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Highly active and efficient catalysts for
alkoxycarbonylation of alkenes
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Carbonylation reactions of alkenes constitute the most important industrial processes

in homogeneous catalysis. Despite the tremendous progress in this transformation, the

development of advanced catalyst systems to improve their activity and widen the range of

feedstocks continues to be essential for new practical applications. Herein a palladium

catalyst based on 1,2-bis((tert-butyl(pyridin-2-yl)phosphanyl)methyl)benzene L3 (pytbpx)

is rationally designed and synthesized. Application of this system allows a general

alkoxycarbonylation of sterically hindered and demanding olefins including all kinds of tetra-,

tri- and 1,1-disubstituted alkenes as well as natural products and pharmaceuticals to the

desired esters in excellent yield. Industrially relevant bulk ethylene is functionalized with high

activity (TON: 41,425,000; TOF: 44,000 h� 1 for initial 18 h) and selectivity (499%). Given

its generality and efficiency, we expect this catalytic system to immediately impact both the

chemical industry and research laboratories by providing a practical synthetic tool for the

transformation of nearly any alkene into a versatile ester product.
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F
unctionalization reactions of alkenes constitute a
fundamental basis of today’s chemical industry. Hence, in
addition to polymerizations and oxidations, carbonylation

reactions count among the largest industrial applications in the
area of homogeneous catalysis and a large variety of value-added
bulk and fine chemicals are available via this technology1–5.
Besides hydroformylations and related transformations6–8, which
produce over 10 million tons of oxo products every year,
alkoxycarbonylation is another important type of such reactions.
They have been shown to be core processes for the production
of acids, esters and amides3–5,9. For example, the current
state-of-the-art commercial process (Lucite Alpha process) to
methyl propionate, a key intermediate for methyl methacrylate
polymers, is produced based on the palladium-catalysed
methoxycarbonylation of ethylene on a 4300,000-ton-per-
annum scale10,11.

Comparing the reactivity of diverse olefins involving transition
metal hydride complexes, it is well known that ethylene shows
highest activity and terminal olefins react much faster than
internal ones. Hence, the rate of the respective functionalization
reaction falls with increasing steric hindrance of the substrate12–16.
With respect to catalytic carbonylations the reactivity order of
different olefins was found to be independent of the metal Co17,
Rh18 or Pd19 (Fig. 1). In fact, the reaction of branched olefins
requires significantly more severe reaction conditions or
alternatively more active catalysts. Essentially, the carbonylation
of tetra- or tri-substituted sp2-configurated C-atoms is extremely
difficult (Keulemans’ rule)20. Accordingly, catalytic carbonylation
reactions are limited to terminal olefins and the n,m-disubstituted
internal alkenes R1–CH¼CH–R2. The major problem impeding
the development of a general carbonylation of tetra- and tri-
substituted alkenes is the low binding affinity of these substrates
towards the metal center and the sluggish migratory insertion
of the metal complex leading to intrinsically demanding
hydrometalation21. The resulting tertiary alkylmetal intermediates
are highly unstable and are readily converted back to the stable
alkenes. Another challenge for such transformations is the
formation of unwanted by-products such as alkanes (in the case
of hydroformylation) and the corresponding ethers (in the case of
alkoxycarbonylation) especially under acidic conditions. As a
result, and to the best of our knowledge, no general and practical
catalyst has yet been developed for the alkoxycarbonylation of
tetra- and tri-substituted alkenes.

On the other hand, tetra- and/or tri-substituted alkenes are
interesting feedstocks and this bond motif is frequently found
in natural products, pharmaceuticals and petrochemicals.
Interestingly, for several industrial bulk processes, pure a-olefins
are not available at an economically viable price. Therefore,
mixtures are used including internal and branched olefins. As an
illustrative example, so-called dibutene is a mixture of more
430 compounds including mainly octenes, methylheptenes,
and dimethylhexenes. Notably, this feedstock is produced via
dimerization of 1-butene and 2-butene on a 500,000-ton-per-
annum scale. Due to the low reactivity of sterically hindered
internal olefins, a significant amount of this feedstock cannot be
further functionalized, which leads to unwanted waste. Hence, the
development of improved catalyst systems for the carbonylation

of tetra- and tri-substituted alkenes is an important and
rewarding but highly challenging task.

A scarcely explored possibility to valorize such ‘inert’ internal
olefins would be a fast isomerization to more reactive alkenes.
Unfortunately, despite the vast knowledge on isomerization
reactions21, such catalyst systems, which operate under mild
conditions in the presence of CO, are not known. On the basis of
our long-standing interest in this area22,23 as well as the elegant
works of other groups24–28, we started to explore the
development of a more efficient isomerization–carbonylation
catalyst. In this regard, herein we report a rationally designed
palladium catalyst, which allows for alkoxycarbonylations of both
highly demanding alkenes and industrially relevant bulk olefins
such as ethylene with unpreceded activity and selectivity.

Results
Reaction concept. To develop the first general alkoxycarbonyla-
tion catalyst for ‘non-reactive’ olefins, we focused on the
alkoxycarbonylation of tetramethylethylene 1a as the benchmark
substrate. In our initial attempts, we performed catalytic
experiments with two state-of-the-art palladium catalysts:
Pd2(dba)3/L1/MeSO3H (refs 10,11,29) known from the methyl
methacrylate process developed by Eastham et al. and established
by Lucite International and the Shell system Pd(OAc)2/L2/
MeSO3H pioneered by Drent and co-workers for the
methoxycarbonylation of alkynes30–35. However, in both
cases no carbonylation occurred and only the corresponding
ether—resulting from electrophilic addition of methanol—was
detected in 50 and 45% yield, respectively. Obviously, to realize
the alkoxycarbonylation of 1a, the development of a new catalyst
system is imperative. According to the so-called hydride
mechanism (see Supplementary Fig. 1 for details), successful
alkoxycarbonylation requires the formation of a palladium
hydride complex26,36–39.

After coordination of the alkene to this complex followed
by migratory insertion into the Pd–H bond, the corresponding
alkyl complex is obtained, which is transformed into an acyl
complex by the migratory insertion of CO. Finally, inter- or
intramolecular nucleophilic attack of methanol on the acyl
carbonyl leads to the formation of the desired ester and
regeneration of the palladium hydride species. Notably in the
presence of acid, the overall rate-limiting step associated with the
highest energetic barrier is the alcoholysis of the Pd-acyl
species26,38.

As shown in Fig. 2, two key problems have to be solved to
realize the desired alkoxycarbonylation of tetramethylethylene 1a:
(1) the isomerization of the internal alkene to the more reactive
intermediate B has to be enhanced under carbonylation
conditions; (2) besides the irreversible alcoholysis of the Pd-acyl
species, all other steps in the catalytic cycle are reversible. Hence,
to shift the equilibrium towards the desired product and to avoid
formation of 3a, the alcoholysis of the final Pd-acyl species has to
be accelerated markedly (step 5). This key step is known to be
catalysed by base, which unfortunately impedes steps 1 and 3.
To solve this contradiction, we envisioned the inclusion of an
amphoteric group as part of the catalyst systems. With this idea in
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Figure 1 | Reaction rates of alkene carbonylations. aHeptenes were used.
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mind, the novel bidentate phosphine ligand L3 containing both
sterically hindered and amphoteric groups on the P-atom was
designed and synthesized (see Supplementary Figs 2–4 for
details). Notably, the pyridine group in this ligand should act
as a proton-shuttle for the alcohol, which facilitates the
alcoholysis of the Pd-acyl species30–35. Structures of L3 and
the corresponding palladium complexes were confirmed
unambiguously by X-ray diffraction (Fig. 3). Both complexes
Pd(L3)(dba) and Pd(L3)(allylic)OTf contain only one ligand
coordinated to palladium through the P atoms. The coordination
geometry at the palladium atom can be best described as
trigonal-planar for Pd(L3)(dba) and pseudo-square-planar for
Pd(L3)(allylic)OTf (see Supplementary Figs 5–7 for details). The
31P NMR spectra of these complexes in CD2Cl2 solution also
indicate the clean formation of a single mono-ligated species.

To prove our concept, the methoxycarbonylation of tetra-
methylethylene 1a was performed in the presence of Pd(L3)(dba)
and Pd(L3)(allylic)OTf with p-toluenesulfonic acid monohydrate
(PTSA) as co-catalyst under typical carbonylation conditions
(0.1 mol% Pd catalyst, 40 bar CO, 120 �C). Indeed, the desired
product 2a was afforded in almost quantitative yield. Similar
results were obtained using the in situ-generated catalyst
(Pd(acac)2/L3/PTSA¼ 0.1/0.4/1.6 mol%), which demonstrates
the superiority of this novel ligand compared with previously
privileged ligands. To also compare the reactivity of other
well-known ligands such as PPh3, nBuPAd2, dppb, dppf,
Xantphos, and Naphos with our system, we investigated their
effect in this challenging benchmark reaction (see Supplementary
Fig. 8 for details). As shown in Fig. 3, none of the investigated
monodentate and bidentate ligands provided any desired product
(again only the corresponding ether by-product was obtained).

To improve the novel catalyst system further on, the effects
of other critical reaction parameters such as Pd precursor,
acid co-catalyst and CO pressure were investigated for the
alkoxycarbonylation of 1a in the presence of L3 (see
Supplementary Fig. 9 for details). Compared with Pd(acac)2,
Pd(OAc)2 gave slightly better results under identical conditions.
PdCl2 showed lower activity, which is attributed due to the strong
coordination of the counterion. Zero-valent precursor Pd2(dba)3

catalysed the methoxycarbonylation of 1a with comparable rate.
Acid co-catalysts with strong acidity and non-coordinating
anions facilitate the carbonylation of 1a (order of activity:
TfOH4H2SO44PTSA). The effect of CO pressure is negligible,

while the reaction temperature has a noticeable influence on the
rate of the methoxycarbonylation of 1a.

Alkoxycarbonylation of various alkenes. With an optimal
catalyst in hand, we investigated the scope and limitations for
this system. Initially, alkoxycarbonylations of 1a with different
alcohols were carried out. To our delight, primary as well as
secondary alcohols such as ethanol, tetrahydrofurfuryl alcohol,
and iso-propanol worked well and afforded the desired esters 4–6
in almost quantitative yield (see Supplementary Fig. 10 for
details).

Next, various aliphatic and aromatic alkenes including internal
and terminal ones were employed under the methoxycarbonyla-
tion conditions and afforded the desired esters in good to
excellent yields (Fig. 4). In addition to 1a, tetra-substituted
9,10-octalin 1b was converted smoothly to 2b in high yield with
excellent regioselectivity. To the best of our knowledge, this is the
first example of alkoxycarbonylations of bicyclic internal olefins,
which offers new valorization possibilities for such strained
intermediates. Again, there is no ester observed when using L1
instead of L3, thus demonstrating the striking reactivity difference
between the two systems. Aromatic olefins such as indene
constitute suitable substrates and 2c was obtained in 96% yield
with high regioselectivity. Simple cycloalkenes often show low
reactivity under traditional alkoxycarbonylation conditions.
Gratifyingly, they are methoxycarbonylated successfully into
the corresponding esters 2d and 2e in almost quantitative
yields within 2 h (see Supplementary Fig. 11 for details).
Similarly, 1-methylstyrene and related derivatives as well as
1-vinylnaphthalene and 1,1-diphenylethylene were converted to
the corresponding esters 2f-k in almost quantitative yields.
Interestingly, diester 2l, which has potential applications in the
polymer chemistry, was also able to be obtained in 99% yield
and selectivity through the dimethoxycarbonylation of
1,3-diisopropenylbenzene 1l using our catalytic system. When
L1 was used in the carbonylation of alkenes of such kind,
significantly lower yields of the desired esters and significant
amounts of the corresponding ethers were observed due to the
stability of the corresponding carbenium ion.

With respect to organic synthesis, this catalytic system
is compatible with a broad range of functional groups.
Indeed, alkenes containing electron-donating (triethylsilyl 1m)
as well as electron-withdrawing substituents (perfluoroalkyl 1n,
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phthalimido 1o) in direct conjugation with the olefin led to
functionalized esters in very good yield and regioselectivity.
Notably, also methyl 2-acetamidoacrylate—an example of a
notoriously unreactive push-pull olefin—produced the amino
acid derivative 2p in 88% yield and highly selectively. Other
olefins with remote substituents, for example, hydroxyl, nitrile,
chloride and ester groups, underwent methoxycarbonylation
smoothly and afforded the desired products 2q-t in 65–96%
yields, although in some cases the regioselectivity was lower.
As an example for the carbonylation of renewable olefins
(terpenes), we tested limonene. In contrast to known
carbonylation catalysts40,41 double methoxycarbonylation occurred
preferentially to deliver the diester product 2u in high yield.

Methoxycarbonylation of pharmaceuticals. For life science
applications, the late-stage modification of lead compounds or
even actual drugs is of current interest for the discovery of new
bio-active agents. Using pharmaceuticals with inherent carbon–
carbon double bonds, our alkoxycarbonylation catalyst provides
an entree to otherwise not easily accessible compounds. As
depicted in Fig. 5, methoxycarbonylation of diethylstilbestrol—a
potent anti-tumor drug—afforded the single regioisomer 2v in
92% yield, albeit as a mixture of diastereomers. As another
example, cholesterol, which is an essential structural component
of all animal cells that is required to maintain the structural
integrity of membranes, is regioselectively carbonylated into the
corresponding ester 2w in 81% yield. The molecular structure of
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acac, acetylacetonate; dba, dibenzylideneacetone; OTf, trifluoromethanesulfonate.
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2w was confirmed by the X-ray diffraction of its derivative 2x.
Again, products 2v or 2w were not detected when using L1
instead of L3 under the same conditions.

Methoxycarbonylation of industrial bulk alkenes. The ultimate
goal for any new catalyst is to be superior compared with known
systems in ‘real life’ applications in industry. As mentioned vide
supra, the methoxycarbonylation of ethylene constitutes a key
step in the Lucite a-process for the preparation of methyl
methacrylate.

As depicted in Supplementary Fig. 12, important aliphatic
olefins such as ethylene and propylene were completely converted
to the corresponding methyl esters in quantitative yields in the
presence of Pd/L3/PTSA (0.04/0.16/0.6 mol%) at 80 �C within
10 min, respectively. Under such technical conditions, the new
system again proved to be superior compared to the present state-
of-the art industrial catalyst for such reactions. To demonstrate
the striking difference in activity with the existing catalyst,
ethylene was also methoxycarbonylated at room temperature.
Using the commercial ligand L1 did not result in any catalyst
activity, while L3 afforded the desired product within 30 min
with excellent selectivity (499%) (Fig. 6a). To the best of
our knowledge, this is also the first time that the methoxycarbo-
nylation of ethylene proceeded at room temperature with
significant rate. Remarkably, the catalyst loading can be decreased
as low as 0.6 p.p.m. for ethylene methoxycarbonylation and the
desired product was afforded with unprecedented activity and

chemoselectivity (TON: 41,425,000; TOF: 44,000 h� 1; total
yield: 85%, selectivity: 499%; Supplementary Methods).

As mentioned in the Introduction, another important
industrial application is the alkoxycarbonylation of the feedstock
dibutene. In contrast to ethylene, the key issue for this feedstock
is to achieve full conversion, which is not yet possible due to the
low reactivity of the inherent tetra-substituted olefins. To our
delight, the new catalyst system allowed complete use of the
substrate and the corresponding ester products were obtained in
97% yield (Fig. 6b). Again, this yield is unprecedented and such
high conversion was not reported with any previously available
catalyst systems.

In conclusion, we have developed a palladium catalyst based on
the novel ligand L3 (pytbpx) for the general alkoxycarbonylation
of olefins. With respect to reactivity, this catalyst clearly surpasses
any known Reppe carbonylation catalyst in all applications
studied so far. In addition to interesting synthetic examples,
demanding challenging and industrially important bulk alkenes
can be alkoxycarbonylated with unprecedented activity.

Methods
Experimental procedures are described in Supplementary Methods in detail.

Data availability. Crystal structures have been deposited at the Cambridge
Crystallographic Data Centre and allocated the deposition numbers CCDC
1483958 (L3), 1483956 ([Pd(L3)(dba)]), CCDC 1483957 ([Pd(L3)(allylic)]OTf),
and 1483955 (2x). Crystal data are also provided in Supplementary Tables 1–4.
Spectra of products can be found in Supplementary Fig. 13. All other data are
available from the authors upon reasonable request.
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