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The paradigm for the control of feeding behavior has changed significantly. In this review, we present evidence that the sepa-
ration of function in which cholecystokinin (CCK) controls short-term food intake and leptin regulate long-term eating behavior 
and body weight become less clear. In addition to the hypothalamus, the vagus nerve is critically involved in the control of 
feeding by transmitting signals arising from the upper gut to the nucleus of the solitary tract. Among the peripheral media-
tors, CCK is the key peptide involved in generating the satiety signal via the vagus. Leptin receptors have also been identified 
in the vagus nerve. Studies in the rodents clearly indicate that leptin and CCK interact synergistically to induce short-term in-
hibition of food intake and long-term reduction of body weight. The synergistic interaction between vagal CCK-A receptor and 
leptin is mediated by the phosphorylation of signal transducer and activator of transcription3 (STAT3), which in turn, activates 
closure of K+ channels, leading to membrane depolarization and neuronal firing. This involves the interaction between CCK/ 
SRC/phosphoinositide 3-kinase cascades and leptin/Janus kinase-2/phosphoinositide 3-kinase/STAT3 signaling pathways. It is 
conceivable that malfunctioning of these signaling molecules may result in eating disorders.
(J Neurogastroenterol Motil 2011;17:338-348)
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Introduction
Regulation of feeding behavior is complex. The system in-

tegrates hormonal (CCK, ghrelin, insulin and PY3-36 etc), nu-
trient (glucose and lipids) and neural signals triggered by food in-
gestion and absorption and receives cues derived from fat (leptin 
and adiponectin) to inform the hypothalamus about stored energy 
levels.1 Traditionally, attributed to the CNS, the sensing of these 
signals is now recognized to be mediated at least partially by pe-
ripheral systems outside of the melanocortin neuronal circuit of 

the hypothalamus.1 These peripheral signals are relayed via the 
vagal afferent pathways to the lateral hypothalamus which in-
tegrates the various signals and regulates feeding behavior, nu-
trients, metabolism and energy homeostasis.2-5

Cholecystokinin (CCK) is the first gut peptide implicated in 
the control of food intake.6,7 Reduction of food intake following 
the administration of intestinal mucosal extracts were reported as 
early as 1937.6 In 1973, Gibbs and colleagues7 showed that both 
semi-purified porcine CCK and synthetic CCK octapeptide re-
duced feeding in rats. Over the last 30 years, numerous studies 
have provided compelling evidence that CCK participates in the 
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control of meal size.8 Research has uncovered the neural path-
ways which mediate CCK’s action to induce satiation.9

Of the hormones controlling energy balance, leptin plays a 
central role.10 Leptin which is secreted by the adipose tissue at 
levels proportional to fat content, communicates the repletion of 
peripheral energy stores to the brain, suppressing feeding and 
promoting energy expenditure through a number of neuro-
endocrine and anatomic mechanisms.10 In addition to acting di-
rectly on the hypothalamic neurons to coordinate behavioral and 
metabolic controls of energy, leptin may also act on vagal afferent 
pathways to mediate long-term satiety control.11-13 This action is 
enhanced through a synergistic interaction between leptin and 
CCK at the level of the vagal nodose ganglia to reduce short-term 
food intake in rodents.13,14 In this manner, leptin, by interacting 
with CCK, becomes a major mediator to control short-term food 
intake and a regulator for long-term feeding behavior and body 
weight homeostasis.

In this review, we will examine evidence for CCK’s partic-
ipation in the control of meal size and review the neural mecha-
nisms by which CCK reduces food intake. Furthermore, we will 
summarize the current status of research on leptin receptor sig-
naling and the regulation of eating behavior and energy balance. 
In vivo and in vitro evidence for synergistic interaction between 
CCK and leptin at the level of the nodose ganglia will be pre-
sented and the intracellular mechanism by which CCK interacts 
with leptin to enhance signal transducer and activator of tran-
scription 3 (STAT3) signaling regulating feeding will be review-
ed.

Cholecystokinin As a Satiety Factor
CCK is secreted from small intestinal I cells15,16 in response 

to food ingestion and function as a postprandial satiety signal.17-20 
The satiety action of CCK was suggested by a number of early 
studies dating as far back as 1937 when it was shown that sys-
temic injection of duodenal extracts, which probably contained 
some CCK, reduced food intake in experimental animals.21 In 
1973, Gibbs and colleagues22 reported that i.p. administration of 
synthetic sulphated CCK-8 significantly reduced the intake of 
both solid and liquid foods without causing aversive behavior to 
the rats. Subsequent studies have confirmed that systemic admin-
istration of CCK inhibits food intake in a number of other species 
including pig, dog, monkey, domestic fowl, mouse, sheep, rabbit, 
hamster and man,23 providing further credence to the hypothesis 
that peripheral CCK acts as a satiety signal. As CCK cannot pen-

etrate the blood brain barrier,24 it is likely that systemically ad-
ministered CCK acts at a peripheral site to inhibit feeding. 
Subsequent studies showed that vagal afferent fibers are respon-
sible for transmitting the peripheral CCK signal to the CNS to 
mediate satiety.25,26 This satiety action is mediated by gastric va-
gal afferents and involves CCK-A but not CCK-B receptors.27,28

A major criticism of the CCK-satiety hypothesis is that the 
doses of CCK-8 used in some of these earlier studies are 
many-fold greater than the physiological plasma concentrations 
that are present following a meal.23 Several investigators reported 
that administration of lower doses of CCK had no effect on 
satiety. For example Melville et al29 showed that injection of 
CCK-8 (2-8 μg/kg) directly into the systemic circulation of rats 
did not affect food intake. Similarly, Ebenezer30 found that sub-
cutaneous administration of CCK-8 (5-50 μg/kg) failed to in-
hibit food intake in rats although doses of CCK-8 as low as 1 
μg/kg s.c. stimulated pancreatic secretion. These observations, 
however, were not substantiated by other investigators. Covasa 
and colleagues31 reported that intraperitoneal administration of 
CCK at a dose as low as 0.5 μg/kg produced physiological plasma 
CCK levels and significantly decreased food intake in rats. This 
discrepancy may be related to experimental design and the test 
meals used in the different studies.

Conclusive evidence that CCK plays an important role in 
satiety comes from CCK antagonists studies. A number of animal 
studies indicate that the inhibitory effects of exogenous peripheral 
CCK on food intake can be completely abolished by pretreatment 
with devazepide.32-35 These findings suggest that a peripheral 
CCK-A receptor mechanism is involved in the suppression of 
feeding produced by CCK. Furthermore, it was found that deva-
zepide on its own increased the size of a test meal when ad-
ministered systemically to several species including the rat, pig, 
mouse, monkey, dog, cat and chicken under a number of differ-
ent feeding schedules and dietary conditions.32,33,35-38 These ex-
periments give the first clear-cut indication that endogenous 
CCK acting via CCK-A receptors plays an important role in the 
control of food intake. 

Structural and Functional Evidence That 
Cholecystokinin Acts on Vagal Afferent 
Fibers

CCK receptors have been detected in the rat vagus nerve us-
ing in vitro receptor autoradiography.39 Nerve ligation experi-
ments have shown that these receptors are transported toward the 
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peripheral nerve endings from the nodose ganglion.39 CCK bind-
ing and axonal transport are evident in all abdominal vagal 
branches.40 The CCK receptors are predominantly type A40 be-
cause the CCK-A receptor antagonist L-364718 completely abol-
ishes 125I-CCK binding, and nonsulfated CCK has no effect.

Electrophysiologic studies in rats and ferrets have provided 
evidence that CCK stimulates vagal afferent pathways.41,42 Li et 
al41 recorded the unitary activities of sensory vagal neurons using 
microelectrodes implanted in rat nodose ganglia. CCK infusion 
at 40 pmolㆍkg-1ㆍhr-1, which mimics postprandial levels, 
evoked a marked increase in discharge over basal.41 A short la-
tency, slow adaptation and rapid return to basal on removal of the 
stimulus characterized the response. Similar studies in ferrets 
showed that mucosal vagal afferent fibers from the duodenum are 
highly sensitive to CCK-8.42 These electrophysiologic studies to-
gether with receptor autoradiography studies provide functional 
and structural evidence that CCK acts on vagal afferent path-
ways.

Satiety Action of Cholecystokinin Is 
Mediated by Low-Affinity Cholecystokinin-A 
Receptor on the Vagus Nerve

CCK has been shown to interact with 2 affinity states of 
CCK-A receptor.43,44 One site is characterized by high affinity 
and low capacity and the other, a low affinity and high capacity 
for CCK. It is not known whether these 2 sites represent distinct 
proteins or different affinity states of the same receptor protein.

Electrophysiologic evidence for high- and low-affinity vagal 
CCK-A receptors comes from studies that involve the recording 
of single-unit discharges of sensory neurons from the nodose 
ganglia that supply the gastrointestinal tract.45 The CCK analog 
CCK-JMV-180, which acts as an agonist on high-affinity CCK-A 
receptors and as an antagonist on low-affinity CCK-A receptors, 
was used to identify the vagal CCK receptor affinity states in-
volved in the mediation of the vagal afferent response to the endo-
genously released CCK evoked by the diversion of bile-pancre-
atic juice in rats.45 Seven of 32 units were stimulated by the 
bile-pancreatic juice diversion. The responses were abolished by 
acute subdiaphragmaticvagotomy or perivagal capsaicin treat-
ment. Infusion of CCK-JMV-180 completely blocked the vagal 
afferent response to the diversion of bile-pancreatic juice in 3 of 8 
neurons tested and had no effect on the response in the remaining 
5. Gastric, celiac and hepatic branch vagotomy each abolished the 
response in different subgroups of neurons. These studies dem-

onstrate the presence of both high- and low-affinity CCK-A re-
ceptors on distinct vagal afferent fibers.

To identify the vagal CCK receptor affinity site involved in 
the mediation of satiety, Weatherford et al46 demonstrated that 
CCK-JMV-180 dose dependently reversed the effect of CCK-8 
on satiety. This suggests that the anorexic activity of CCK is 
mediated through interaction with the low affinity CCK receptor. 
Schwartz et al47 reported that CCK-JMV-180 also completely 
blocked the gastric mechanosensitive vagal afferent response to 
arterial infusion of CCK-8, which suggests that low affinity CCK 
receptors also mediate this response. In contrast, Li et al48 dem-
onstrated that JMV-180 dose dependently stimulated pancreatic 
enzyme secretion in rats. This was blocked by perivagal applica-
tion of capsaicin. Furthermore, in conscious rats, CCK-JMV- 
180 enhanced rather than inhibited pancreatic protein secretion 
in response to intraduodenal administration of 18% casein, which 
has been shown to release endogenous CCK.48 These observat-
ions indicate that both exogenous and endogenous CCK evoke 
pancreatic secretion by acting on high affinity CCK receptors. 
Hence, vagal CCK-A receptors clearly exist in different affinity 
states and mediate different digestive functions. The satiety ac-
tion of CCK is mediated by low affinity vagal CCK-A receptors 
whereas pancreatic enzyme secretion is mediated via high affinity 
receptors.

Interaction Between Ghrelin and 
Cholecystokinin on Vagal Control of 
Satiety

In addition to CCK-A receptors, vagal afferent neurons also 
express the leptin receptor (Ob-R)49 and receptors associated 
with stimulation of food intake including the ghrelin (GHS-1),50 
cannabinoid (CB1),51 orexin (OX-R1)52 and melanin-concen-
trating hormone (MCH-1)53 receptors. Among these, ghrelin 
and orexin A inhibit the discharge of vagal afferent neurons in re-
sponse to CCK.52,54 Feeding studies demonstrated that the ano-
rexic effect of CCK was blocked by pre-administration of ghrelin 
in rats. Conversely, pretreatment with CCK inhibited the orexi-
genic effect of ghrelin. Since CCK-A and ghrelin receptors are 
colocalized in the nodose ganglia neurons,54 it is conceivable that 
CCK and ghrelin may interfere with signal transmission gen-
erated by one another. Recently, it was demonstrated that ghrelin 
inhibited the effect of CCK at least in part through control of the 
nuclear localization of phosphorylated cAMP response element- 
binding protein.55 Thus, it appears that the efficiency of ghrelin 
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or CCK to modulate feeding behavior may depend on the balance 
of plasma concentrations of these hormones. Together these ob-
servations indicate a sophisticated pattern of integration at the 
level of vagal afferent neurons to control feeding.

Malfunctioning of Cholecystokinin 
Receptor Is Associated W ith Obesity

Overeating resulting in obesity has been reported in rats with 
gene mutation preventing normal expression of the CCK-A re-
ceptor gene.56,57 These rats failed to reduce their food intake in 
response to CCK administration. They ingested abnormally large 
meals and became obese supporting the hypothesis that CCK 
may participate in long-term regulation of food intake and 
adiposity in rats.

Obesity has been reported in a patient who expressed fewer 
functional CCK-A receptors due to defective post-translational 
processing of receptor protein.58 This patient also had chol-
elithiasis raising the possibility that the association between chol-
elithiasis and obesity may be related to CCK receptor dysfunct-
ion.58,59

Leptin Mediates Long-term Satiety and 
Metabolism

Leptin, the product of the ob gene, is secreted primarily from 
white adipose tissue and its level in the circulation correlates with 
the degree of adiposity.60-62 Circulating leptin gains access to the 
brain via a receptor-mediated transport system63 and acts on the 
long form of the leptin receptor in the medial hypothalamus to 
regulate feeding behavior and energy balance.10,64 Recent studies 
indicate that leptin is also secreted from the gastric mucosa.65-67 
Leptin mRNA and leptin protein have been detected in the chief 
cells of human stomach mucosa67 and rat gastric fundic mucosa.66 
Leptin levels in the stomach are altered by nutritional state and 
the administration of CCK. Refeeding of fasted rats led to a 66% 
decrease in gastric leptin after 15 minutes and a small increase in 
plasma leptin.66 A similar pattern of leptin secretion was seen af-
ter intraperitoneal administration of CCK in fasted rats. 
However, CCK was not a stimulus for leptin release from isolated 
adipocytes.66 On the other hand, CCK, secretin and pentagastrin 
stimulate leptin release from gastric endocrine cell.66,67 It is con-
ceivable that the postprandial increase in leptin in the circulation 
originates from the stomach.

Leptin is a key signaling molecule responsible for long-term 

control of feeding and energy balance. Although ob/ob mice are 
more sensitive to leptin’s effects, reduction of food intake and 
weight loss can be elicited by repeated peripheral injection of lep-
tin or by adenovirus-mediated leptin gene therapy in lean mice 
and rats.60,61,68-70 By contrast leptin seems not to affect short term 
alteration of feeding behavior.65,71 Kinetic studies indicate that 
upon a single intravenous or intraperitoneal injection, leptin de-
creases food intake only after 5-6 hours in ob/ob or lean mice.71,72 
This may be related to the delayed bioavailability of leptin to 
reach or influence the target sites of action in the brain. Alterna-
tively, leptin may require the presence of food-related gastric or 
intestinal signals. In contrast, intraperitoneal CCK induced a re-
duction in food intake after 15 minutes.73,74 Hence, leptin may 
serve as a long-term regulator of nutrient intake, adiposity, and 
body weight whereas CCK may act as a meal-related short-term 
satiety signal.

Molecular and Neural Mediators of Leptin 
Actions

Until recently, the satiety and metabolic actions of leptin are 
believed to be mediated exclusively by the hypothalamus.64 As 
shown in Figure 1, neuroanatomically discrete population of lep-
tin receptor expressing neurons mediate distinct components of 
leptin action. Clusters of neurons in the lateral, arcuate and ven-
tro-medial hypothalamus play an important role in mediating 
satiety and glycemic control as well as thyroid and reproductive 
functions perhaps via indirect connections with other areas.64,75-81 
The arcuate and ventro-medial hypothalamus are defined as 
“satiety centers” because lesion of either blunts satiety and pro-
motes hyperphagia and obesity.82,83 In these centers, 2 well-char-
acterized populations of neurons express leptin receptor: one 
population synthesizes the orexigenic neuropeptide Y (NPY), 
the other neural population synthesizes the anorexigenic pro-hor-
mone pro-opiomelanocortin (POMC).75,84-86 Leptin activates/ 
depolarizes POMC neurons and increases POMC synthesis75,76 
to decrease appetite and increase energy expenditure by activating 
CNS melanocortin receptors.87,88 At the same time, leptin inhibits 
NPY/agouti-related protein neuron and suppresses expression of 
these orexigenic neuropeptide.75,76 In this manner leptin signal-
ing stimulates the production of anorectic POMC and sup-
presses the levels of orexigenic agouti-related protein and NPY.

Recently the function of specific tyrosine residues/signaling 
pathways of the leptin receptor has been investigated by the gen-
eration and study of homologously targeted “knock-in” mice in 
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Figure 1. Neuroanatomically discrete populations of leptin receptor 
expressing neurons mediate distinct components of leptin action. The 
hypothalamic nuclei, including the arcuate, dorsomedial, ventromedial, 
lateral hypothalamic area and ventral premammillary (PMv) nuclei play 
an important role in the regulation of satiety and glycemic control. The 
hindbrain including the nucleus of the solitary tract which is activated by
the vagal afferent pathway may also regulate satiety. In addition, leptin 
differentially regulates 2 populations of thyrotropin releasing hormone- 
expressing neurons in the paraventral nucleus to modulate thyroid 
hormone secretion via the hypothalamic-pituitary axis. Leptin also acts 
on neurons in the PMv and medial preoptic area to regulate reproduc-
tive function by modulating gonadotropin releasing hormone secretion. 
NTS, nucleus of the solitary tract; VTA, ventral tegmental area; LHA, 
lateral hypothalamic area; ARC, arcuate; VMH, ventromedial; PVN, 
paraventral nucleus; MPOA, medial preoptic area. Modified figure 
adopted from Robertson et al64 with permission from Elsevier.

Figure 2. The role of discrete leptin receptor b (LepRb) functional sites
in leptin signaling. Leptin binding to LepRb activates the associated 
Janus kinase-2 (Jak2) tyrosine kinase bound at the Box1/2 motifs. Activ-
ated Jak2 undergoes robust autophosphorylation and phosphorylates 
Tyr985, Tyr1077 and Tyr1138 on the LepRb intracellular tail. These pho-
sphorylated residues act as docking sites for SH2-domain containing 
proteins. Phosphorylated Tyr985 mediates docking with SH2 domain- 
containing tyrosine phosphatase 2 and subsequent activation of extra-
cellular signal-regulated kinase through the mictogen-activated protein 
kinase signaling cascade. Phosphorylated Tyr1077 mediates signal 
transducer and activator of transcription 5 (STAT5) activation. Pho-
sphorylated Tyr1138mediates both STAT3 and STAT5 activation. 
STAT3 activation ultimately leads to increased expression of suppressor
of cytokine signaling-3, which acts as a feedback inhibitor and negatively
regulates LepRb signaling in part by binding phosphorylated Tyr985. 
Leptin also activates phosphoinositide 3-kinase, although the inter-
mediated steps for this process remain obscure. PI3K, phosphoinositide
3-kinase; SOCS3, suppressor of cytokine signaling-3; SHP2, SH2 
domain-containing tyrosine phosphatase 2; ERK, extracellular signal- 
regulated kinase. Modified figure adopted from Robertson et al64 with 
permission from Elsevier.

which sequences encoding substitution mutants of specific leptin 
receptor phosphorylation sites replace the endogenous Lepr 
allele.89,90 Through this approach, it was demonstrated that leptin 
binding to its receptor activates the associated Janus kinase-2 
(Jak2) tyrosine kinase to promote the phosphorylation of Jak2 
and 3 residues on its leptin receptor; each of these sites mediates a 
distinct aspect of downstream signaling, with differing physio-
logic functions (Fig. 2). Tyr1138→STAT3 signaling suppresses 
feeding but is not required for a number of other leptin actions.91 
On the other hand, Tyr985 binds SH2-containing tyrosine phos-
phatase-2 and suppressor of cytokine signaling-3 (SOCS3) and 
primarily mediates the attenuation of leptin receptor signaling via 
SOCS3.92 The role for Tyr1077, the major regulator of STAT5 
during leptin signaling, in the physiologic response of leptin re-
mains unclear.10

Leptin Regulation of Satiety: The Nodose 
Ganglia and Hind Brain

In addition to the hypothalamus, the brainstem, particularly 
the nucleus of the solitary tract (NTS) and nearby interconnected 

regions83,93 also plays an important role in the control of satiety. 
The NTS receives numerous inputs from the gut via the vagal af-
ferent pathways and relays this information to the hypothalamus 
satiety and feeding centers. The long form of the leptin receptor 
(Ob-Rb) has been found in a subpopulation of vagal afferent 
neurons.79,94-96 Using an in vitro gastric vagus-stomach prepara-
tion, electrophysiological recording revealed that exogenous lep-
tin alters the firing rate of a subset of vagal afferent fibers and in a 



Vagal Control of Satiety

343Vol. 17, No. 4   October, 2011 (338-348)

Figure 3. Interaction between cholecystokinin-8 (CCK-8) and leptin 
on nodose neuronal firing, and the effect of JMV-180 on this interaction.
Intraarterial infusion of CCK-8 (10 pmol) (A) did not stimulate vagal 
nodose neuronal firing. CCK-8 at 120 pmol (B) and leptin at 225 pmol 
(C) increased the neuronal discharge frequency. (D) A synergistic effect
was observed when CCK and leptin were infused together. (E, F) 
Administration of JMV-180 but not CCK-8 prevented this potentiation
effect, which suggests that low-affinity CCK-A receptors are coexpre-
ssed with leptin receptors in rat nodose ganglia. Adapted from Li et al.96

second group of fibers, leptin failed to activate neural firing but 
CCK pretreatment increased leptin sensitivity so that the fibers 
respond to subsequent leptin administration suggesting that there 
may be a cooperative activation of these fibers by CCK and 
leptin.97 Hence it is conceivable that satiety signals generated by 
the vagus in response to leptin may be processed in the NTS and 
relayed to the hypothalamus to regulate eating behavior.

Interaction Between Vagal 
Cholecystokinin-A and Leptin Receptor

Recently the paradigm for control of feeding behavior has 
changed significantly. The separation of function in which CCK 
controls short-term food intake and leptin regulates long-term 
food intake and body weight60-62 has become less clear.60-62 
Rodent studies showed that leptin and CCK interact synergisti-
cally to induce short-term inhibition of food intake13,98 and 
long-term reduction of body weight.99,100 It was reported that lep-
tin injected intraperitoneally at low doses (4-120 μg/kg), which 
did not influence feeding behavior for the first 3 hours post-
injection, decreased food intake dose dependently by 47%-87% 
during the first hour when co-injected with a subthreshold dose 
of CCK. This synergistic effect was shown to be mediated by 
CCK-A receptors and capsaicin-sensitive vagal fibers.13 The de-
crease in food intake occurring 5 hours after i.p. injection of lep-
tin alone was also blunted by devazepide. In separate studies, it 
was shown that co-injection of leptin and CCK enhanced the 
number of fos-positive cells in the hypothalamic paraventricular 
nucleus by 60% whereas leptin or CCK alone did not modify fos 
expression. These observations indicate the existence of a func-
tional synergistic interaction between leptin and CCK leading to 
early suppression of food intake. In addition the CCK-leptin syn-
ergy also may contribute to long-term regulation of body 
weight.99 It was observed that a single i.p. injection of CCK given 
2-3 hours after intracerebroventricular leptin (2-5 μg) reduced 
body weight and chow intake over the ensuing 48 hr more than 
did leptin alone. Subsequently this leptin-CCK interaction was 
reported to be associated with an increase in firing frequency of 
gastric vagal terminals97 and in neuronal activity in the NTS.98,101 
Collectively, these data indicate that the mechanisms underlying 
the interaction of leptin and CCK to induce early suppression of 
food intake are mediated via the vagus nerve.

To characterize the interaction between CCK and leptin, sin-
gle neuronal discharges of vagal primary afferent neurons in-
nervating the gastrointestinal tract were recorded from rat nodose 

ganglia.96 Three groups of nodose ganglion neurons were identi-
fied: Group 1 responded to CCK but not to leptin, Group 2 re-
sponded to leptin but not to CCK and Group 3 responded to 
high-dose CCK and leptin. These neurons also showed CCK and 
leptin potentiation (Fig. 3). Using the CCK-JMV-180, a high 
affinity CCK-A receptor agonist and low-affinity CCK-A re-
ceptor antagonist, it was further demonstrated that low-affinity 
CCK receptors are co-expressed with leptin receptors in the rat 
nodose ganglia. These provide a neurochemical basis for the syn-
ergistic interaction between CCK and leptin to regulate feeding 
behavior.
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Figure 4. Proposed signal transduction pathways in nodose ganglia following receptor activation with leptin and cholecystokinin-8 (CCK-8). There
are 2 potential pathways for phosphorylation of signal transducer and activator of transcription 3 (STAT3). Leptin activates Janus kinase-2 
phosphorylation at tyrosine 1138, which directly phosphorylates STAT3, or leptin activates phophoinositide 3-kinase (PI3K) via the insulin receptor
substrate, leading to STAT3 phosphorylation. CCK-8 activates PI3K via SRC and RhoA, which leads to phosphorylation of STAT3, suggesting that
PI3K is central to the synergistic leptin/CCK STAT3 phosphorylation. The mitogen-activated protein kinase (MAPK) inhibitor PD98059 had no 
effect on leptin and CCK-8 synergism, suggesting that the leptin/CCK-8-stimulated MAPK/ extracellular signal-regulated kinase 1/2 pathway was not
involved in STAT3 phosphorylation. STAT3 usually acts by stimulating the transcription of target genes, but the rapid electrophysiological effects 
suggest STAT3 may be involved in modifying the activity of K+ channels. CCKAR, CCK-A receptor; LRb, leptin receptor b; PKC, protein kinase
C; JAK2, Janus kinase-2; IRS, insulin receptor substrate; SHP2, SH2 domain-containing tyrosine phosphatase 2; ERK, extracellular signal-regulated
kinase; MEK, MAPK/ERK kinase; ATF-1, activating transcription factor-1; CRE, cAMP response element-binding protein; AP-1, activator 
protein-1. Adapted from Heldsinger et al.14

Synergistic Interaction Between Leptin and 
Cholecystokinin Receptor in the Nodose 
Ganglia Involves JAK/STAT3, SRC and PI3 
Kinase Signaling Pathways

Recent studies demonstrate that synergistic interaction be-
tween CCK and leptin in the nodose ganglia is mediated by 
cross-talk between signaling cascades used by CCK-A receptor 
and leptin receptors, which, in turn, activates closure of K+ chan-
nels, leading to membrane depolarization and neuronal firing.14 
Patch clamp performed on isolated nodose ganglia neurons 
showed that combination of leptin and CCK-8 caused a sig-
nificant increase in membrane input resistance, compared to lep-
tin or CCK-8 alone. A current-voltage relationship analysis 
showed that the current reversed at -100 mV for each peptide 
alone and in combination, which is close to the K+ equilibrium 

potential (-105 mV), suggesting that this depolarization is medi-
ated by K+ channels. Silencing the STAT3 gene abolished the 
synergistic action of leptin/CCK-8 on neuronal firing. It was also 
demonstrated that leptin/CCK-8 synergistically stimulated a 
more than 7 fold increase in phosphorylated STAT3, which was 
inhibited by RhoA inhibitor C3 transferase, the SRC kinase in-
hibitor PP2 and the phophoinositide 3-kinase (PI3K) inhibitor 
LY294002. In contrast, the mitogen-activated protein kinase in-
hibitor PD98059 had no effect.14 Furthermore, silencing the 
SRC and PI3K genes resulted in a loss of leptin/CCK stimulated 
STAT3. These findings indicate that leptin/CCK-8 synergism 
involves the interaction between CCK/SRC/PI3K cascades and 
the leptin/JAK2/PI3K/STAT3 signaling pathways, with a major 
role for PI3K (Fig. 4). It is therefore conceivable that malfunc-
tioning of these signaling molecules may result in eating disor-
ders.
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Physiological Implications 
in Regulation of Short-term and 
Long-term Satiety Control

The synergistic link between CCK and leptin is strengthened 
by the observations that the ability of CCK or leptin signaling to 
reduce food intake is altered when either factor is blunted or their 
receptors are non-functional. It was reported that onset of leptin’s 
action to reduce food intake was delayed when food was withheld 
for 4 hr immediately after i.p. leptin injection in lean mice.13 
Moreover, i.p. injection of devazepide before refeeding fasted 
mice interfered with the reduction of food intake normally occur-
ring 5-7 hour after i.p. injection of leptin.13 These observations 
suggest that leptin signaling pathways to the brain are dampened 
in the absence of interaction with CCK release after a meal or 
when CCK-A receptors are blocked. Conversely, both obese 
ob/ob mice which are leptin deficient65 and fa/fa Zucker rats 
which have a missence mutation in the leptin receptor gene are 
quite insensitive to the meal-terminating effect of peripheral 
CCK administered at low doses.102-105 In addition, CCK antago-
nists increase meal size in lean but not in obese fa/fa Zucker 
rats.106 These findings are consistent with fa/fa Zucker rats being 
deficient not only in long-term but also short-term dietary cues 
related to dysfunctional leptin-CCK potentiating interaction.

Future Directions in Cholecystokinin/Leptin 
Signaling and Physiology

The demonstration that synergistic interaction between leptin 
and CCK occurs in the nodose ganglia has important physio-
logical implications. It provides an explanation for the ob-
servation that the ability of CCK or leptin signaling to reduce 
food intake is altered when either factor is blunted or their re-
ceptors are non-functional. It is conceivable that mutation of ei-
ther leptin or CCK-A receptor or their intracellular signaling 
molecules may result in eating disorders. Large cohort genetic 
studies of obese patients to examine these possibilities are 
warranted.

We demonstrated that the intracellular mechanisms by which 
CCK interacts with leptin to enhance nodose ganglia excitation 
involve STAT3 signaling.14 STAT3 usually acts by stimulating 
the transcription of target genes,107 but the rapid electro-
physiological effects that were observed in a number of stud-
ies11,12,14,97 are not likely to be explained by STAT3-mediated 

transcription. It is possible that STAT3 may be involved in mod-
ifying the activity of channels or receptors. This interesting phe-
nomenon requires further studies.

The recent demonstration that dietary macronutrient content 
affects sensitivity to CCK adds further complexity to the regu-
lation of eating behavior.108-111 It was demonstrated that rats on 
high fat diets exhibit reduced satiety in response to CCK.108 
Similarly, leptin resistance develops in vagal afferent neurons of 
diet-induced obese rats.112 This resistance to leptin coincides with 
attenuation of CCK-induced inhibition of food intake and onset 
of hyperphagia. It is conceivable that development of resistance to 
leptin alters CCK signaling resulting in hyperphagia and weight 
gain. Investigation of the mechanisms by which fatty diet alters 
the sensitivity of CCK action of satiety control represents an im-
portant step in understanding the satiety action of CCK/leptin to 
mediate eating behavior and body weight homeostasis.
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