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Automatic scoring of COVID‑19 
severity in X‑ray imaging based 
on a novel deep learning workflow
Viacheslav V. Danilov1,2*, Diana Litmanovich3,6, Alex Proutski1,6, Alexander Kirpich4, 
Dato Nefaridze1, Alex Karpovsky5 & Yuriy Gankin1*

In this study, we propose a two-stage workflow used for the segmentation and scoring of lung 
diseases. The workflow inherits quantification, qualification, and visual assessment of lung diseases 
on X-ray images estimated by radiologists and clinicians. It requires the fulfillment of two core stages 
devoted to lung and disease segmentation as well as an additional post-processing stage devoted 
to scoring. The latter integrated block is utilized, mainly, for the estimation of segment scores and 
computes the overall severity score of a patient. The models of the proposed workflow were trained 
and tested on four publicly available X-ray datasets of COVID-19 patients and two X-ray datasets of 
patients with no pulmonary pathology. Based on a combined dataset consisting of 580 COVID-19 
patients and 784 patients with no disorders, our best-performing algorithm is based on a combination 
of DeepLabV3 + , for lung segmentation, and MA-Net, for disease segmentation. The proposed 
algorithms’ mean absolute error (MAE) of 0.30 is significantly reduced in comparison to established 
COVID-19 algorithms; BS-net and COVID-Net-S, possessing MAEs of 2.52 and 1.83 respectively. 
Moreover, the proposed two-stage workflow was not only more accurate but also computationally 
efficient, it was approximately 11 times faster than the mentioned methods. In summary, we 
proposed an accurate, time-efficient, and versatile approach for segmentation and scoring of lung 
diseases illustrated for COVID-19 and with broader future applications for pneumonia, tuberculosis, 
pneumothorax, amongst others.

Despite originating in late 2019, the novel coronavirus SARS-COV-2 (COVID-19) continues to spread and evolve 
worldwide, placing a lasting and unprecedented strain on the global healthcare community1–3. The virus may 
present itself in both mild and severe forms and can, in both cases, progress into a form that requires hospitali-
zation, with certain patients admitted to intensive care units (ICUs)4,5. The sustained pressure, coupled with the 
development of new variants, requires the investigation of all possible screening mechanisms that not only aid 
in diagnosing the presence of the infection but also its severity, in a timely manner6,7.

Critical to lifting the burden placed on the healthcare community is the necessity to determine the severity 
of the infection both quickly and efficiently, allowing for streamlined resource allocation as well as effective 
patient care. For patients admitted to the hospital with a suspected COVID-19 infection, radiographic imaging 
has become part of the standard diagnostic procedure, with chest X-rays (CXR) readily preferred to computed 
tomography (CT)8–10. The extent of the infection is inferred from the visual cues present in a patients’ CXR, such 
as ground-glass opacities and their geographic extent throughout the lungs11.

Determining the extent of the infection from CXRs is both a non-trivial and time-consuming task, neces-
sitating the adoption of computer-aided clinical support tools. Utilization of artificial intelligence (AI) in the 
fight against COVID-19 has, thus far, focused largely on the identification of the infection and distinguishing 
it from other forms of pneumonia12–18. Despite this, limited attention has been given to the identification of 
the infection severity. To address this knowledge gap, we propose a novel two-stage disease scoring workflow 
based on image segmentation and multi-task learning. We validate the performance of our proposed workflow 
against the combined scoring of two expert radiologists. We note that this workflow is not limited to the study 
of COVID-19 and may be extended to evaluate the severity of other lung disorders.
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To determine the most optimal workflow we evaluated nine state-of-the-art lung and disease segmentation 
networks (U-net19, U-net +  + 20, DeepLabV321, DeepLabV3 + 22, FPN23, Linknet24, PSPNet25, PAN26, MA-Net27) 
and found the best performing configurations as determined by the combined accuracy and complexity. The 
latter is of particular importance as it allows the broader scientific community to adopt the determined hyper-
parameters for further research, extending beyond the scope of this work. To study algorithm performance, 
we collected, cleaned, and pre-processed three lung segmentation datasets as well as four disease segmentation 
and scoring datasets acquired for COVID-19 and pneumonia-infected patients. The datasets are made publicly 
available28,29. We compared our results against two known tailor-made solutions, BS-net30 and COVID-Net-
S31. The source code used for model development, tuning, training and testing, and the obtained segmentation 
models are also made publicly available32.

Related work
Recent advances in medical imaging, with the added utility of portable X-ray machines, led to a rise in the 
adoption of CXRs when monitoring patients admitted to ICUs33. Furthermore, analysis of CXRs plays a crucial 
role in the diagnosis and progression of acute respiratory distress syndrome (ARDS) and lower-respiratory tract 
infection (LRI)34,35. Access to quantifiable methods for radiograph-based severity scoring can thus greatly assist 
in a patients’ risk stratification36,37.

Despite its potential advantages, investigation into severity scoring in radiograph images has thus far been 
limited. Sheshdari et al. developed a radiologic severity index (RSI) to predict a 30-day mortality after an LRI 
diagnosis38. RSI scores (0–72) were based on pulmonary infiltrates as well as the degree of their geographic 
involvement. To assist with the interpretation of CXRs, Taylor et al. developed a severity scoring tool for severe 
acute respiratory infections (SARI)39. The scoring tool made use of a 5-point system based on the extent of lung 
abnormalities, with resultant scores validated against those assigned by trained clinicians. In 2018, Warren et al., 
introduced the radiographic assessment of lung oedema (RALE) score to evaluate the degree of pulmonary 
oedema in ARDS40. The score (0–48) is calculated by dividing a radiograph image into quadrants with each 
quadrant scored on the extent of involvement (0–4; 0 meaning no involvement and 4 meaning 75% or more 
geographic involvement) and degree of opacification (1–3; hazy, intermediate, and dense). The method has shown 
diagnostic promise for the evaluation of ARDS in ICU admitted patients41 and has recently been extended to 
diagnose the severity of a patients’ COVID-19 infection31,42–45.

Wong et al. adapted RALE by assigning a score (0–4) to each lung based on the extent of lung involvement 
by consolidation or ground-glass opacity44. This methodology, though further adapted, has readily been applied 
when investigating the performance of deep learning models developed for severity detection31,46,47.

Adopting such scoring methodologies, Cohen et al., made use of seven non-COVID-19 datasets to pre-train 
a DenseNet model for feature extraction and task prediction46. Subsequently, a linear regression model was uti-
lized to predict the score of each image. When evaluating the model performance against scoring performed by 
experts, the authors report an R-squared of 0.62 for the degree of opacity and 0.67 for the extent of involvement.

Extending upon the COVID-Net architecture14, Wong et al. propose COVID-Net-S to capture the severity 
of the COVID-19 infection31. By making use of 396 CXRs and the adapted RALE score, the authors report an 
R-squared score of 0.739 and 0.741 between predicted and expert scores for geographic involvement and opacity 
extent, respectively.

In 2020 Broghesi et al.11 introduced an alternative semi-quantitative score (0–18), namely the Brixia score. 
Here, each lung is divided into three regions with each region ranked (0–3) based on the extent of lung abnor-
malities. The Brixia score has shown promise when used to predict the risk of in-hospital mortality48 and the need 
for ventilatory support49. Subsequently, Signoroni et al.30 made use of the Brixia score to evaluate their end-to-end 
deep learning network when tasked with assessing the severity of a COVID-19 infection. By utilizing a dataset 
consisting of 5000 CXRs the authors reported mean absolute errors of 0.441 as compared to expert radiologists.

Data
This section is devoted to the description of the data used to evaluate the proposed method. Since the proposed 
workflow is based on two independent stages, we adopted two different datasets for the training and testing of 
neural networks respectively.

Stage I: lung segmentation dataset.  The first stage of the proposed workflow is utilized for lung seg-
mentation. Here, we collected and pre-processed three publicly available datasets, including the Darwin, Mont-
gomery, and Shenzhen datasets50–52. These datasets include CXRs acquired for patients diagnosed with either 
COVID-19, pneumonia, or tuberculosis. It is worth noting that we utilize CXRs with different diagnoses solely 
for model training during Stage I. Since Stage I is tasked with lung segmentation, the use of images with differ-
ent pathologies, differing in nature and disease patterns, acts as an augmentation technique and improves the 
generalization ability of studied networks. Table 1 contains a short description of these datasets and their split 
over the training, validation, and testing subsets.

The Darwin dataset images include most of the heart, revealing lung opacities behind the heart, which may 
be relevant for assessing the severity of viral pneumonia. The lower-most part of the lungs, where visible, is 
defined by the extent of the diaphragm. Where present and not obstructive to the distinguishability of the lungs, 
the diaphragm is included up until the lower-most visible part of the lungs. A key property of this dataset is that 
image resolutions, sources, and orientations vary across the dataset, with the smallest image being 156 × 156 
pixels and the largest being 5600 × 4700 pixels. Furthermore, we include portable CXRs. Despite the latter being of 
significantly lower quality, such image variety allows for the improvement of the generalization ability of studied 
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neural networks. It is worth noting that, initially, lung segmentations were performed by Darwin’s Auto-Annotate 
AI and then adjusted and reviewed by human annotators.

Both the Montgomery and Shenzhen datasets were published by the United States National Library of Medi-
cine and consisted of posteroanterior chest X-ray images53. These images are available to foster research in 
computer-aided diagnosis of pulmonary diseases. The datasets were acquired from the Department of Health 
and Human Services (Maryland, USA) and Shenzhen №3 People’s Hospital (Shenzhen, China). Both datasets 
contain normal and abnormal CXRs, with manifestations of tuberculosis, and include associated radiologist 
readings. Three examples of CXRs taken from all collected lung segmentation datasets are presented in Fig. 1.

Stage II: disease segmentation and scoring dataset.  Stage II of the proposed workflow is used for 
disease segmentation with subsequent scoring. Here, we collected and pre-processed four publicly available 
COVID-19 datasets including Actualmed COVID-19 Chest X-ray Dataset (ACCD)54, COVID-19 Radiography 
Database (CRD)55, COVID Chest X-Ray Dataset (CCXD)56,57, and Fig. 1 COVID Chest X-ray Dataset (FCXD)58. 
All those datasets include CXRs of subjects diagnosed with COVID-19 and were acquired across over 40 medi-
cal institutions and hospitals. In order to ensure the network’s generalization and distinctive abilities, we include 
subjects with no disease pathology, excluding any abnormalities and disorders. These subjects are represented 
by two datasets, namely Chest X-ray Normal Dataset (CXN)59 and RSNA Normal Dataset (RSNA)60,61. Both 
datasets were validated by two radiologists from our team, where they excluded images with indications of a 
pulmonary pathology. All healthy patients of these datasets are assigned a score of 0. Below, in Table 2, we sum-
marize how both COVID-19 and normal datasets were split into training, validation, and testing subsets.

Table 1.   Description of the datasets used for lung segmentation.

Dataset Source Training Validation Testing Total

Darwin 50 4884 611 611 6106/90%

Montgomery 51 110 14 14 138/2%

Shenzhen 52 452 57 57 566/8%

Total – 5446/80% 682/10% 682/10% 6810/100%

(a) Darwin              (b) Montgomery         (c) Shenzhen 

Figure 1.   Examples of the collected chest X-ray images used for lung segmentation.

Table 2.   Description of the datasets used for COVID-19 segmentation and scoring.

Dataset Source

Diagnosis Subset

TotalCOVID-19 Normal Training Validation Testing

ACCD 54 49 0 39 5 5 49/4%

CRD 55 104 0 83 10 11 104/8%

CCXD 56,57 399 0 319 40 40 399/29%

FCXD 58 28 0 22 3 3 28/2%

CXN 59 0 431 344 43 44 431/31%

RSNA 60,61 0 353 282 35 36 353/26%

Total – 580/43% 784/57% 1089/80% 136/10% 139/10% 1364/100%



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12791  | https://doi.org/10.1038/s41598-022-15013-z

www.nature.com/scientificreports/

In order to achieve the ground truth segmentation and scores of the abnormal datasets and validate the nor-
mal datasets, two senior radiologists in our team, from the United States and Russia, annotated anteroposterior 
and posteroanterior radiographs. Each radiologist has more than ten years of experience and was active during 
the COVID-19 pandemic. The annotators labeled each dataset independently. Such a strategy, although time-
consuming, allows us to get a consensus segmentation and severity score, which in turn helps us to determine the 
scoring ability of the proposed workflow when compared to the “gold standard” i.e. to the radiologist’s consensus.

Having analyzed the COVID-19 datasets, we summarized their main demographic characteristics in Table 3. 
Accordingly, subject ages fall between 36 and 70 years. Analysis of the age distribution shown in Appendix A 
(Figure A2), indicates that COVID-19 affects 91.6% of subjects aged from 25 to 80 years old, highlighting the 
severity of the global disease burden. We emphasize that the majority of the combined dataset records (53.7%) 
were acquired in European countries (Germany, Italy, Spain, and the United Kingdom). The distribution of the 
COVID-19 records by country is provided in Appendix A. We note that certain demographic information, such 
as age, gender, and the name of the collecting organization, is absent, in specific cases, due to the necessity to 
preserve patient anonymity.

To evaluate the agreement of segmentation and scoring as determined by the two radiologists, their scores 
were compared pairwise for each CXR, as shown in Fig. 2. The visual summaries for 1085 pairs which were 
available for both radiologists are provided as a heatmap, Fig. 2c, where a darker color indicates a higher density 
of points and points on the red dashed line indicate perfect agreement. Most of the points are concentrated 
tightly around the dashed line with the only difference being that the first radiologist appeared to give slightly 
higher (one point) scores than the second one. For a more formal, numerical comparison between the judg-
ment scores of two radiologists, the correlation coefficient (ρ = 0.97) and Cohen’s kappa statistic (κ = 0.64) were 
computed for all pairs of scores, where each element of the pair is the score of the corresponding radiologist for 
a given image. The computed correlation coefficient of 0.97 is close to 1 indicating a strong positive correlation 
and good agreement between the judgments. In the same way, the Cohen’s kappa value of 0.64 is interpreted as 
“substantial”62 and indicates a good agreement between the two judgments. Therefore, the radiologist’s scores 
were deemed to be robust measures with limited variability from radiologist to radiologist. These paired scores 
were then used to compute the “averaged” score from each pair, when available for both, and later used as a “gold 
standard” or a consensus for method evaluation and comparison. When only a single score was available from 
one radiologist, that score value was used as the “gold standard” which increased the total number of available 
scored images to 1364.

Methods
In this section, we provide a detailed explanation of the proposed workflow, including both stages and the post-
processing block used for the final scoring estimation. Additionally, we describe how the studied networks are 
hyper-tuned, trained, and how their performance is estimated in terms of accuracy, error rate, complexity, and 
processing speed. The proposed workflow inherits the quantification and qualification of lung diseases (scoring 
and decision-making) from expert radiologists, and fulfills the following processing steps, as shown in Fig. 3:

Table 3.   Demographic representation of the collected COVID-19 dataset.

Parameter Absolute value Relative value (%)

Age 53.5 ± 16.9 –

Male 52.6 ± 16.7 –

Female 55.0 ± 17.3 –

Gender

Male 570 64

Female 322 36

View

Anteroposterior 492 47

Posteroanterior 546 53

Country (top-10)

Germany 169 19.6

Italy 165 19.1

Australia 84 9.7

China 77 8.9

Spain 69 8.0

United Kingdom 60 7.0

United States 40 4.6

Taiwan 18 2.1

South Korea 18 2.1

Iran 16 1.9
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(a) Segmentation of subject 1                        (b) Segmentation of subject 2 

(c) Relationship between radiologists' judgments 
Correlation: 0.97, Cohen's kappa: 0.64 

Figure 2.   The comparison of segmentation and scoring between the two radiologists when the scoring was 
performed by both. The number of compared pairs of scores was 1085. Cyan and red masks were annotated 
by Radiologist 1 and Radiologist 2 respectively. The red dashed line indicates a perfect agreement between 
radiologists’ judgments.

Figure 3.   Schematic illustration of the proposed workflow which consists of three main stages: Stage I which 
pre-processes the lungs, Stage II which processes the disease areas, and the post-processing stage which 
performs the scoring.
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•	 Lung segmentation: pixel-level localization of the lungs and removal of unnecessary areas;
•	 Disease segmentation: pixel-level localization of the infected area of the lungs;
•	 Severity scoring: quantification and qualification of the infected area of the lungs.

When developing the proposed workflow, we tried to mimic the visual inspection and evaluation of X-ray 
images performed by radiologists and clinicians, when assessing and estimating the extent of lung disorders. 
We relied on input from expert radiologists to further understand the nature of this visual assessment. Here, an 
expert would first assess an image based on whether a suspected infection is present and further study the degree 
of pulmonary involvement on a 0 to 6 grading scale (low to high).

Stage I: lung segmentation.  In Stage I, we employ and compare different segmentation neural networks, 
including nine state-of-the-art solutions19–27. Lung segmentation is followed by a processing block used to 
exclude any unnecessary areas. As shown in Fig. 4, this block applies the bitwise AND operator (calculating the 
conjunction of pixels in both images) on the source image, using the predicted binary mask. Once this operation 
is performed, an image with the extracted lungs is cropped by the lung-bounding box and is then resized. The 
latter operation is useful during training because if the ground truth is not large, the training signal magnitude 
will be small. Such an issue is similar to the gradient vanishing problem and may lead to the general inability of 
a network, with many layers, to learn on a given dataset or prematurely converge to a poor solution. In such a 
scenario, due to a weak magnitude, the gradient may diminish dramatically as it is propagated backward through 
the network. The error may be very small by the time it reaches layers close to the input of the network and thus 
may have very little effect. To circumvent this, Stage I excludes any informative regions beyond the lungs with 
the aim of increasing the gradient magnitude during back-propagation.

Stage II: disease segmentation.  Stage II is concerned with the application of Multi-Task Learning 
(MTL)63,64, as opposed to the Single-Task Learning (STL) of the first stage. The proposed MTL disease segmen-
tation model, reflected in Fig. 5, has two branches, namely classification and segmentation. The need for the 
classification branch stems from the limited size of the training subset and is used to predict the class of an input 
image in order to regularize the shared encoder and impose additional constraints on its layers. MTL aims to 
learn multiple different tasks simultaneously while maximizing the performance across all tasks. The workflow 
of Stage II is based on the Hard Parameter Sharing of the MTL approach because of the need to simultaneously 
predict the disease label (classification) and the affected lung area (segmentation). In the proposed MTL work-
flow, the encoder plays the role of a Convolutional Neural Network (CNN) feature extractor, while the head of 
the classification branch (classifier) is used for making class predictions. The classifier predictions, thus, adopt 
the role of a regularizer and are used to refine segmentation predictions. Taking into account the highly confi-
dent classification outputs, the model refines the output of the segmentation branch i.e. the segmentation mask 
according to Eqs. (1) and (2). The classification branch outputs a probability of an image being a normal case 
(probability tends to 0) or being a disease case (probability tends to 1). The refined segmentation mask f segref (x) is 
computed in the following manner:

Figure 4.   Lung segmentation stage (Stage I). The prefixes “P” and “GT” stand for prediction and ground truth, 
respectively.
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where x is an input image, f segraw(x) is a raw probability map made by the segmentation branch, f clsraw(x) is the 
probability of an image being normal or disease-infected, made by the classification branch, f clsbin(x) is a binarized 
f clsraw(x) , ⊙ is the element-wise multiplication, T is a threshold equal to 0.5 in our study.

We have found, experimentally, that the adopted regularization helps the proposed workflow decrease the 
false-positive rate on the segmentation branch. For the regulizer architecture, we used a reliable set of layers 
with proven stability on classification tasks and includes an adaptive two-dimensional pooling layer, flatten layer, 
dropout layer with a dropout rate of 0.20, and a dense one-neuron layer with a sigmoid activation function.

It has been shown that MTL models can often improve accuracy relative to independent STL models65–67. 
However, even when the average task accuracy improves, individual tasks may experience negative transfer where 
MTL model’s predictions are worse than that of STL models. To avoid this, we integrate and utilize Dynamic Loss 
Weighting (DLW)68 of the MTL model which combines and expands upon ideas from Reinforced MTL69 and 
Gradient Normalization for Adaptive Loss Balancing (GradNorm)70. According to this approach, loss weights 
have to be dynamic, meaning that a specific task weight differs given different inputs, compared to GradNorm 
where the task weight is static as it is identical among all batches.

DLW assumes that the task-specific loss is informative for balancing different tasks. For each task and batch, 
DLW considers the loss ratio between the current loss and the initial loss (Algorithm B1 in Appendix B and 
Eq. 3), which is a proxy for how well the model has trained. Poorly trained tasks have ratios close to one and 
contribute more to the overall loss and gradient. Having applied the DLW approach, the loss for the proposed 
disease segmentation model, based on MTL, is calculated as follows:

where wcls
B  and wseg

B  are dynamic weights for the classification and segmentation tasks,  LclsB  and LsegB  are the losses 
obtained on batch B , Lcls(0,i) and Lseg(0,i) are the first batch losses, α is a hyperparameter balancing the influence of the 

(1)f
seg
ref (x) = f

seg
raw(x)⊙ f clsbin(x)

(2)f clsbin(x) =

{

1, if f clsraw(x) ≥ T

0, if f clsraw(x) < T

(3)Loss = wcls
B × LclsB + w

seg
B × L

seg
B =

(

LclsB
Lcls(0,i)

)α

× LclsB +

(

L
seg
B

L
seg
(0,i)

)α

× L
seg
B

Figure 5.   Disease segmentation stage (Stage II) and score estimation. The prefixes “P” and “GT” stand for 
prediction and ground truth, respectively.
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task-specific weights and equal to 0.5 for the proposed MTL model. As α goes to 0, DLW approaches standard 
MTL.

Post‑processing: severity scoring and visualization.  For quantification, qualification, and visualiza-
tion of the affected area of the lungs, we utilize the post-processing block, as shown in Fig. 6, which is primarily 
used to estimate the scores for lung segments as well as the overall score. Having obtained the extracted lungs 
from Stage I, first, we separate the two lungs. Here, we employ an algorithmic application of graph theory called 
Block-Based Connected Components71 which is used to determine the connectivity of BLOB-like regions in a 
binary image. Once this algorithm is applied, we detect the two biggest BLOBs which represent the lungs in an 
image. After the lungs are detected we take each BLOB, representing a single lung mask, and nullify other pixels 
using the bitwise AND operator. Having performed this set of operations, the lung splitter outputs two separated 
lung masks Ml (mask of left lung) and Mr (mask of right lung).

Once two binary lung masks are obtained, we use a segmenter block to divide each lung into three segments. 
Although similar to clinical practice, the frontal X-ray image is divided into three zones per lung (total of 6 
zones)72: upper, middle, and lower zone. The upper zone extends from the apices to the superior portion of the 
hilum. The middle zone spans the space between the superior and inferior hilar margins. The lower zone extends 
from the inferior hilar margins to the costophrenic sulci. This approach, however, does not consider the area of 
the estimated zones that lead to non-uniform segment division and, in turn, lead to a different impact made by 
each segment on the estimation of the total score. Furthermore, such a methodology is dependent on the image 
alignment, leading to some solutions, for instance, BS-Net30, integrating an alignment block inside their workflow. 
Besides being of high complexity, due to the application of a neural network, the alignment block is typically 
placed right before the core model, as such any error originating from this block may significantly influence 
the error of the entire pipeline. In this regard, we propose a segmenter that is invariant to affine and geometric 
transformations, and divides each lung into three segments, maintaining a consistent area within each segment 
and across both lungs (Algorithm B2 in Appendix B).

To divide each lung into three equal-sized segments, we apply a binary search algorithm, which runs twice, to 
compute both the upper ytop and lower ybot coordinates. Initially, the segmenter searches for the upper coordinate 
ytop in the interval [0, height] , so that the sum of pixel values of mask M , in the range [0, ytop] , is as close to 13 × S 
as possible, where S is the total sum of the mask pixel values equal to 

∑width
i=1

∑height
j=1 Mij . Finally, this procedure 

is repeated and the segmenter searches for the lower coordinate ybot in the interval [0, height] , so that the sum of 
pixel values of mask M , in the range [0, ybot ] , is equal to 23 × S . Having performed this procedure, the segmenter 
outputs two y coordinates (upper and lower) per each lung (total of 4 coordinates i.e. ytopleft , y

bot
left  , y

top
right , and ybotright).

Having estimated the lung mask, disease mask, and the limits of the six lung segments, we utilize two estima-
tors (Algorithm B3 in Appendix B) for the computation of the severity score per segment, and the total severity 
score for a given subject. For this procedure, we take the intersection of the predicted mask of the disease and 
the segments for each lung obtained by the segmenter. If the intersection of these regions is big enough, meaning 
it is more than a predefined threshold value T , we count this part as 1, otherwise 0. At the end of the proposed 
pipeline, the severity score estimator sums up all values for each segment and gives the total score, which falls 
in the range of 0 to 6.

Hyperparameter tuning.  In the proposed pipeline, both stages rely on neural networks. Moreover, Stage 
II is based on an MTL neural network, requiring hyperparameter tuning to obtain optimal performance. Despite 
different techniques being explored in addressing the problem of neural network hyperparameter optimiza-
tion, such as Neural Architecture Search73 by Google and Generative Synthesis74 by DarwinAI, one challenge 
stands out—computational cost. Even though Grid Search and Random Search75 are more efficient in terms of 
time spent for the optimization, they are completely uninformed by past trials, and, as a result, often spend a 
significant amount of time evaluating irrelevant hyperparameters. Thus, the Bayesian methodology76 was chosen 

Figure 6.   Post-processing block for scoring estimation.
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as the main optimization technique and the hyperparameter optimization task comes down to the following 
minimization task:

where f cls(x) and f seg (x) represent classification and segmentation objective scores to be minimized and evalu-
ated on the validation subset, x∗ is the set of hyperparameters that yields the lowest value of the overall score, 
and x can take on any value in the domain X . We note that due to the MTL architecture f cls(x) is only used for 
networks in Stage II, otherwise, it is equal to 0.

In essence, Bayesian optimization is a probability model and its key advantage is compatibility with a 
black-box function, whilst being data-efficient and robust against noise. However, it works poorly with parallel 
resources as the optimization process is sequential. In this regard, we used an additional extension of the Suc-
cessive Halving algorithm77 called HyperBand78. In contrast to HyperBand, Successive Halving suffers from a 
trade-off between the selection of the number of configurations and the number of cuts while allocating the 
budget. As a solution, HyperBand proposes to perform the Successive Halving algorithm with different budgets 
to find the best configurations. HyperBand evaluates whether tuning has to be stopped or permitted to con-
tinue at one or more pre-set iteration counts, called brackets. When a trial reaches a bracket, its metric value is 
compared to previously reported metric values and the trial is terminated if its value is too high (minimization 
goal) or too low (maximization goal). The goal of the tuning we perform is related to the maximization of a 
segmentation score, the Dice similarity coefficient (DSC). In order to specify the bracket schedule and maximize 
the aforementioned metric, we use:

•	 Imax = 16 (the maximum number of iterations);
•	 S = 2 (the total number of brackets);
•	 ETA = 2 (the bracket multiplier schedule).

The brackets are computed using the equation Bk = Imax/ETA
k , where k is the bracket number. The latter 

means that the brackets for tuning are [16/21, 16/22] equaling [8, 4] . In addition to Hyperband, we use a com-
plementary stopping strategy, the Early Stopping algorithm, that helps to reduce the computation time. This 
algorithm is used as a regularization, which allows for the removal of poorly performing trials and attempts at 
more configurations. The key settings of the Early Stopping algorithm used for tuning are:

•	 Metric to be monitored: Dice similarity coefficient;
•	 �min = 0.01 (minimum change in the monitored quantity to qualify as an improvement);
•	 e = 6 (number of epochs with no improvement after which the training is stopped).

In connection, instead of a blind repetition algorithm on top of Successive Halving, we use a Bayesian opti-
mization with constraints imposed by two algorithms: HyperBand and Early Stopping. In such an approach, 
Early Stopping acts as an intra-regularizer that estimates the performance of a single trial in an epoch-by-epoch 
manner. Whereas, HyperBand plays the role of an extra-regularizer which estimates the performance between 
trials and terminates poorly performing ones in a bracket-by-bracket manner.

Conducting a hyperparameter search is a non-trivial task due to the variability in hyperparameter priority 
when it comes to tuning them i.e. models are more sensitive to certain hyperparameters than others, necessitating 
a more impactful strategy79. As a result, we did not optimize hyperparameters such as batch size, non-linearity 
type, optimizer options, kernel sizes, etc. However, we pay attention to the encoder architecture, input image 
size, loss function, optimizer, and the learning rate. In Table C1 of Appendix C, we summarize the explored 
hyperparameters along with their values used during tuning.

The dataset used during tuning differs from the one we use in training. First, the testing subsets are not used 
for tuning purposes and the termination or early stopping of the trials are based on the DSC value computed 
on a validation subset. Second, the overall tuning dataset includes fewer images than the dataset used for final 
training and testing. A comparison of the datasets used in both steps is reflected in Table 4. According to the 
displayed distribution, we use 10% of the whole dataset for the tuning of lung segmentation networks and 50% 
for the tuning of disease segmentation networks. Such a difference is explained by the fact that the region of both 
lungs is more distinctive than the COVID-19 affected regions. The typical appearance of such regions presents 
ground-glass opacities (with or without consolidation) or a “crazy-paving” pattern, which is the appearance of 

(4)x∗ = argmin
x∈X

f cls(x)+ argmin
x∈X

f seg (x)

Table 4.   Comparison of the datasets used in both stages.

Stage Phase

Subset

TotalTraining Validation Testing

Stage I (lung segmentation)
Tuning 544 137 – 681/10%

Training 5446 682 682 6810/100%

Stage II (disease segmentation)
Tuning 521 134 – 655/50%

Training 1089 136 139 1364/100%
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ground-glass opacities with superimposed interlobular septal thickening and intralobular septal thickening. 
Such patterns present in images forced us to increase the tuning dataset in order to find the best configuration 
of the studied networks.

Hyperparameter correlation and importance.  In addition to the best configurations, we estimate 
which of the investigated hyperparameters are the best predictors and are highly correlated with the desirable 
metric, the DSC. For hyperparameter quantification, we compute two metrics: correlation, between the hyper-
parameter and the chosen metric, and importance. Correlation ranges from −  1 to 1, where positive values 
represent a positive linear correlation, negative values represent a negative linear correlation, and a value of 0 
represents no correlation. Generally, a value greater than 0.7 in either direction represents a strong correlation. 
Correlation, alone, cannot capture second-order interactions between inputs and it can get messy when com-
paring inputs with different ranges. As such, we estimate a complementary metric, importance, where we train 
a random forest with the hyperparameters as inputs and the metric as the target output, and report the feature 
importance values for the random forest. We were inspired by a methodology proposed by Jeremy Howard, who 
has pioneered the use of random forest feature importance to explore hyperparameter spaces at Fast.ai80. This is 
in contrast to the adoption of linear regression for the task at hand, which works well if the dataset is properly 
prepared, as random forests are more tolerant of different data types and scales. We note that hyperparameters 
with importance values of 0.05 and lower are likely not important.

Below we outline key factors for the interpretation of correlation and distinguishing it from the importance:

•	 Correlation shows evidence of association, but not necessarily causation;
•	 Correlations are sensitive to outliers which may turn a strong relationship into a moderate one, especially if 

the investigated sample size of hyperparameters is small;
•	 Correlations only capture linear relationships between hyperparameters and metrics i.e. if there is a strong 

non-linear relationship, it may not be captured.

Disparities between importance and correlation result from the fact that importance accounts for interac-
tions between hyperparameters, whereas correlation only measures the effect individual hyperparameters have 
on metric values. Secondly, correlations strictly capture linear relationships, whereas importances can capture 
more complex ones. Nevertheless, both importance and correlation are powerful metrics for the understanding 
of how hyperparameters influence model performance, and are both used in our study.

Model training.  Once the tuning of networks in both stages is performed, we train nine models with their 
best configurations i.e. the best configuration per model (U-net, U-net++, DeepLabV3, etc.). During training, 
we used the Early Stopping strategy, similar to that described in “Hyperparameter tuning”. Additionally, we 
employ a set of augmentation transformations that are used during both the tuning and training steps. Besides 
allowing us to increase the size of the dataset, augmentation acts as a regularizer and helps reduce overfitting 
during model training. The proposed augmentation workflow consists of the following transformations:

•	 Contrast limited adaptive histogram equalization with a probability of 20%;
•	 Random-sized crop with a probability of 20% (weight-to-height ratio of the crop equal to 1, the range of crop 

is picked from 0.7× Ih to 0.9× Ih , where Ih is the source image height);
•	 Rotation with a probability of 50% (a random angle is picked from –15° to + 15°);
•	 Horizontal flip with a probability of 50%;
•	 Random brightness and contrast adjustment with a probability of 20% (factor range for changing both bright-

ness and contrast is picked from − 0.2 to + 0.2).

In contrast to the tuning step, where the batch size was chosen as a fixed value equal to 4, the training step does 
not use a fixed batch size. Since the studied models are of different complexity, they require different memories 
for training, for a fixed batch size. In this regard, we decided to equalize the trained models by the GPU memory 
utilization i.e. each model is trained using a batch size allocating approximately 90–100% of GPU memory.

Results
Hyperparameter tuning.  Following the approach described in “Hyperparameter tuning”, we sequentially 
tuned the networks for both stages, lung and disease segmentation. We found that approximately 100 runs turn 
out to be minimally enough to select optimal hyperparameters for the lung segmentation networks. However, to 
extend the hyperparameter space, we tripled the number of runs. Each network was trained with a batch size of 4 
on NVIDIA GeForce RTX 3090 24 Gb. A small batch size was selected due to the physical limitation of the GPU 
memory and the out-of-memory error thrown during training. We decided to bias our focus to the encoder 
rather than the batch size. In this regard, we estimated a wide variety of encoders and models rather than several 
lightweight/middleweight models and encoders with different batch sizes. Besides the accuracy metric (DSC), 
we estimated the number of parameters for each model and its complexity. The complexity is represented by the 
theoretical amount of multiply-accumulate (MAC) operations in CNNs.

Having performed 300 trials with different hyperparameter combinations, we found all possible optimal 
solutions for lung segmentation (Table 5). According to our results, the Adam optimizer, or its variants, turned 
out to be the optimal solution for network training and effective convergence. The optimal learning rate falls 
into the range of 10–3 to 10–4, while the median input size for the training and inference of an optimal network 
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is equal to 512 × 512 pixels. In terms of segmentation accuracy i.e. DSC, the best-performing models are FPN 
(0.949), DeepLabV3 + (0.948), and Linknet (0.946). While models with the lowest complexity (MAC) are PAN 
(0.3 G), DeepLabV3 + (2.2 G), and FPN (9.1 G). Having compared all nine models, DeepLabV3 + turned out to 
be the optimal network in terms of the accuracy-complexity ratio i.e. DSC-MAC ratio.

As we described in “Hyperparameter correlation and importance”, we additionally estimate two metrics 
(correlation and importance), showing the degree to which each hyperparameter was useful in predicting the 
chosen metric. Below, in Fig. 7, we summarize the average correlation and importance values. As we described 
before, we calculate the importances using a tree-based model rather than a linear model as the former is more 
tolerant of both categorical data and data that is not normalized. Based on our results, the learning rate and 
the training time turned out to be the most important hyperparameters, significantly affecting the accuracy of 
the studied networks. Also, these metrics correlate significantly with the estimated segmentation metric (Dice 
similarity coefficient). However, they are of opposite correlation nature with the desired metric i.e. higher DSC 
values with smaller learning rates. Furthermore, the training time and DSC are positively correlated, meaning 
networks that are trained longer result in a better accuracy performance. Additionally, in Fig. C1 of Appendix 
C, we provide the original correlation and importance values per hyperparameter.

To find the optimal configurations for COVID-19 segmentation networks, we employ a similar strategy 
with the key difference being the presence of a regularization branch. The optimization of these networks refers 

Table 5.   Best configurations for lung segmentation networks.

Model Input size Encoder Loss (seg) Optimizer LR Trials Parameters, M MAC, G DSC

U-net 384 SE-ResNeXt-101 BCE Adam 0.0001 42 55.9 35.6 0.945

U-net++ 384 EfficientNet B1 Jaccard
Adam 

(AMSGrad)
0.001 38 9.1 11.5 0.946

DeepLabV3 512 EfficientNet B0 Dice
AdamW 

(AMSGrad)
0.0005 25 7.3 13.4 0.938

DeepLabV3+ 512 EfficientNet B1 BCE AdamW 0.0005 34 7.4 2.2 0.948

FPN 544 EfficientNet B0 BCE
Adam 

(AMSGrad)
0.001 26 5.8 9.1 0.949

Linknet 480 RegNetX-64 BCE AdamW 0.0001 40 29.3 39.9 0.946

PSPNet 480 RegNetY-64 Dice Adam 0.0001 29 29.7 14.4 0.940

PAN 512 EfficientNet B0 Jaccard
Adam 

(AMSGrad)
0.001 34 4.1 0.3 0.941

MA-Net 512 EfficientNet B2 Dice
Adam 

(AMSGrad)
0.001 32 13.4 9.9 0.945

Figure 7.   Average hyperparameter importance and correlation for lung segmentation.
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to the hyperparameter tuning of an MTL model. Another difference is connected with the number of runs we 
estimated. In contrast to lung segmentation networks, the number of runs for the hyperparameter tuning was 
increased by 7 times resulting in 2,100 runs. Such a big difference between the two segmentation approaches is 
related to the deeper exploration of the hyperparameter space of the disease segmentation networks because (a) 
the latter plays a crucial role in the proposed scoring workflow and (b) the segmentation of indistinguishable 
COVID-19-affected regions is of higher complexity than the segmentation of the more distinctive lungs. Having 
performed the hyperparameter tuning of the COVID-19 segmentation networks, we obtained the results shown 
in Table 6. Similarly, the Adam optimizer and its variants proved to be optimal. The most accurate models are 
U-net (0.894), PSPNet (0.879), and MA-Net (0.876). PSPNet with the EfficientNet B0 encoder has the lowest 
complexity (0.1 G) which leads to the best performance as compared to other solutions. The second and third 
lightweight models are Linknet (0.5 G) and FPN (4.5 G).

Figure 8 displays the average correlation and importance per hyperparameter for the COVID-19 segmentation 
networks. We observe that the learning rate and the training time are the most important hyperparameters. Addi-
tionally, in Fig. C1 of Appendix C, we provide the original correlation and importance values per hyperparameter.

Model training.  Having performed hyperparameter optimization and found the best configurations, we 
trained nine lung segmentation networks according to the methodology described in “Model training”. Once 
the networks were trained and validated, we tested them, summarizing their main specifications and the Dice 
similarity coefficient in Table 7. Additional metrics related to the quality of lung segmentation are reflected in 
Appendix D, Table D1. As can be seen, all networks have a high level of segmentation accuracy, however, some 
of them are computationally expensive (U-net, Linknet, and PSPNet) with relatively similar values of DSC. In 
this regard, DeepLabV3 + (DSCtest = 0.963, parameters = 7.4 M, MACs = 2.2 G) is chosen as an optimal solution 
which is used in our scoring pipeline as the core block for Stage I. 

Similarly, we trained nine MTL networks for both segmentation and classification of COVID-19 and normal 
cases, where the latter is connected to patients with no diseases or no findings. In Table 8, we give a summary 
of the obtained results. Since the networks of Stage II are MTL-based, we report both segmentation and clas-
sification accuracies (DSC and F1 score). More detailed results, including metrics such as Accuracy, Precision, 
Recall, Dice similarity coefficient, and F1 score, are presented in Appendix D, where Table D2 is devoted to the 
segmentation results, while Table D3 to the classification results. As can be seen, U-net and FPN proved to be the 
most accurate networks in both classification and segmentation tasks. U-net achieved an F1 score, on the testing 
subset, of 0.985, which is 1.9% (0.019) higher than the F1 score of FPN which is 0.966. However, in terms of the 
number of parameters, U-net is almost 26 times more computationally expensive than FPN (115.8 M vs 4.5 M), 
which usually leads to a lower prediction speed. In this regard, both networks may be employed as the optimal 
solution for Stage II, depending on the required performance (processing time) and accuracy (DSC and F1).

Scoring results and comparison with the state‑of‑the‑art solutions.  After training the networks 
with their optimal configurations, we obtained nine networks for each stage (18 networks in total). As discussed 
(“Model training”), all networks perform lung segmentation with approximately the same accuracy. However, 

Table 6.   Best configurations for COVID-19 segmentation networks.

Model Input size Encoder Loss 
(seg) 

Loss 
(cls) 

Optimizer LR Trials Parameters, M MAC, G DSC 

U-net 544 DPN-98 Dice SL1 
Adam 

(AMSGrad) 
0.0001 337 71.3 115.8 0.894 

U-net++ 480 RegNetY-32 Jaccard SL1 
Adam 

(AMSGrad) 
0.0001 215 27.2 54.5 0.867 

DeepLabV3 480 EfficientNet B2 Lovász SL1 Adam 0.01 223 11.2 12.7 0.462 

DeepLabV3+ 480 RegNetX-32 Jaccard L1 Adam 0.001 223 16.1 20.1 0.811 

FPN 384 EfficientNet B0 Dice SL1 
AdamW 

(AMSGrad) 
0.0005 225 5.8 4.5 0.865 

Linknet 416 EfficientNet B0 Dice BCE AdamW 0.01 231 4.2 0.5 0.790 

PSPNet 384 EfficientNet B0 Dice BCE AdamW 0.001 257 4.1 0.1 0.879 

PAN 416 SE-ResNet-50 BCE SL1 
AdamW 

(AMSGrad) 
0.005 230 26.8 22.5 0.484 

MA-Net 544 RegNetX-64 Dice L1 RMSprop 0.0001 195 103.9 79.7 0.876 
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several networks outperform others in terms of computational complexity and prediction time. To this extent, 
for testing the proposed scoring pipeline, we choose DeepLabV3 + as the core network of Stage I. On the other 
hand, we do not freeze Stage II with the usage of only one network. We test all nine COVID-19 segmentation 
networks which are followed by DeepLabV3 + .

In “Post-processing: severity scoring and visualization” and in Algorithm B3 of Appendix B we introduced a 
threshold parameter T . In order to estimate a score of each lung segment, we take the intersection of the predicted 
disease mask and the corresponding lung segment. If the intersection of these two regions is greater than or equal 
to a predefined threshold T , we count this segment as 1 (affected by the disease), otherwise 0 (non-affected or 
slightly affected by the disease). At the end of the proposed pipeline, the severity score estimator sums up the 
values for each segment and gives the total score which falls in the range of 0 to 6. Based on the training and 
validation subsets, before testing our workflow, we chose an optimal threshold T (Table 9) which is different for 
each network in Stage II. We estimate threshold values based on the lowest MAE and RMSE values. The optimal 
threshold T is chosen based on the minimum MAE for the following workflow testing.

To strictly validate the proposed workflow, we test it on an unseen dataset (testing subset) which is described 
in “Stage II: disease segmentation and scoring dataset”. Additionally, we estimate the workflow performance on 
the overall testing subset, including both COVID-19 and normal cases (Table 10), on the testing subset with 
only COVID-19 cases (Table E1 in Appendix E), and on the testing subset with only normal cases (Table E2 

Figure 8.   Average hyperparameter importance and correlation for COVID-19 segmentation.

Table 7.   Results of the fully trained lung segmentation networks.

Model Batch size Memory, 

Gb 

Parameters, 

M

MAC, 

G

DSC (segmentation) 

Train Val Test 

U-net 24 21 55.9 35.6 0.960 0.960 0.962 

U-net++ 32 24 9.1 11.5 0.956 0.959 0.960 

DeepLabV3 16 24 7.3 13.4 0.960 0.960 0.961 

 DeepLabV3+ 20 22 7.4 2.2 0.962 0.960 0.963 

FPN 32 23 5.8 9.1 0.962 0.960 0.962 

Linknet 24 24 29.3 39.9 0.965 0.959 0.961 

PSPNet 40 23 29.7 14.4 0.959 0.959 0.960 

PAN 32 24 4.1 0.3 0.961 0.960 0.962 

MA-Net 24 24 13.4 9.9 0.956 0.959 0.961 
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in Appendix E). Besides the internal comparison of different models within Stage II, we compare the obtained 
results against tailor-made state-of-the-art solutions used for disease scoring, namely BS-net and COVID-Net-S. 
Although MAE and RMSE of BS-net and COVID-Net-S on the pure COVID-19 dataset are of relatively accept-
able level, the error on the dataset with healthy subjects (normal cases) turned out to be high. Meaning that 
most healthy subjects are usually scored as mild or intermediate COVID-19 cases. To compare the obtained 
scoring results and make them visually distinct, we use a blue-white-red color scale, where blue refers to a better 
performance, red refers to a worse performance, and white is intermediate.

From our studies, we found several optimal solutions for lung disease scoring. The most accurate variants 
for the proposed workflow are based on U-net, FPN, or MA-net, used for disease segmentation in Stage II. The 
MA-Net-based workflow achieved the lowest MAE of 0.30 on the testing subset, while U-net and FPN MAEs 
are of similar levels and equal to 0.33 and 0.36 respectively. It should be noted that we consider MAE and RMSE 
dynamics over the training, validation, and testing subsets to choose the best three networks. As shown in 
Table 10, the obtained optimal solutions did not overfit. We note that the key to the comparison of the proposed 
workflow with state-of-the-art solutions is the estimation of both COVID-19 cases (Table E1 in Appendix E) 
and normal cases (Table E2 in Appendix E) separately.

While MAE and RMSE provide formal quantifications of the overall performance of each network and allow 
for a formal comparison between the networks, they do not evaluate the performance of networks based on the 
underlying score values. The latter is desired since some networks can perform better on higher scores, some on 
lower scores, and some can be the same for all score values. To address this, visual summaries of each network’s 
performance are provided for the testing subset as a heatmap in Fig. 9, where a darker color indicates a higher 
density of points and those points on a red dashed line indicate perfect agreement between the network and the 
consensus score. The comparison between radiologists scoring is also provided in Fig. 9 (bottom-right chart). 
The network’s score and the consensus score on the red line indicate perfect agreement while deviations in each 
side reflect whether the network underscores or overscores. A darker color on these plots represents the density 

Table 8.   Results of the fully trained COVID-19 segmentation networks.

Model Batch size Memory, 

Gb 

Parameters,

M 

MAC, 

G 

DSC (segmentation) F1 (classification) 

Train Val Test Train Val Test 

U-net 12 24 71.3 115.8 0.821 0.894 0.894 0.987 0.983 0.985 

U-net++ 20 23 27.2 54.5 0.825 0.724 0.702 0.986 0.837 0.834 

DeepLabV3 10 23 11.2 12.7 0.016 0.462 0.500 0.265 0.462 0.500 

DeepLabV3+ 36 24 16.1 20.1 0.769 0.811 0.780 0.954 0.936 0.898 

FPN 64 23 5.8 4.5 0.836 0.861 0.856 0.989 0.994 0.966 

Linknet 48 23 4.2 0.5 0.744 0.467 0.544 0.924 0.586 0.708 

PSPNet 96 22 4.1 0.1 0.738 0.869 0.771 0.954 0.946 0.935 

PAN 48 24 26.8 22.5 0.660 0.349 0.606 0.872 0.615 0.678 

MA-Net 16 22 103.9 79.7 0.818 0.874 0.733 0.978 0.982 0.824 

Table 9.   Optimal thresholds estimated for severity scoring.

Stage I model Stage II model

MAE RMSE

Min Threshold Min Threshold

DeepLabV3 + 

U-net 0.28 77 0.61 77

U-net +  +  0.41 84 0.90 99

DeepLabV3 1.58 74 2.75 69

DeepLabV3 +  0.37 77 0.80 77

FPN 0.33 66 0.69 66

Linknet 0.38 38 0.81 41

PSPNet 0.42 97 0.88 97

PAN 0.52 102 1.05 102

MA-Net 0.32 79 0.70 79
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of points for score combinations i.e. the deeper the color the more outcomes are within the given combination 
of scores. For formal numeric comparisons, the correlation coefficient (ρ) and Cohen’s kappa (κ) were computed 
for each network. MA-Net, U-net, and DeepLabV3 + had the largest correlation values (ρ) equal to 0.95, 0.95, 
and 0.94 respectively. At the same time, the largest values of Cohen’s kappa (κ) were for PSPNet (0.62), MA-Net 
(0.60), and Linknet (0.59). The formal numeric comparison between the radiologists on the testing subset had 
the correlation values (ρ) equal to 0.97 and Cohen’s kappa (κ) equal to 0.65.

For visualization purposes, we provide probability maps of each network in Fig. 10 and Appendix F. Each 
probability map represents an output of Stage II scaled on a 0–1 range. As shown, all probability maps are of dif-
ferent nature. For instance, some networks such as U-net +  + , PSPNet, and PAN showcase blurring mask edges. 
Linknet usually outputs many erroneous binary objects, while DeepLabV3 cannot segment the COVID-19-af-
fected region. In turn, U-net, FPN, and MA-Net perform well, segmenting with no artifacts or blurred borders. 
The latter confirms that these three networks achieved the best results in severity scoring (Table 10, Tables E1 
and E2 in Appendix E). Figure 11 showcases CXR images of a subject taken from the ACCD dataset, where we 
additionally provide the ground-truth severity score and the scores obtained by BS-net and COVID-Net-S. 
Additional cases taken from other COVID-19 datasets (CRD, CCXD, and FCXD) are reflected in Appendix G.

For the overall comparison of the proposed solutions, we showcase MAE estimated on the testing subset, the 
frame rate (FPS), the number of overall parameters, and MAC in Fig. 12. The Y-axes “Parameters” and “MAC” 
refer to the overall number of parameters and the theoretical amount of multiply-accumulate operations for both 
stages of the proposed workflow. Similar to the accuracy estimation, we choose DeepLabV3 + as the core network 
of Stage I. In Stage II we tested nine networks. All networks were tested in the evaluation mode meaning that (a) 
normalization or dropout layers work in evaluation mode instead of training; (b) the automatic differentiation 
engine is deactivated. Adoption of the evaluation mode reduces memory usage and speeds up computations 
turning the back-propagation over the network. The main GPU used for testing is NVIDIA RTX 2080 Ti 11 Gb. 
The best performance (12.5 images/s) resulted in a proposed pipeline consisting of DeepLabV3 + (Stage I) and 
PSPNet (Stage II) whilst ranking sixth by MAE of the severity score. The most accurate solution consisted of 
DeepLabV3 + (Stage I) and MA-Net (Stage II), ranking eighth in the level of performance (7.9 images/s). On the 
other hand, the prediction speed of the tailor-made solutions, BS-net and COVID-Net-S, turned out to be the 
lowest making up 0.7 and 0.6 images/s respectively.

Discussion
Issue of the source data.  In this study, we utilize four publicly available COVID-19 datasets. According 
to the available protected health information, these datasets represent patients from over 40 countries, 107 cit-
ies, and 40 organizations. However, from a scientific and statistical point of view, we cannot ensure that all of 
the specified and/or unspecified medical organizations follow the same detailed protocol while data gathering. 
According to the generally accepted data collection rules81,82, the study design should be reproducible, so that 
the protocol can be followed by any other research party. All of the data needs to be gathered in a consistent 
manner and if data is collected by different individuals, it must be guaranteed that there is a sufficient degree of 
inter-rater reliability. In this regard, we cannot verify that there was no collection and processing biases in the 
data used for the analysis.

Comparison with existing scoring solutions.  Having estimated both state-of-the-art solutions (BS-net 
and COVID-Net-S), we found them not suitable for the usage on CXRs of healthy patients, signifying the limits 
of their usage in daily clinical practice. As we described in “Scoring results and comparison with the state-of-
the-art solutions”, BS-net and COVID-Net-S fail on the normal CXR cases and their MAEs (on a scale from 

Table 10.   Scoring performance estimated on a dataset of COVID-19 and normal cases.

Stage I model Stage II model MAE RMSE

Training Validation Testing Training Validation Testing

U-net 0.31 0.32 0.33 0.66 0.66 0.68

U-net++ 0.41 0.40 0.40 0.93 0.83 0.91

DeepLabV3 1.56 1.58 1.47 2.70 2.75 2.55

DeepLabV3+ 0.40 0.43 0.36 0.85 0.95 0.72

DeepLabV3+ FPN 0.32 0.34 0.36 0.68 0.69 0.77

Linknet 0.38 0.48 0.38 0.80 1.02 0.82

PSPNet 0.45 0.42 0.38 0.93 0.88 0.85

PAN 0.54 0.52 0.53 1.08 0.98 1.10

MA-Net 0.34 0.33 0.30 0.71 0.69 0.66

BS-net 2.35 2.25 2.52 3.00 2.92 3.13

COVID-Net-S 1.81 1.82 1.83 2.03 2.02 2.06
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ρ = 0.95, κ = 0.55 ρ = 0.91, κ = 0.50 ρ = 0.00, κ = 0.00 

ρ = 0.94, κ = 0.50 ρ = 0.94, κ = 0.57 ρ = 0.93, κ = 0.59 

ρ = 0.93, κ = 0.62 ρ = 0.87, κ = 0.50 ρ = 0.95, κ = 0.60 

ρ = 0.52, κ = 0.03 ρ = 0.65, κ = 0.01 ρ = 0.97, κ = 0.65 

Figure 9.   Relationship between the consensus score and the score of different networks.
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0 to 6) equate to 3.25 and 2.20 respectively. Such an error rate skews the networks to score healthy patients as 
mild or intermediate COVID-19 cases. However, even if we focus solely on COVID-19, the proposed workflow 
outperforms both BS-net and COVID-Net-S in disease scoring. Our solution based on DeepLabV3 + for lung 
segmentation and MA-Net for disease segmentation achieved an MAE of 0.69 (Table E1 in Appendix E), while 
MAEs of BS-net and COVID-Net-S are equal to 1.45 and 1.29 respectively.

From an architectural perspective, both BS-Net and COVID-Net-S are relatively lightweight. COVID-Net-
S utilizes a lightweight residual projection-expansion-projection-extension design pattern discovered by the 
machine-driven design exploration strategy and uses 1 × 1 convolution layers and 3 × 3 depth-wise convolution 
layers. The authors of BS-net also choose a lightweight solution for the processing of input images which is based 
on ResNet-18, while the segmentation is performed by a nested version of U-net, U-net++. We are inclined to 
believe that such lightweight networks do not generalize well for COVID-19 and pneumonia cases and that, in 
turn, leads to low-quality scoring, requiring additional validation by radiologists or clinicians. In contrast, the 
proposed workflow is based on network architectures with proven stability and generalization ability on a wide 
variety of tasks, including medical cases. Moreover, having hyper-tuned the networks in both stages of the work-
flow, we found optimal solutions in both accuracy and performance. In contrast to BS-net and COVID-Net-S, the 
proposed workflow, based on modern architectural solutions, outperforms them in prediction speed (Fig. 12). 
This means that despite the lightweight design of both BS-net and COVID-Net-S, these networks are of high 
complexity and potentially include more parameters than that of the modern networks highlighted in this study.

The majority of the current disease classification solutions focus, primarily, on distinguishing whether an 
infection is present or not, without paying much attention to where the network is looking. Previously13, we 
extended the classification of COVID-19 and pneumonia by utilizing a popular visualization technique known 
as Grad-CAM83. Using Grad-CAM, we validated where the four best-performing networks (MobileNet V2, 
EfficientNet B1, EfficientNet B3, VGG-16) were focusing, verifying that they are properly looking at the correct 
patterns in the image and activating around those patterns. We noticed that some networks were not focusing on 
image patterns of interest, instead, activating around patterns that lead to incorrect predictions (see Fig. 13c–e). 
Moreover, complex patterns of COVID-19 and pneumonia distinguished solely by radiologists forced us to 

(a) U-net (b) U-net++ (c) DeepLabV3 

(d) DeepLabV3+ (e) FPN (f) Linknet 

(g) PSPNet (h) PAN (i) MA-Net 

Figure 10.   Comparison of the probability maps of a COVID-19 subject from the ACCD dataset.
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develop the proposed method, where the considered models focus their attention explicitly on lung areas with 
additional regularization and removal of unnecessary regions in the decision making.

The Grad-CAM technique uses gradients, flowing into the final convolutional layer to produce a coarse 
localization heatmap highlighting important regions in the image for predicting the target concept. After visual 
comparison of classification-based and segmentation-based approaches, we may state that visualization and 
decision-making based on segmentation masks are of higher quality than the localization heatmaps obtained 
by Grad-CAM, thus the results of the proposed two-stage workflow are more precise. This is to be expected, 
however, as Grad-CAM is usually used for approximate localization and requires less effort and resources for 
data labeling and neural network training.

GT consensus score: 3.5 
BS-net 

Severity score: 6 
COVID-Net-S 

Severity score: 3 

(a) U-net 
Severity score: 4 

(b) U-net++ 
Severity score: 5 

(c) DeepLabV3 
Severity score: 0 

(d) DeepLabV3+ 
Severity score: 3 

(e) FPN 
Severity score: 4 

(f) Linknet 
Severity score: 3 

(g) PSPNet 
Severity score: 3 

(h) PAN 
Severity score: 5 

(i) MA-Net 
Severity score: 5 

Figure 11.   Comparison of the segmentation and severity score estimation of a COVID-19 subject from the 
ACCD dataset. A cyan delineation refers to the lung segmentation obtained by Stage I; a red mask is a disease 
mask obtained by Stage II; a yellow mask refers to the ground-truth segmentation of the disease.
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Conclusion
In this study, we proposed a workflow used for scoring and segmentation of lung diseases. The development 
was influenced by the standard practice adopted by trained clinicians when estimating the severity of a lung 
infection from an X-ray image. Central to our approach is the utilization of two core independent stages which 
allow us to investigate the regions of interest on an X-ray image, resulting in a lung mask and a disease mask. 
An additional block at the end of the workflow uses these masks to estimate the overall severity score for a given 

Figure 12.   Overall comparison of the obtained solutions.

pamtaehhturtdnuorG)b(egamiecruoS)a(

(c) MobileNet V2 (d) EfficientNet B1 (e) EfficientNet B3 (f) VGG-16

Figure 13.   Grad-CAM visualization of classification network heatmaps for a COVID-19 finding.
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patient. To select the best solution, we compared the performance of nine neural networks in both stages. The 
most accurate solution, in terms of MAE and RMSE, turned out to be based on DeepLabV3 + for lung segmenta-
tion and MA-Net for disease segmentation. Having compared the solution with the state-of-the-art BS-net and 
COVID-Net-S, we found our proposal to be more stable in terms of accuracy and more time-efficient in terms 
of prediction speed.

Data availability
To study algorithm performance, we collected, cleaned, and pre-processed three lung segmentation datasets as 
well as four disease segmentation and scoring datasets acquired for COVID-19 and pneumonia-infected patients. 
The datasets are publicly available on the following Mendeley Data repositories: https://​data.​mende​ley.​com/​datas​
ets/​8gf9v​pkhgy/1 and https://​data.​mende​ley.​com/​datas​ets/​36fjr​g9s69/1.
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