toolbox in SPM8 (Ashburner and Friston, 2005;
Weiskopf et al., 2011), after which anatomical labels were applied.

Time-series of neuronal activation were estimated for 6 frequency
bands (delta (0.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2
(10–13 Hz), beta (13–30 Hz) and gamma (30–48 Hz)), using an
average time-window of 236 (range 105–380) seconds as input for
the beamformer computations. This resulted in a total of 6 sets (one
for each frequency band) of 78 time-series (one for each AAL region).
For each subject, five artifact free epochs per frequency band were
selected for further analysis (KOD).



Fig. 1. Seed regions overlaid on a template brain. Left lateral, left medial and dorsal views are shown. PH, parahippocampal; TP, temporal pole; IT, inferior temporal; OF,
orbitofrontal; MT, middle temporal; AC, anterior cingulate; PC, precuneus; MF, middle frontal.
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2.6. Functional connectivity analysis

For the current analysis we defined 8 seed regions including
temporal, prefrontal and high order sensory association areas
known to show neuropathological changes in mild to moderate
clinical disease stages in PD (i.e. Braak stages 4, 5) (Alafuzoff et al.,
2009; Braak and Del Tredici, 2009; Braak et al., 2003): parahippocampal,
inferior and middle temporal, temporal pole, orbitofrontal, precuneus,
anterior cingulate and middle frontal regions (Fig. 1). A seed region
consisted of the bilateral homologous AAL regions, and for the temporal
pole and orbitofrontal regions of multiple bilateral AAL regions (Inline
Supplementary Table S1). Functional connectivity was computed
between each seed region and all other AAL regions using the PLI (Stam
et al., 2007). This measure (range between 0 and 1) reflects true interac-
tions between two oscillatory signals through quantification of the
(non-zero lag) phase coupling, thereby discarding the effects of volume
conduction and field spread. Functional connectivity analyses were
performed with BrainWave software (CS, version 0.9.58, available form
http://home.kpn.nl/stam7883/brainwave.html). PLI values for AAL
regions were subsequently averaged per seed region. This resulted in a
single PLI value per seed region per frequency band, reflecting mean
connectivity of that regionwith the rest of the brain. Results offive epochs
were averaged per subject.

Inline Supplementary Table S1 can be found online at http://dx.
doi.org/10.1016/j.nicl.2013.04.003.
2.7. Statistical analysis

2.7.1. Participant characteristics
Baseline differences between de novo PD patients (n = 12) and

controls (n = 14) regarding sex distribution, age and education
level were analyzed by means of chi-square and independent sample
t-tests. Longitudinal changes in cognitive test performance in the full
Table 1
Participant characteristics.

Baseline analysis

CTRL (n = 14) de novo PD (n =

Sex (M/F) 10/4 8/4
Age (years) 60.0 ± 8.55 58.0 ± 6.95
ISCED (0/1/2/3/4/5/6) 0/0/1/3/1/8/1 0/0/2/2/0/8/0
Disease duration (years) n.a. 0.92 ± 0.52
UPDRS-III 0.71 ± 1.59 14.9 ± 1.27
LEDD total dose n.a. n.a.
CAMCOG 99.2 ± 2.79 97.1 ± 4.94

Values are expressed asmean ± standard deviation unless otherwise indicated. Please note th
M/F, male/female; ISCED, International Standard Classification of Education (0 no educatio
post-secondary non-tertiary education, 5 lower tertiary education, 6 upper tertiary educatio
Equivalent Daily Dosis; CAMCOG, Cambridge cognitive examination; n.a. non-applicable.
group of PD patients (n = 43) were analyzed with paired-sample
t-tests.

2.7.2. Functional connectivity in early stage, untreated disease
To study functional connectivity in early-stage untreated disease,

baseline PLI was assessed in de novo PD patients (n = 12) compared
to age-matched controls (n = 14) by means of a single General
Linear Model (GLM) analysis per seed region and per frequency
band. PLI values were transformed with a natural logarithmic
function to obtain a Gaussian distribution. Sex was added as a
covariate.

2.7.3. Longitudinal changes in functional connectivity
Longitudinal changes in functional connectivity were analyzed

within the full group of PD patients (n = 43) and in the control
group (n = 14) by means of a single GLM analysis for repeated
measures per seed region and frequency band with time. Sex,
baseline age and mean difference in LEDD were added as covariates.

2.7.4. Relationship between functional connectivity and clinical measures
of disease progression

Within the group of PD patients (n = 43) the relationship
between the longitudinal course of functional connectivity and
clinical measures of motor and cognitive function was investigated
by means of Generalized Estimated Equations (GEE) with exchange-
able working correlation matrix (Zeger et al., 1988) using either
UPDRS-III (parameter of motor disease severity); CAMCOG (global
cognitive function); PRM correct responses or semantic fluency
(temporal cognitive function); SSP span length, SWM between errors,
SWM strategy or VPT redundancy (frontal cognitive function) as
dependent, and mean PLI per seed region as independent variable.
When appropriate, dependent variables were transformed in order
to comply with assumptions of normality. Sex, age and LEDD were
Longitudinal analysis

12) PD baseline (n = 43) PD follow-up (n = 43)

28/15 28/15
61.5 ± 6.45 65.8 ± 6.53
0/1/14/13/1/13/1 0/1/14/13/1/13/1
5.19 ± 3.63 9.56 ± 4.13
14.1 ± 5.93 27.1 ± 9.32
352 ± 416 807 ± 506
95.9 ± 4.51 93.1 ± 8.28

at the de novo PD group (n = 12) is a subgroup of the full PD group at baseline (n = 43).
n, 1 primary education, 2 lower secondary education, 3 upper secondary education, 4
n); UPDRS-III, Unified Parkinson's Disease Rating Scale motor ratings; LEDD, Levodopa

http://home.kpn.nl/stam7883/brainwave.html
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Table 2
Cognitive performance of PD patients (n = 43) over time.

Baseline Follow-up p-Value

Global cognitive function
CAMCOG 95.9 ± 4.51 93.1 ± 8.28 .008

Specific
neuropsychological evaluation
PRM correct responses 21.6 ± 1.96 20.8 ± 2.73 .034
Semantic fluency 24.2 ± 6.09 20.1 ± 6.18 b .001
SSP span length 5.41 ± 0.92 4.71 ± 1.03 . 001
SWM between errors 32.6 ± 19.3 40.4 ± 23.7 .011
SWM strategy 33.5 ± 5.50 33.3 ± 6.23 .84
VPT redundancy 23.9 ± 8.49 24.8 ± 10.8 .38

All values are expressed as mean ± standard deviation.
CAMCOG, Cambridge Cognitive Examination; PRM, Pattern Recognition Memory; SSP,
Spatial Span; SWM, Spatial Working Memory; VPT, Vienna Perseveration Test.
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added as covariates in all analyses, as was education level (ISCED,
dichotomized) in all analyses involving cognitive measures.

All analyses were performed using the IBM SPSS Statistics 20.0
software package (IBM Corporation, New York, USA). A significance
level of .05 (two-tailed) was applied, with false discovery rate (FDR)
control for the number of seed regions (GLM and GEE analyses) and
the number of outcome measures within a cognitive domain (GEE
analyses) to reduce the likelihood of type-I statistical errors.

3. Results

3.1. Participant characteristics

Participant characteristics are summarized in Table 1. There were
no significant differences in age or sex distribution or education level
between de novo patients and controls at baseline. None of the
patients fulfilled clinical diagnostic criteria for dementia at baseline.
Longitudinal assessment of cognitive function revealed decreases in
cognitive test performance in PD patients over time (Table 2).
Moreover, four patients fulfilled clinical diagnostic criteria for PDD
at the time of follow-up evaluation.

3.2. Functional connectivity in early stage, untreated disease

In de novo PD patients, delta band PLI for parahippocampal
[F(1,23) = 6.45, p = .018], inferior temporal [F(1,23) = 12.3,
p = .002], temporal polar [F(1,23) = 10.3, p = .004] and middle
temporal [F(1,23) = 10.5, p = .004] regions was lower compared
to controls. For the middle temporal cortex, alpha1 band PLI
was higher in PD patients compared to controls [F(1,23) = 7.91,
p = .010] (Table 3). There were no significant PLI differences
between groups for middle frontal, precuneus, anterior cingulate
or orbitofrontal region.

3.3. Longitudinal changes in functional connectivity

Within the full group of PD patients (n = 43) alpha1 band PLI for
the middle temporal cortex decreased over time [F(1,39) = 10.8,
p = .002]. In the alpha2 band, decreases in PLI were present for
several seed regions: parahippocampal [F(1,39) = 4.17, p = .048],
inferior temporal [F(1,39) = 4.94, p = .032], middle temporal
[F(1,39) = 10.2, p = .003] as well as precuneus [F(1,39) = 8.25,
p = .007] regions (Table 3).

Controls did not show significant changes in PLI over time for any
of the seed regions in any of the frequency bands.

To assess the possible confounding effect of dopaminergic medication
more thoroughly, we studied the longitudinal relation of alpha1 and
alpha2 band functional connectivity (dependent variable) with LEDD
(independent variable) in more detail. These analyses demonstrated no
association between functional connectivity and LEDD for any of the
seed regions in these frequency bands (Inline Supplementary Table S2).

Inline Supplementary Table S2 can be found online at http://dx.
doi.org/10.1016/j.nicl.2013.04.003.

3.4. Relationship between functional connectivity and clinical measures
of disease progression

3.4.1. Motor function
Within the full group of PD patients (n = 43) GEE analysis

revealed a longitudinal association between PLI values and
UPDRS-III scores in the delta, alpha1 and alpha2 frequency bands.
Worsening motor function (i.e. higher UPDRS-III scores) was
associated with higher delta PLI values for orbitofrontal (β = .214;
p = .006) and anterior cingulate (β = .184; p = .005) seed regions
(Fig. 2A). In the alpha1 and alpha2 frequency bands, higher
UPDRS-III scores were associated with lower PLI values for
parahippocampal (alpha1 β = − .364; p b .001; alpha2 β = − .221;
p = .015), inferior temporal (alpha2 β = − .348; p b .001), temporal
pole (alpha1 β = − .345; p b .001; alpha2 β = − .294; p = .019),
orbitofrontal (alpha1 β = − .244; p = .009; alpha2 β = − .291;
p = .009), middle temporal (alpha2 β = − .246; p = .017) and
precuneus (alpha2 β = − .307; p = .003) seed regions (Fig. 2B,C).

3.4.2. Cognitive function

3.4.2.1. Global cognitive function. A longitudinal association between
PLI and CAMCOG scores was found for multiple seed regions in
the alpha1 frequency band: a worsening in test performance was
associated with PLI decreases for parahippocampal (β = .237;
p = .007), inferior temporal (β = .197; p = .022), temporal pole
(β = .286; p b .001), orbitofrontal (β = .205; p = .009), anterior
cingulate (β = .210; p = .003) and precuneus (β = .162; p = .017)
seed regions (Fig. 2D).

As alpha1 PLI for parahippocampal, temporal pole and
orbitofrontal regions was associated with both motor (UPDRS-III)
and global cognitive (CAMCOG) function, we assessed relative
importance by performing supplementary analyses in which we
included CAMCOG and UPDRS-III scores, respectively, as a covariate.
Worsening CAMCOG test performance remained associated with
parahippocampal (β = .147; p = .027), temporal pole (β = .164;
p = .028) and orbitofrontal (CAMCOG β = .146; p = .024) PLI
when controlling for UPDRS-III scores. Likewise, UPDRS-III also
remained associated with parahippocampal (β = − .307; p b .001)
and temporal pole PLI (β = − .262; p = .011) when controlling for
CAMCOG performance. The relation between UPDRS-III and
orbitofrontal PLI was attenuated (β = − .174; p = .073) when
controlling for CAMCOG performance.

3.4.2.2. Specific neuropsychological functions. Impaired semantic fluency
was associated with higher delta band PLI of the precuneus seed region
(β = − .262; p = .002) as well as with higher beta band PLI of the
temporal pole seed region (β = − .338; p b .001).

For the SWM task, impaired strategy use was associated with
higher delta band PLI of the temporal pole (β = − .213; p = .002)
and middle frontal (β = − .227; p b .001) seed regions. No longitudi-
nal association was found between performance on the PRM-, SSP- or
VPT-task and PLI.

4. Discussion

The present study demonstrates decreased delta band and
increased alpha1 band functional connectivity of temporal seed
regions with the rest of the brain in the earliest clinical stages of PD.
Longitudinal assessment over a 4-year period revealed a reversal of
the initial changes in alpha1 band functional connectivity and

http://dx.doi.org/10.1016/j.nicl.2013.04.003
http://dx.doi.org/10.1016/j.nicl.2013.04.003


Table 3
Phase Lag Index measures at baseline and follow-up evaluation. Only frequency bands that yielded significant results in GLM analyses are displayed.

Frequency band Seed region Baseline Longitudinal

controls (n = 14) PD de novo (n = 12) PD baseline (n = 43) PD follow-up (n = 43)

Delta
(0.5–4Hz)

Parahippocampal 0.116 (0.108–0.123) 0.107 (0.103–0.113) 0.109 (0.105–0.119) 0.110 (0.102–0.118)
Inferior temporal 0.122 (0.109–0.131) 0.110 (0.104–0.113) 0.112 (0.106–0.116) 0.113 (0.105–0.119)
Temporal pole 0.116 (0.107–0.127) 0.105 (0.101–0.109) 0.108 (0.104–0.115) 0.112 (0.107–0.116)
Orbitofrontal 0.114 (0.106–0.124) 0.107 (0.101–0.115) 0.111 (0.106–0.117) 0.113 (0.104–0.118)
Middle temporal 0.114 (0.107–0.125) 0.106 (0.104–0.109) 0.106 (0.102–0.114) 0.109 (0.104–0.115)
Anterior cingulate 0.114 (0.105–0.122) 0.105 (0.099–0.116) 0.107 (0.103–0.115) 0.107 (0.103–0.115)
Precuneus 0.108 (0.102–0.121) 0.105 (0.099–0.118) 0.108 (0.101–0.112) 0.108 (0.101–0.119)
Middle frontal 0.108 (0.105–0.115) 0.101 (0.095–0.111) 0.107 (0.102–0.113) 0.108 (0.104–0.112)

Alpha1
(8–10Hz)

Parahippocampal 0.140 (0.129–0.149) 0.148 (0.138–0.157) 0.147 (0.140–0.156) 0.141 (0.137–0.150)
Inferior temporal 0.142 (0.124–0.159) 0.110 (0.104–0.113) 0.146 (0.137–0.156) 0.142 (0.136–0.150)
Temporal pole 0.136 (0.129–0.151) 0.142 (0.136–0.146) 0.142 (0.134–0.157) 0.140 (0.131–0.145)
Orbitofrontal 0.134 (0.129–0.140) 0.139 (0.132–0.149) 0.139 (0.132–0.149) 0.138 (0.130–0.146)
Middle temporal 0.138 (0.134–0.142) 0.150 (0.140–0.166) 0.151 (0.139–0.166) 0.143 (0.134–0.152)
Anterior cingulate 0.138 (0.126–0.144) 0.134 (0.129–0.137) 0.140 (0.133–0.153) 0.138 (0.129–0.144)
Precuneus 0.140 (0.132–0.160) 0.148 (0.136–0.167) 0.147 (0.138–0.162) 0.152 (0.133–0.156)
Middle frontal 0.131 (0.127–0.148) 0.137 (0.134–0.144) 0.140 (0.132–0.148) 0.138 (0.132–0.156)

Alpha2
(10–13Hz)

Parahippocampal 0.109 (0.102–0.117) 0.109 (0.105–0.114) 0.112 (0.107–0.118) 0.109 (0.103–0.116)
Inferior temporal 0.115 (0.101–0.117) 0.117 (0.102–0.124) 0.113 (0.105–0.120) 0.108 (0.104–0.113)
Temporal pole 0.109 (0.105–0.116) 0.113 (0.110–0.119) 0.111 (0.107–0.116) 0.109 (0.105–0.114)
Orbitofrontal 0.111 (0.105–0.115) 0.109 (0.105–0.113) 0.110 (0.106–0.113) 0.108 (0.104–0.112)
Middle temporal 0.118 (0.112–0.120) 0.118 (0.114–0.123) 0.115 (0.109–0.122) 0.110 (0.106–0.118)
Anterior cingulate 0.113 (0.102–0.121) 0.112 (0.107–0.119) 0.111 (0.106–0.117) 0.108 (0.103–0.114)
Precuneus 0.118 (0.112–0.131) 0.117 (0.113–0.125) 0.117 (0.111–0.129) 0.111 (0.105–0.116)
Middle frontal 0.111 (0.107–0.117) 0.108(0.105–0.115) 0.110 (0.105–0.115) 0.109 (0.104–0.114)

All values are expressed as median (interquartile range). Significant effects are indicated in bold (p b 0.05; FDR adjusted). Please note that the de novo PD group (n = 12) is a sub-
group of the full PD group at baseline (n = 43).
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additional decreases in alpha2 band functional connectivity evolving
in a more widespread cortical pattern that also included the
precuneus. Moreover, the longitudinal changes in functional connec-
tivity were closely associated with clinical (both motor and cognitive)
deterioration.

In a previous cross-sectional analysis involving the same patient
group at baseline, we studied functional connectivity in signal-space
and reported increases in alpha1 functional connectivity in
early-stage disease (Stoffers et al., 2008a). The present source-space
analysis enabled us to study the functional connectivity of specific
anatomical brain areas in more detail. The fact that we found
connectivity disturbances for temporal brain regions in the early
motor stage of PD is in line with neuropathological observations
that Lewy body pathology invades the cortex through these same re-
gions in Braak stage 4 (Alafuzoff et al., 2009; Braak and Del Tredici,
2009; Braak et al., 2003). Furthermore, our findings imply that local
cortical pathology within a brain region appears to affect the func-
tional interactions of that region with the rest of the brain. The specif-
ic involvement of resting-state delta band synchrony has not been
reported in early-stage PD before. Delta connectivity is related to
memory performance in healthy subjects and disruptions have been
reported in AD in relation to reduced cognitive performance. The
observation that delta and alpha1 connectivity changes evolve simul-
taneously from the middle temporal cortex suggests the involvement
of different or partly neuronal subpopulations within this seed region
or may be the consequence of a frequency shift within a single
population.

Our longitudinal GLM analysis revealed a reversal of the initial
changes in alpha1 band functional connectivity and additional
decreases in alpha2 band functional connectivity for temporal and
precuneus seed regions over time. This suggests some degree of
remapping of cortical connectivity with disease progression. In line
with studies on mild cognitive impairment preceding AD, excessive
synchronization at early disease stages might serve as a compensato-
ry mechanism to maintain adequate information processing (Liang
et al., 2011). Alternatively, the excessive synchronization may be
explained by pathological disinhibition (de Haan et al., 2012). We
should note that a potential effect of dopaminergic treatment cannot
be ruled out, as in addition to motor disease progression, an increase
in dopaminergic medication levels in individual patients over time is
inevitable. Although we used LEDD as a covariate in all of our
longitudinal analyses and studied the direct longitudinal relation
between functional connectivity and LEDD in more detail, a modula-
tory role of dopaminomimetic treatment could still be present in
addition or even opposed to the pathophysiological effects of disease
progression in PD. This notion is supported by both electrophysiolog-
ical and fMRI studies that have shown effects of an acute dopaminer-
gic challenge on measures of functional connectivity (Esposito et al.,
2013; Helmich et al., 2010; Silberstein et al., 2005; Stoffers et al.,
2008b).

Another finding of our longitudinal analysis was an association
between functional connectivity disturbances and clinical measures
of disease progression over time for delta, alpha1, and alpha2
frequency bands. Worsening motor performance correlated with
lower alpha1 and alpha2 functional connectivity, and with higher
delta connectivity in a widespread cortical pattern that involved
almost all seed regions. In our study limbic cortical regions were the
first to manifest connectivity disturbance, whereas neocortical
regions showed altered connectivity only with further progression
of disease. Thus, even among the limited number of seed regions
assessed in our study, the sequence of development of changes in
functional connectivity fits well with the proposed topographical
pattern of involvement of cortical brain regions based upon neuro-
pathological studies, in which the transition from Braak stages 4 to
5 is characterized by the involvement of neocortical regions
(Alafuzoff et al., 2009; Braak and Del Tredici, 2009; Braak et al., 2003).

In addition to increasing motor impairment, cognitive decline also
correlated with functional connectivity changes. In particular
impaired global cognitive function was associated with lower
alpha1 connectivity for parahippocampal, temporal, orbitofrontal
and anterior cingulate regions. The fact that the reduction in function-
al connectivity of these regions was associated with increases in both



Fig. 2. Mean functional connectivity per seed region in longitudinal relation to UPDRS-III scores (A, delta band; B, alpha1 band; C, alpha2 band) and CAMCOG test performance (D,
alpha1 band) in PD patients (n = 43). Left lateral, left medial and dorsal views are shown. Increases and decreases in functional connectivity are depicted in red and blue respec-
tively (p b 0.05; FDR adjusted). PH, parahippocampal; TP, temporal pole; IT, inferior temporal; OF, orbitofrontal; MT, middle temporal; AC, anterior cingulate; PC, precuneus.
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motor and cognitive impairments suggests a common underlying
pathophysiological mechanism. However, even when controlling for
motor performance we were still able to show significant associations
between functional connectivity and cognitive performance, and vice
versa. Therefore, motor and cognitive impairments must also have
partly different pathophysiological mechanisms in spite of a common
correlation with disease progression. For example, different patho-
physiological profiles might underlie distinct clinical subtypes of PD
as identified in previous studies (Lewis et al., 2005; Reijnders et al.,
2009; van Rooden et al., 2011). The division of our patient group
into different clinical variants would be of interest with regard to
this “subtyping” hypothesis. However, this was not feasible in our
relatively small study sample.

The only change in functional connectivity that was strongly
related to a decline in global cognitive function but not to worsening
motor function was a decrease in anterior cingulate cortex functional
connectivity in the alpha1 frequency band. This suggests a specific
involvement of the anterior cingulate cortex in cognitive decline, an
observation that fits well with the results of a recent fMRI study in
PD in which anterior cingulate connectivity differentiated between
patients with and without mild cognitive impairment (Ekman et al.,
2012). Moreover, Lewy body pathology in the anterior cingulate

image of Fig.�2
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cortex in post-mortem studies correlates strongly with cognitive
decline (Kovari et al., 2003).

Although performance on most specific neuropsychological tasks
diminished over time in our PD group, only semantic fluency and
spatial working memory task performance were associated with
alterations in functional connectivity of the seed regions. This may
seem counterintuitive, but could be related to the fact that we made
a hypothesis-driven selection of cortical seed regions based upon
neuropathological data. As a consequence, some brain regions that
are known to be involved in specific cognitive tasks were not
assessed, such as the superior temporal, inferior parietal and angular
cortex, which are associated with semantic fluency (Wende et al.,
2012). Moreover, one has to keep in mind that we studied the overall
connectivity patterns of seed regions. Thus all direct and indirect
connectivity loops of a seed region with the rest of the brain were
assessed together, rather than only the selective direct connectivity
between two distinct brain regions.

Changes in resting-state functional connectivity measured at the
cortical level could find their origin in a common subcortical source
(Sakkalis, 2011). In-depth subcortical neurophysiological recordings
indeed show evidence of altered temporoparietal-brainstem network
activity in the alpha frequency range in PD, but these recordings have
only been performed in advanced stage patients receiving deep brain
stimulation (Hirschmann et al., 2011; Litvak et al., 2011). Interesting-
ly, these studies also found a frontal/sensorimotor-brainstem
network in the beta domain. The absence of such changes in our
study is most likely related to the fact that connectivity within this
network is known to attenuate after the administration of levodopa
(Hirschmann et al., 2013) and the fact that we studied early to
moderate instead of advanced stage patients. MR-based functional
connectivity studies could provide additional information, but so far
focused on the assessment of cortico-striatal pathways in relation to
motor symptomatology (Helmich et al., 2010; Wu et al., 2011).
Moreover, such studies lack the temporal resolution to study subtle
differences in phase relationships, or to examine frequency-specific
connectivity patterns at frequencies above ~0.1 Hz.

A potential limitation of the present study is the fact that our
control subjects were age-matched to the de novo PD patients, but
not to the more advanced (i.e. older) PD patients, which precluded
inclusion of the controls and patients in a single longitudinal GLM
analysis. Instead, we chose to perform separate longitudinal GLM
analyses for both patients and controls. As a consequence, the time
effects observed in the PD patients are not controlled for potential
effects of normal aging. However, the separate GLM analysis in our
control group did not show any connectivity changes over time.
Moreover, the longitudinal connectivity changes in our PD sample
were associated with clinical measures of disease progression.
Therefore, it is unlikely that an effect of normal aging has severely
confounded our results. A second limitation of our study is that
several subjects were lost to follow-up, which was partly due to mor-
tality, but also due to withdrawal from the study. Additionally, some
patient data had to be excluded from analysis due to partial missing
data (MR scans at follow-up). However, since those patients that
had incomplete follow-up or that withdrew from the study reported
rather high subjective disease impairment (this being the main rea-
son not to participate anymore), their exclusion can only have led
to an underestimation of true effects. A last methodological consider-
ation regards the choice of frequency bands in MEG/EEG studies. In
our study, low and high alpha oscillations were analyzed separately,
as these are considered to reflect different cognitive processes
(Klimesch, 1997). Although alternative choices are possible (Foffani
and Priori, 2006; Priori et al., 2004), we chose to assess the beta spec-
trum as a single band in line with our previous studies. Upper gamma
band activity (>48 Hz) was excluded from all analyses, in order
to avoid the 50 Hz electromagnetic radiation artifact from the
environment.
A major strength of the present study is its longitudinal design,
which is superior over a cross-sectional design, especially when
searching for disease progression markers associated with clinical
features. Further (clinical) follow-up of our study cohort will enable
us to evaluate MEG-derived neurophysiological parameters that are
associated with clinical measures of disease progression as potential
predictive markers for clinical outcome, in particular for the develop-
ment of dementia and psychosis. Both local oscillatory activity (Olde
Dubbelink et al., 2013) as well as functional connectivity markers
might serve this purpose. Another strength of the present study is
that the MEG data analysis was performed in source-space, which
offers the perspective of multimodal imaging, in which the relation
between functional and structural connectivity can be explored in
more detail. The method used also facilitates future direct compari-
sons between fMRI and MEG in the assessment of brain network
topology (Bullmore and Sporns, 2009).

In conclusion, we found changes in resting-state functional
connectivity for temporal seed regions with the rest of the brain in
the earliest clinical stages of PD. With disease progression changes
in functional connectivity evolved to include more widespread brain
regions in close relation to clinical (both motor and cognitive) deteri-
oration. Altered cortico-cortical resting-state functional connectivity
in PD thus appears to reflect clinically relevant phenomena and
holds promise as a marker of disease progression. Further longitudi-
nal follow-up of our PD subjects will allow us to assess whether
changes in functional connectivity can serve as a predictor of
cognitive decline, dementia and/or psychosis.
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