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The “DOLPHINS” project started in 2018 under a collaboration between three partners:
CNH Industrial Iveco (CHNi), RADA (an informatics company), and the Chemistry
Department of the University of Turin. The project’s main aim was to establish a
predictive maintenance method in real-time at a pilot plant (CNHi Iveco, Brescia, Italy).
This project currently allows maintenance technicians to intervene on machinery
preventively, avoiding breakdowns or stops in the production process. For this
purpose, several predictive maintenance models were tested starting from databases
on programmable logic controllers (PLCs) already available, thus taking advantage of
Machine Learning techniques without investing additional resources in purchasing or
installing new sensors. The instrumentation and PLCs related to the truck sides’ paneling
phase were considered at the beginning of the project. The instrumentation under
evaluation was equipped with sensors already connected to PLCs (only on/off
switches, i.e., neither analog sensors nor continuous measurements are available, and
the data are in sparse binary format) so that the data provided by PLCs were acquired in a
binary way before being processed by multivariate data analysis (MDA) models. Several
MDA approaches were tested (e.g., PCA, PLS-DA, SVM, XGBoost, and SIMCA) and
validated in the plant (in terms of repeated double cross-validation strategies). The optimal
approach currently used involves combining PCA and SIMCA models, whose
performances are continuously monitored, and the various models are updated and
tested weekly. Tuning the time range predictions enabled the shop floor and the
maintenance operators to achieve sensitivity and specificity values higher than 90%,
but the performance results are constantly improved since new data are collected daily.
Furthermore, the information on where to carry out intervention is provided to the
maintenance technicians between 30min and 3 h before the breakdown.
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INTRODUCTION

The current and future sustainable economic growth of companies
worldwide are today, more than ever, increasingly based on the value
and the information created by data. In the field of industry, the
features of Industry 4.0 are showing a growing impact on the
productive processes, since the companies are financially
encouraged to move towards industrial automation that
integrates some new production technologies aimed at improving
working conditions, creating new business models, and increasing
the productivity and product quality of their plants. Furthermore,
the governments of several countries are promoting business plans
and strategies focused on Industry 4.0 to offer the companies the
tools aimed at seizing the opportunities of innovation and digital
instruments related to the current fourth industrial revolution
(Gentner, 2016; Enyoghasi and Badurdeen, 2021; Gallo et al.,
2021; Ghobakhloo et al., 2021). In this context, Big Data and
Data Analytics themes play a strategic role since data are indeed
considered the lifeblood of economic development of the industrial
(but not only) companies nowadays. Data are the basis for evaluating
the quality of the products and generating gains in productivity and
resource efficiency, making it possible to optimize the production
process and enhance the whole plant’s efficiency. Consequently,
many companies face the necessity of implementing strategies
capable of collecting and interpreting the data robustly and
systematically alongside their productive process (Cugno et al.,
2021; Goldman et al., 2021; Jeske et al., 2021; Lee and Lim,
2021). Various Multivariate Data Analysis (MDA) models and
Machine Learning (ML) approaches have been gradually
introduced within the production plants to develop competitive
strategies, such as process control, quality control, and predictive
maintenance (Elsisi et al., 2021; Jamwal et al., 2021; Lee and Lim,
2021; Wankhede and Vinodh, 2021). The last topic is fascinating for
the companies since, if historical data have been already stored in
databases, predictive maintenance substantially requires the
computation of ML algorithms to predict the necessity of a
repair or, eventually, a replacement, which can be therefore
programmed and performed the way it turns to be most
effective. Predictive maintenance was originally performed using
user-defined alerts or expert-defined thresholds involving
Supervisory Control And Data Acquisition (SCADA) systems.
However, this approach does not consider the presence of
correlations, patterns, and similarities among the collected
features and the available signals detected from the sensors on
the machinery. On the other hand, MDA and ML tools perform
a multivariate interpretation of the stored data, which can belong to
even different kinds of databases (e.g., sensors, SCADA, and history
data) and origins (e.g., IT data, shop floor information, and
manufacturing processes) (Ghobakhloo et al., 2021; Lee and Lim,
2021). The current work focuses on developing and testing several
Machine Learning approaches at a pilot automotive plant (CNHi
Iveco, Brescia, Italy) for predictive maintenance purposes. In
particular, the goal of the “DOLPHINS” project was to build a
low-cost edge digital twin capable of performing real-time predictive
maintenance starting from data already collected and available at the
plant level. This project was settled in 2018 under a collaboration
among CNH Industrial Iveco (CHNi), RADA (an informatics

company), and the Department of Chemistry of the University of
Turin. In more detail, the goal of the DOLPHINS project was to
develop a software application—in the tangible form of a dashboard
working in real-time as a statistical digital twin of a shopfloor
asset—by implementing a twin statistical model of the equipment
under examination to deliver behavioral predictive warnings to the
maintenance technicians in order to intervene on the investigated
machinery preventively. Fundamental targets of the DOLPHINS
project were as follows: 1) to provide the technicians an approach
showing robust predictive capabilities of performing real-time
maintenance; 2) to diminish as much as possible the occurrences
of breakdowns, stops, and micro-stops, aspiring to a near-zero
downtime goal; 3) to develop a low-cost implementation of this
approach since training data for ML and MDA approaches were
already collected and stored in programmable logic controller (PLC)
devices. By referring to the last DOLPHINS target, a relevant
advantage of this project is that ML models were built on data
already available by the PLC equipment itself from large sensor
arrays. Hence, no additional sensors were needed since the
multivariate models were trained on the historical data and then
tested on those acquired recently, reducing the impact on the
company in terms of implementation costs and time. Since data
are stored by the PLCs in the form of sparse binary matrices, several
ML algorithms were tested during the development stage of
DOLPHINS. Therefore, various MDA classification models were
evaluated to predict the occurrence of failures within a given time
window and their performancewasmonitored to choose the optimal
model to perform constant and real-time processing of the data.
Finally, once new data and signals are collected, they are interpreted
by the developed ML model to monitor the performance of the
machinery under examination and predict its evolution by detecting
any significant drift and variation over time. The real-time results are
expressed in terms of the probability of malfunctions and severity of
the signals recorded by the PLCs to allow the maintenance
technicians to work promptly on specific machinery sections.
This approach diminishes the occurrences of stops and
breakdowns sensitively and provides further knowledge on the
behavior of the machinery itself. The final goal of the
DOLPHINS project is to extend this approach to other shopfloor
systems by raising the amount of cost savings, diminishing the
periods of downtime, and improving the efficiency and the
predictability of the productive process.

MATERIALS AND METHODS

Framework and Project Development
The development of the DOLPHINS project started as a proof-of-
concept study on evaluating the data acquired at the CNH Industrial
Iveco (CHNi) Plant of Brescia (Italy). The working area selected for
the project consisted of theWeldingOperative Unit and two types of
machinery were monitored [namely, 0P10–External Door
Compartment Ring (AVPE) and 0P10–Internal Door
Compartment Ring (AVPI)]. Signals registered from AVPE and
AVPI machinery (Figure 1) were historically stored into PLCs but
not interpreted in ML modeling for predictive maintenance. In
detail, the data of AVPE and AVPI consisted of 176 and 153 sensors
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connected to the PLCs, respectively. The signals were registered into
the database in the form of sparse binary output (i.e., ON/OFF, with
a prevalence of OFF results), indicating if the specific threshold
values for each sensor are exceeding (i.e., ON) or not (i.e., OFF).
Then, a pre-treatment step involving the binarization of the collected
data (i.e., 0 means that the signal of a specific collected variable is
OFF, whereas 1 means that the signal of the variable is ON) was
performed. Furthermore, a categorical binary output indicating the
status of the machinery (i.e., “Working” or “Stop”) for each
collection record was available, too.

In the present proof-of-concept study, the records collected
from September 1, 2020, up to November 15, 2020, are shown as
an example of two matrices of dimensions 210,307 × 177 and

199,077 × 154 for AVPE and AVPI machinery, respectively.
Records are collected on the PLCs with a frequency of one
second per record during the different work shifts. The whole
study was composed of two developmental steps: the first step
assessed the feasibility of the study, involving the acquisition of
the data, their pre-pretreatment, the evaluation of several ML
models, and the comparison of their performances, while the
second step focused on the real-time implementation of the
developed model within the plant, by testing the elected ML
model on newly acquired data, updating the model with a
scheduled frequency (approx. one month), and programming
dashboards and platform-ready applications to be employed by
the maintenance technicians during their everyday work. A

FIGURE 1 |Graphical representation of the External Door Compartment Ring (AVPE) and Inner Door Compartment Ring (AVPI) machinery under examination of the
CNH Industrial Iveco (CHNi) Plant of Brescia (Italy).

FIGURE 2 | Working steps of the DOLPHINS project.
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graphical representation of the developmental steps of the
DOLPHINS project is reported in Figure 2.

Machine Learning Strategies
Several classification MLmodels were tested on the collected data
to decide which algorithm best discriminates the records labeled
as “Working” conditions from those labeled as “Stop” conditions
of both the AVPE and the AVPI machinery. For this purpose, a
benchmark analysis was performed by involving the following
classification algorithms: k-Nearest Neighbors (kNN) (Massart
et al., 1997), Logistic Regression (LogReg) (Cruyff et al., 2016),
Linear Discriminant Analysis (LDA) (Massart et al., 1997;
Martinez and Kak, 2001), Quadratic Discriminant Analysis
(QDA) (Srivastava et al., 2007), Partial Least
Squares–Discriminant Analysis (PLS-DA) (Ballabio and
Consonni, 2013), Soft Independent Modelling of Class
Analogies (SIMCA) (Wold and Sjostrom, 1977; Vanden
Branden and Hubert, 2005), Naive Bayes (NB) (Cassidy,
2020), Support Vector Machine (SVM) (Hearst et al., 1998;
Vapnik, 2000), Decision Trees (DT), Random Forest (RF)
(Fratello and Tagliaferri, 2019), and Extreme Gradient
Boosting (XGBoost) (Chen and Guestrin, 2016; Guang et al.,
2020). Since the acquired data are in the form of sparse binary
matrices, the Sparse Logistic Principal Components Analysis (SL-
PCA) approach was performed on the datasets before computing
different ML approaches such as kNN, LogReg, LDA, QDA, and
SIMCA. Since these algorithms can not evaluate sparse binary
data properly, they were calculated on the Principal Components
(PCs) provided by SL-PCA modeling. The SL-PCA algorithm
introduced by Lee et al. (2010) involves an iterative weighted least
squares algorithm and the calculated PCs were then used as new
variables for the cited ML algorithms.

Both external validation and cross-validation were performed
in the study. All the MDA models were tuned and trained on the
data from September 1, 2020, up to October 31, 2020, using a
repeated k-fold cross-validation strategy. For benchmark and
tuning purposes, each tested algorithm got the same training
set since the data had the same partitioning for every model and
every cross-validation step. This data partitioning strategy was
employed to compare the performance of the various models
properly.

Grid search analysis was made to tune the number of
components and the values of the hyperparameters of all the
algorithms effectively. The use of an exhaustive grid search
analysis (involving cross-validation, too) was performed to
find the combination of hyperparameters that performed best
for each ML model. Grid search analysis (rather than random
search or sequential search) allowed us to monitor many values
within the hyperparameters’ space when looking for the best-
performing values. Despite grid search being time-consuming
and expensive, we decided to exploit it to achieve the best tuned
and cross-validated ML models. SL-PCA tuning grid search
involved evaluating the optimal number of k components
(from 1 up to 30) and λ penalty parameter (from 0 up to
0.01). The best compromise for the goodness-of-fit and the
model complexity was achieved by minimizing the Bayesian
Information Criterion (BIC) (Lan et al., 2012). Grid search

was performed for PLS-DA and SIMCA to find the optimal
number of k components and latent variables in terms of Root
Mean Square Error in Cross-Validation (RMSECV) (Massart
et al., 1997). The optimal value of k-nearest neighbors for the
kNN algorithm was varied from 1 up to 10. No tuning grid search
was required for LDA, QDA, LogReg, and NB algorithms. In
contrast, SVM tuning involved the grid search evaluation of four
hyperparameters: kernel (involving the use of polynomial, radial,
or sigmoid kernels), degree (related to the shape of the SVM
decision boundaries for polynomial kernels, from 1 up to 3),
gamma (describing the influence of the records on the location of
the SVM decision boundaries, from 0.1 up to 10), and C
(influencing the penalization of the records arranged within
the margin of SVM boundary, from 0.1 up to 10) (Vapnik,
1995). DT tuning involved the grid search approach on four
hyperparameters: minsplit (describing the minimum amount of
records to be included into a node before splitting, from 1 up to
20), minbucket (defining the maximum depth of the calculated
decision tree, from 1 up to 10), cp (indicating the minimum
improvement in the performance of a node to allow a further
split, from 0.01 up to 0.1), and maxdepth (describing the
minimum amount of records that can be included into a leaf,
from 1 up to 10). RF algorithm also involved the grid search
tuning evaluation of four hyperparameters: ntree (expressing the
number of trees in the forest model, from 10 up to 300), mtry
(representing the number of variables to be randomly sampled at
each node, from 5 up to 40), nodesize (defining the minimum
number of records to be included into a node, 1 up to 10), and
maxnodes (establishing the maximum number of leaves allowed
in the model, from 2 up to 30) (Bischl et al., 2016; Fratello and
Tagliaferri, 2019). XGBoost tuning grid search evaluated seven
hyperparameters: eta (indicating the learning rate to avoid
overfitting, from 0 up to 1), gamma (describing the minimum
amount of splitting for a node, from 0 up to 20), max_depth
(indicating how deeply each evaluated tree can grow, from 1 up to
5), min_child_weight (defining the level of impurity that is
maintainable for a node, from 1 up to 10), subsample
(describing the proportion of samples to be randomly selected
when evaluating each tree, from 0 up to 1), colsample_bytree
(evaluating the proportion of variables selected by each tree, from
0.1 up to 1), and nrounds (defining the number of trees that can be
sequentially calculated within the model, from 10 up to 100)
(Bischl et al., 2016; Guang et al., 2020). The tuning of the kNN,
SVM, DT, RF, and XGBoost methods was evaluated in terms of
mean misclassification error (MMCE), which represents the ratio
between the number of records classified as belonging to a specific
class different from their actual class (i.e., “Stop” or “Working”)
(Bischl et al., 2016; Probst et al., 2017). This parameter was
calculated for all the ML algorithms and, therefore, the best
tuning scenarios selected turned to be those providing the
lowest MMCE value. A repeated k-fold cross-validation
strategy involving a 10-fold CV approach repeated five times
was performed when performing the grid search analysis. As a
result, in summary, the best models were selected in average
terms of Bayesian Information Criterion (BIC) for SL-PCA, Root
Mean Square Error in Cross-Validation (RMSECV) for SIMCA
and PLS-DA, and mean misclassification error (MMCE) for
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kNN, SVM, DT, RF, and XGBoost. This approach, in our
opinion, validates our entire model-building procedure,
including the hyperparameter-tuning step.

The external validation was made by removing the records
from November 1, 2020, up to November 15, 2020 from AVPE
and AVPI original datasets. These data, consisting of matrices of
dimensions 42,062 × 177 for AVPE and 33,180 × 154 for AVPI,
were employed as a test set. Therefore, the results and the
performance of the ML algorithms on the external validation
test set were expressed using several metrics such as precision,
recall, specificity, and Fscore. In the present studio, the records
classified as “Working” were considered positive samples
(i.e., indicating proper functioning of the tested machinery). In
contrast, the records classified as “Stop” were considered negative
samples (i.e., indicating a malfunction or a breakdown of the
machinery under examination). The “models” performance
metrics were calculated as follows:

Precision � TP
TP + FP

,

Recall � TP
TP + FN

,

Specificity � TN
TN + FP

,

Fscore � 2 × Recall × Precision
Recall + Precision

,

where TP and FP represent the number of true positive and
false positive records, whereas TN and FN indicate the number
of true negative and false-negative records (Bischl et al., 2016).
Finally, the model showing the best compromise among the
different performance metrics was employed to develop the
dashboards for predictive maintenance and the real-time

evaluation of the new data collected in the plant.
Nevertheless, an update of the ML models was scheduled
with a frequency of 1 month (in parallel with the real-time
analysis of the new data) to monitor the performance of the
ML models on a larger amount of data.

Software
R statistical environment (version 4.0.2) (R Core Team, 2020) and
R Studio Desktop IDE (version 1.4.1717) (RStudio Team, 2020)
were used in this study. In addition, the following R packages
were employed: caret (Kuhn, 2020), dplyr (Wickham et al., 2020),
ggplot2 (Wickham, 2016), mdatools (Kucheryavskiy, 2020),
mixOmics (Rohart et al., 2017), mlr (Bischl et al., 2016),
parallel (R Core Team, 2020), parallelMap (Bischl et al., 2020),
plotly (Sievert, 2018), and tidyverse (Wickham et al., 2019). PLS-
DA modeling was performed using the R codes available at
(Github, 2013).

RESULTS AND DISCUSSION

Tuning and Benchmark Analysis
SL-PCA modeling indicated, as optimum, a tuning of 6 PCs with
a λ value of the penalty parameter equal to 0.0025 for the AVPE
data 5 PCs and λ equal to 0.0020 for the AVPI data. Examples of
the scores plots of the SL-PCA models on the AVPE and AVPI
machinery training datasets are reported in Figure 3. As it can be
seen, a distinct separation is observed between the “Working” and
the “Stop” samples in the space modeled by the new PCs. Since
PCA is an exploratory data analysis algorithm, these results
suggest that the classification task focused on predicting the
operative conditions and the behaviors of the machinery

FIGURE 3 | SL-PCA scores plot for AVPE (A) and AVPI (B) machinery. The blue circles represent the records labeled as “Working” on the PLCs, while the red
circles are the records acquired as “Stop.”
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under examination might be feasible. Therefore, the calculated
PCs were used as new features for the following ML classification
algorithms: kNN, LogReg, LDA, QDA, and SIMCA.

The results for all the evaluated ML algorithms are expressed
in MMCE for AVPE and AVPI machinery in Table 1. Further
details about the tuning results for all the models are reported in
the Supplementary Material (Supplementary Table S1). As
shown in Table 1, SIMCA modeling (preceded by SL-PCA
processing) provided the lowest results in MMCE. Therefore,
this approach was selected for further testing with the external
validation data and the implementation within an on-purpose
developed dashboard to be used at the shopfloor level by the
maintenance technicians of the plant.

SIMCA Model
The external validation dataset involving the AVPE and the
AVPI data from November 1, 2020, up to November 15, 2020,
were predicted by the developed SIMCA model. Hotellings T2

vs. Q residuals plots for AVPE and AVPI test sets can be

observed in Figure 4. Again, a satisfactory separation is
observed between the “Working” and the “Stop” records
collected by the PLCs during the period under examination.
Although some records are still misclassified (mainly false
negatives, i.e., false “Stop” predictions), the performance of the
SIMCA model appears robust for both AVPE and AVPI
machinery, thus suggesting the use of this approach for
predictive maintenance purposes.

SIMCA prediction results are expressed in precision, recall,
specificity, and Fscore for both the types of machinery under
examination, as reported in Table 2. These evaluations were
made for all the ML algorithms, but the results turned to be lower
than those obtained by the SIMCA model (results not reported
here). SIMCA model provided optimal results for all the metrics
under examination. However, specificity turned to be the metric
with the lowest value; this result may be due to the lower number
of “Stop” occurrences collected by the PLCs. The machinery
under examination does not stop frequently, and several recorded
“Stop” instances can be defined as micro-stops since they show a
downtime lower than 1 minute. Moreover, the number of “Stop”
records collected by the PLCs is only around 5% of the data. Our
opinion is that the model’s performance might be improved
further by updating the training sets in a scheduled way
(approx. one month) and collecting new data, especially those
related to “Stop” records. Since the approach involving SL-PCA
and SIMCA algorithms provided optimal and robust

TABLE 1 | MMCE values of all the tested ML algorithms for AVPE and AVPI
machinery training datasets.

ML models AVPE (MMCE) AVPI (MMCE)

KNN 0.073 0.075
LogReg 0.114 0.093
LDA 0.099 0.127
QDA 0.085 0.106
PLS-DA 0.171 0.216
SIMCA 0.034 0.052
NB 0.210 0.194
SVM 0.052 0.081
DT 0.226 0.102
RF 0.083 0.135
XGBoost 0.097 0.143

FIGURE 4 |Hotelling’s T2 vs. Q residuals plot for AVPE (A) and AVPI (B)machinery. The blue circles represent the records labeled as “Working” on the PLCs, while
the red circles are the records acquired as “Stop.” The dotted line indicates the 95% Hotelling’s T2 limit, while the dashed line represents the 95% Q residuals limit.

TABLE 2 | SIMCA performance metrics for AVPE and AVPI machinery test
datasets.

Machinery Precision Recall Specificity FSCORE

AVPE 0.977 0.944 0.844 0.960
AVPI 0.985 0.962 0.899 0.973
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classification performance, this method was implemented into a
dashboard to perform real-time predictive maintenance in
the plant.

Dashboard Implementation
SIMCA algorithm provides several advantages for the
development of a real-time predictive maintenance approach.
Firstly, no assumptions are made on the probability distributions
of the features under examination, which allows analyzing the
new PCs from the SL-PCA model reliably. Secondly, since each
class (i.e., “Working” and “Stop” records) is modeled
independently, it is possible to obtain and predict the
information about the classification probability of a certain
record when introduced into the trained model. Thirdly, the
SIMCA approach allows the maintenance technicians to identify
the sensor or the single component of the machinery to consider
for intervention before the occurrence of an incoming fault.
Thanks to the evaluation of Hotelling’s T2 and Q residuals
contribution plots provided by the combined SL-PCA and
SIMCA algorithms, it is possible to recognize the critical
signals recorded on the PLCs. An indication of the severity of
the recorded signals was also implemented by calculating the
logarithm (base 10) of the maximum Hotelling’s T2 and Q
residuals contribution (in absolute value) and normalizing it
on a scale from 0 up to 100%. However, this approach is still
under evaluation since the amount of recorded breakdown events
is relatively low.

Finally, the probability of classifying a new record as
“Working” (Probworking) is inferred for all the new records
collected on the PLCs. Figure 5 displays the transient of
Probworking over time. The example reported in Figure 5
shows the fluctuation of such probability before a specific

breakdown occurred (on the right part of the plot). The x-axis
represents the time before the occurrence of the stop of the
machinery (in this case, AVPE), while the y-axis shows a binary
output related to Probworking. As a rule of thumb, it was
established that if Probworking turns higher (or equal) than 0.5,
the record is classified as “Working” and the transient is set to 0.
On the other hand, if Probworking turns to be lower than 0.5, the
record is classified as “Stop” and the transient is set to 1. The
indication of a probable malfunction of the AVPEmachinery was
observed, in this case, 10 h before the breakdown. Other alerts
were predicted 5, 2 h, and 30 min before the adverse event.
However, the number of false “Stop” occurrences (i.e., false-
negative records) might be rather high, as also remarked by
the specificity values reported in Table 2. Again, this might be
ascribed to the necessity of collecting new data and updating the
SIMCA models (or the other tested ML algorithms).
Nevertheless, further tuning of the employed decoding was
tested. As it can be seen in Figure 5, different thresholds of
Probworking were evaluated (e.g., 0.4, 0.3, 0.2, and 0.1 thresholds)
to diminish the number of false “Stop” occurrences and improved
sensitivity values (approx. 0.89 and 0.94 for AVPE and AVPI,
respectively) were found using a Probworking threshold of 0.1. This
further refining of the algorithms is still under examination and
will be monitored over time. Furthermore, this approach allows
providing the maintenance technician a tool capable of
predicting a breakdown event before its occurrence. In fact,
by analyzing the transients of Probworking monitored over time,
it was observed that reliable alerts occurred in the range
between 30 min and 3 h before the breakdown. At the
current stage, it is still not trustworthy to provide
Probworking with a confidence interval in terms of time
before the occurrence of the stop event since the number of

FIGURE 5 | Transient of SIMCA Probworking monitored over the time for the AVPE machinery before a breakdown. The x-axis represents the time before a
breakdown event (occurring on the right side of the plot), while the blue lines represent the coded transient at different Probworking thresholds (i.e., 0.5, 0.4, 0.3, 0.2
and 0.1).
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“Stop” records is still limited. However, further analyses will be
made on Probworking over time to estimate such a parameter
reliably. An example of the developed dashboard is shown in
Supplementary Figure S2.

CONCLUSION

DOLPHINS project represents a proof-of-concept and low-cost
tool to perform reliable real-time predictive maintenance. It
combines ML technology-driven algorithms with the
evaluation of historical datasets that have never been
interpreted using a multivariate data analysis approach. The
algorithm involving SL-PCA and SIMCA has now been
implemented by the automotive plant of CNHi Iveco (Brescia,
Italy) at the shop floor level efficiently, and the number of failures
and breakdown events has significantly diminished since the
commissioning of the project.

This project allowed the development of an automated
dashboard that shows the operator, in real-time, and the
current instrumentation’s operating conditions and, if signals
arrive at the PLC, indicates the severity and probability that these
lead to a stop. This predictive maintenance approach has
numerous advantages, including 1) a meager impact in terms
of costs (data already available are used); 2) the possibility of
physically interpreting the information; 3) the possibility of not
having to stop the production process; 4) the transversality of the
application of Machine Learning also to other components and
instrumentation within the plant.

At the current stage, the DOLPHINS algorithm can run on
edge and cloud systems and conventional plant infrastructure.
For this reason, the future perspectives of this project will focus
on converting the DOLPHINS algorithm into a multiplatform
application to raise its scalability on other types of machinery and
plants. However, DOLPHINS is now equipment-oriented, and all

the steps involving the tuning, training, and testing of the ML
algorithms are required to develop a robust real-time predictive
maintenance strategy. Therefore, a constant and frequent update
of the databases and the ML models have to be scheduled to
obtain reliable results and reach the goal of near-zero
downtime.
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