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The toxic waste and pollutants of heavy metals continuously pollute freshwater aquatic

reservoirs, which have severe implications on aquatic life and human health. The present

work aims to evaluate trace elements (Zn, Mn, Cu, Cd, and Pb) along with three sites,

Mariout Lake, Abbassa, and River Nile Aswan in Egypt, using Nile tilapia (Oreochromis

niloticus) as bioindicator. The quality assurance, health-risk assessment, sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative polymerase chain

reaction (qPCR), and micronucleus test were performed to investigate the effect of

different trace elements onHsp70 gene level andmicronuclei formation. We observed the

highest expression of Hsp70 protein band of 70 KD and stress-responsiveHsp70 gene in

the liver followed by gills of Nile tilapia caught from Mariout and Abbassa, but the lowest

expression was in Nile tilapia caught from Aswan. Obvious micronuclei were observed

under the microscope in erythrocytes, and their number was gradually decreased in the

following manner: Mariout > Abbassa > Aswan. Noticeably, Cu, Zn, and Mn contents

were low. Still, Pb and Cd contents were higher than the toxicity level recommended by

the Food and Agriculture Organization (FAO), The World Health Organization (WHO), and

the European Commission (EC). These results showed that Hsp70’s appearance at the

two levels of mRNA and protein is an effective indicator for aquatic pollution besides the

aberration at the chromosome level represented in the micronucleus test. Furthermore,

these results showed that Nile tilapia of the Aswan region had comparatively low trace

elements contamination and were suitable for consumption.
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INTRODUCTION

Untreated domestic wastewater, mining wastewater, industrial
effluent discharge, metallurgical waste, excessive fertilizers,
and pesticides in agriculture tremendously pollute the aquatic
ecosystem and significantly affect human health (1). The Nile
River is themain freshwater body that fulfills 97% of the irrigation
and drinking necessities of Egyptian people (2). Additionally, the
Nile River is a major source of fish hunting to fulfill the protein
requirement of Egyptian people (3). On the other hand, industrial
wastes comprising heavy metals are polluting freshwater aquatic
resources in underdeveloped countries very seriously, which is
subsequently affecting aquatic life, such as over-accumulation of
toxic ingredients in animals being consumed as seafood (4). For
example, discharge of untreated wastewater in the Nile River
is contaminating and substantially changing the composition of
freshwater, which became unfit for the growth of aquatic life and
a serious cause of extinction of some economically important
animal species (5).

Trace elements such as zinc (Zn), manganese (Mn), copper
(Cu), and cadmium (Cd) are essential for enzyme activities. Still,
excess of some trace elements such as Cd and Mn are persistent
contaminants in the environment which are a serious cause of
cancer and other fatal ailments in both animals and humans (6).
Regionally, the primary source of Nile River aquatic pollution in
Egypt is toxic industrial runoffs (7, 8). The heavy metal residues
are retained for a long time in the soil and drained into aquatic
reservoirs, absorbed by plants and aquatic animals, and cause
a serious health threat to humans on ingestion (9, 10). These
toxic trace elements are genotoxic pollutants (3, 11) and cause
hepatorenal toxicity in humans on over-consumption (12, 13).
It is a need of the hour to investigate the level of trace elements
and evaluate genotoxicity level in animals such as Nile tilapia
consumed as daily food, which is an inhabitant of the Nile
River (3).

Different tilapia species are being used as a model to study
environmental pollutants, such as heavy metals accumulation in
an aquatic body (14–16). Fishes are the richest source of protein;
moreover, fishes readily undergo heavy metals accumulation in
their bodies (17, 18). Therefore, measuring the concentration
of heavy metals accumulated in fish’s bodies in an aquatic
environment is an accurate indicator of heavy metal pollution of
that aquatic ecosystem (19). Noticeably, Nile tilapia Oreochromis
niloticus is dominant among all aquatic animals inhabiting the
Nile River. Besides, it is one of the best and relatively inexpensive
sources of protein because it is rich in essential amino acids,
especially cysteine, as compared with other non-essential dietary
proteins (3, 11). In light of guidelines published by the American
Heart Association (AHA), fish should be added in daily life to
prevent cardiovascular disease (20) because it is low in harmful
fats, low-density lipids (LDL), and cholesterol and high in protein
contents as compared with mutton, beef, chicken, and other
sources (16).

The fish bioassay helps measure heavy metals contamination
via the metal bio-magnification process (21). In freshwater,
there are many physiological and oxidative stress biomarkers
that depend on antioxidant enzymes, i.e., superoxide dismutase

(SOD), catalase (CAT), and glutathione reductase (GR), as well as
non-enzymatic antioxidants such as reduced glutathione (GSH)
(22–24). The micronucleus (MN) frequency test is a robust
technique among all predominant biomarkers to determine
the cytogenetic damage caused by environmental toxicity and
estimate water quality (3, 25). The MN test is employed to
measure cytogenetic damage (26), eugenic and clastogenic effects,
and genotoxicity ascribed to most of the toxic compounds (27).
Thus, it is widely applied to fish species (28, 29). Real-time
PCR is another highly sensitive, reproducible, and cost-effective
technique used to measure the variable expression of genetic
markers to identify DNA mutations (3, 30). Finally, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
is a widely used technique for protein separation on the basis
of mass and charge ratio (m/e), which is also being employed
in evaluation of genotoxicity (3, 31). In this study, some selected
tissues of Nile tilapia were tested for contamination of inorganic
heavy metals traces [lead (Pb), Cu, Cd, Zn, and Mn], their
effect on genotoxicity, and expression pattern of Hsp70 gene
family. Finally, these results showed that Nile tilapia of the Aswan
region had comparatively low trace elements contamination and
is suitable for consumption. Furthermore, the effective use of
Hsp70 expression at the two levels (gene and protein) are rapid
and cheap tools for detecting aquatic pollution.

MATERIALS AND METHODS

Selection of Study Areas
In order to study the level and localization of trace elements
in aquatic life, Nile tilapia were collected from three different
geographical locations in Egypt, namely, Mariout Lake, Ismailia
Canal (Abbassa), and Nile River (Aswan) (Figure 1). Mariout
Lake is situated in the northern Nile Delta along southern
Alexandria’s Mediterranean coast, which covers ∼200 km2 and
is located at 31◦09

′
17.7

′′
N and 29◦54

′
26.0

′′
E. The Ismailia Canal

(Abbassa) extends the Nile River, which flows from Shubra
north of Cairo to the Suez Canal, passing by Ismailia city. We
collected samples from the Abo-Swir region at 30◦33

′
35.4

′′
N and

32◦06
′
51.9

′′
E. Aswan city is situated at the bank of the Nile River

with the following location: 24◦04
′
33.1

′′
N and 32◦52

′
51.6

′′
E.

All these selected regions have different temperatures, diverse
environmental conditions, and prime fishing zones for the whole
country. Specifically, these regions are surrounded by industrial
zones, which are the primary source of pollution.

Samples Collection
A total of 90 freshwater Nile tilapia (30 fishes from each
site), with length 10 ± 0.49 cm and weight 75 ± 0.5 g,
were collected with the help of fishermen at the end of
April 2018. Large tanks filled with aerated lake water were
used to transport the fish to the physiology laboratory. After
cessation of opercular movement, euthanasia was performed
by dipping the fish for 10min in a highly concentrated
10X MS222 solution of 250 mg/L during anesthesia (32, 33).
The fish were thoroughly washed with distilled water and
dissected on a clean glass surface to collect the following
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FIGURE 1 | Egyptian map showing the three tested water sites, which are (1) Aswan, (2) Abbassa, and (3) Mariout.

tissues: muscles, gills, and liver. Dissected tissues were packed
in sterilized polythene bags, labeled, and stored at −20◦C for
further analysis.

Determination of Trace Elements Contents
Nile tilapia tissues (1 g each) were dissected with a bladeless knife
and dipped in a 100-ml tube containing 10ml of concentrated
HNO3:HCLO4 of 4:1 (16). For partial digestion, dry ashing of
0.5 g of each sample was performed on a hot plate at 60◦C in a
porcelain container by adding 5ml of 2NHCL. Subsequently, the
mixture was placed on a hot plate to evaporate the liquid contents
and then placed in a muffle furnace at 400–450◦C overnight. The
digested samples were dissolved in 0.5ml HNO3 (10% solution,
v/v), filtered, and immediately transferred to a 14-ml volumetric
polypropylene tube; volume was completed with deionized
water and placed at room temperature until examination (34).
Similarly, blanks or negative controls were also prepared by
following the same method without adding fish organ samples,
and certified fish muscles (DOLT-4 dogfish liver) were used as
a positive control. The samples were analyzed to determine Pb,
Cd, Cu, Mn, and Zn by atomic absorption spectrophotometer
(Perkin Elmer 3100). The heavy metal contents of each
specimen were presented in µg/g wet weight. We analyzed
data according to World Health Organization (WHO)/Food
and Agriculture Organization (FAO) Legal Notice no. 66/2003
(http://faolex.fao.org/docs/pdf/eri42405.pdf) and European
Commission (EC) (35). Commission Regulation as regards
trace elements, Directive, 2001/22/EC, Npo: 466 regulations to
record concentrations of trace elements present in wet weight
of samples.

Assurance of Quality
All acids and chemicals used in the whole experiment were of
analytical grade, purchased from F. Maia Industry and Trade Ltd.
(Sao-Paulo, Brazil) and Merck (Darmstadt, Germany). In order
to decontaminate the materials, deionized water was prepared
using a Milli-Q deionization system (Millipore, Bedford, MA,
USA). All glassware were immersed for 24 h in a commercially
available Extran R©detergent (Merck, Darmstadt, Germany), then
flushed with 10% nitric acid and subsequently with distilled
water, decontaminated by washing with 0.5% KMNO4 solution
(w/v), and finally washed with distilled water. For standard
calibration, multi-element solutions comprising Zn, Mn, Cu,
and Pb (10,000mg L−1) were purchased from Ultra Scientific
(Rhode Island, USA) and Cd (1,000mg L−1) from SpecSol (Sao-
Paulo, Brazil). The sample analysis results for quality control
displayed that heavy metal determination level was satisfactory
with 95–101% of certified recovery values of metals under study.

Health Risk Assessment
To assess health risks, the estimated daily intake (EDI) of the
trace elements Pb, Cd, Mn, Cu, and Zn via Nile tilapia fish
consumption rate was compared with the current provisional
tolerable daily intakes (PTDI). PTDI was calculated from the
current provisional tolerable weekly intake (PTWI) by following
method µg/kg body weight/day for 7 days (36). The average
quantity of fish consumed per Egyptian person is 22.72 kg/year
(16). The estimation of daily intake (EDI) of heavy metal
elements per person can be performed bymultiplying the average
quantity of fish consumed per day per person by the mean
concentration of measured heavy metal elements in fish.
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Weekly intake of inorganic elements = concentration
of an element in fish (µg/g wet weight) × mean fish
consumption (g/person/week).

Weekly ingestion per body weight (kg) = weekly intake EDI
per body weight (kg) reference consumer’s body weight. Herein, a
child as reference consumer is 15 kg, a young person as reference
consumer is 40 kg, and an adult as reference consumer is 70 kg
(16). According to the General Authority for Fish Resources
Development (GAFRD), Cairo, Egypt, the overall consumption
of fish per capita in Egypt was 351 g/week (37).

Micronucleus Test
In order to perform a MN test to detect nuclear anomalies,
peripheral blood was collected with a heparinized capillary tube
from gills of Nile tilapia by following the already published
Hooftman and De Raat (38) method. Blood droplets were
smeared and fixed on glass slides by adding methanol. Feulgen
staining was performed in the following method: The smears
were first hydrolyzed in chilled 1NHCl for 15min at 60◦C, rinsed
with cold 1N HCl for a few seconds, and washed with ddH2O
for a few seconds to remove extra HCl. Erythrocyte staining was
performed by adding Schiff ’s solution and placing the smears
at room temperature for 1 h, then washing the smears twice
with newly prepared bisulfite solution (10% K2S2O5, 5ml HCl,
and 100ml ddH2O). Finally, the smears were counterstained by
adding 1% aqueous light green solution for 1min, washed with
ddH2O for a few seconds, and mounted in the digital picture
exchange (DPX).

Approximately 5,000 erythrocytes were examined from each
fish and six fishes for each trace element to detect and score
the micronuclei in erythrocytes at ×1,000 magnification using
an oil immersion lens (39). In order to avoid stain particles
being scored, only non-retractable particles were scored as
abnormalities. The cells with intact nuclear and cell membranes
which have similar central nucleus staining with their size less
than one-third of the main nucleus were scored. Moreover,
MN exists marginally, and overlapping the main nucleus was
challenging to identify their nuclear boundaries. Noticeably,
MN staining should be similar to staining of the main
nucleus. MN frequency was also calculated according to the
following equation:

MN % = (Number of cells with micronuclei)/(Total number
of cells)× 100

Protein Extraction and SDS-PAGE
In order to extract total protein contents, ∼0.1 g fresh muscle
tissues of three Nile tilapia from each fishing zone were used.
Samples were ground to disrupt the cell membrane, suspended
in 1.0ml of lysing buffer (Proteinase K, ThermoFisher, USA),
subsequently heated at 100◦C for 5min, and centrifuged at 10,000
rpm for 30min to sediment coarse particles. To separate proteins
on the basis of charge and mass (e/m) ratio, 2 µl of each sample
was loaded in SDS-PAGE gel along with a proteinmarker (3). The
Gel-Pro Analyzer package V3.1 analyzed the protein molecular
mass (Media Cybernetica 1993–97).

The Expression Level of the Hsp70 Gene
In order to investigate the change in the expression level
of the Hsp70 gene, total RNA and protein contents were
extracted from muscle tissues, gills, and liver of Nile tilapia by
using Trizol reagent (Invitrogen, USA). The concentration of
total RNA was quantified on a Nanodrop spectrophotometer
(ThermoFisher Scientific Inc., Wilmington, DE, USA), and
quality was determined by running 1% agarose gel (40).
Total extracted RNA was treated with RNase-free DNaseI
to remove DNA. Then 2 µg of total RNA was used for
cDNA synthesis by using First Strand cDNA Kit (Invitrogen,
Waltham, MA, USA) following the manufacturer’s protocol. β-
actin and Hsp70 primers were designed using Primer Premier
5.0 software in quantitative polymerase chain reaction (qPCR)
for gene expression analysis (Table 1) (41). qPCR was performed
following an already published protocol (42). qPCR profile was
adjusted as follows: 95◦C for 10min, 95◦C for 15 s, and 60◦C
for 60 s with 40 cycles. The threshold cycle (CT) method was
used to analyze relative gene expression level, normalized with
a geometric mean of expression of housekeeping gene β-actin
(43), and finally calculated by 2−11Ct equation (44, 45). Total
protein was boiled at 100◦C with Coomassie Brilliant Blue buffer
and centrifuged at full speed for 5 s, and 2 µl of supernatant
was loaded in SDS-PAGE gel prepared 1 day before along with
a protein marker.

Ethical Statement
Catching of Nile tilapia fish was performed by following the
standard ethical conduct guidelines for animals excluding human
beings for research purposes published by the NIOF, Egypt, and
the American Psychological Association for animal research and
ethics in 2010–11.

Statistical Analyses
Statistical Processor System Support (SPSS 20, Armonk USA)
and Microsoft Excel (version 2013) were employed to analyze
data statistically using one-way analysis of variance (ANOVA)
and least significant difference (LSD) test at significance level p
< 0.05. The data were recorded as mean ± standard deviation
(mean± SD), where n= 6.

RESULTS

Trace Elements in Different Organs of Nile
Tilapia
The concentrations of the trace elements Pb, Cd, Cu, Mn, and Zn
were analyzed in the muscles, gills, and liver tissues of Nile tilapia
fish caught from Aswan, Abbassa, and Mariout Lake in Egypt.
The order of average concentrations of all five trace elements
recorded in Nile tilapia was Zn > Mn > Cu > Cd > Pb and
significantly higher in the liver tissues of all fishes caught from
the three different locations. The concentrations of trace elements
in different tissues of Nile tilapia from Mariout Lake were in the
following orders: in the liver, Zn > Cu > Mn > Pb > Cd; in gills,
Zn > Mn > Cu > Cd > Pb; and in muscles, Zn > Pb > Mn >

Cd > Cu. Similarly, the orders of concentrations of all five trace
elements in different tissues of Nile tilapia from Abbassa were as
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TABLE 1 | The qPCR primers designed by Primer Premier 5.0.

Target gene Gene descriptions Primer sequence 5–3 Product length (bp)

HSP70 Heat shock protein 70 F: GCATTCACACCATGAGGCGTT 283

R: GCTTTGACA CGCTTCCCATT

Actin β-Actin F: CTACAATGAGCTGCGTGTGG 143

R: AAGGAAGGCTGGAAGAGTGC

TABLE 2 | Concentrations of trace elements in muscles, gills, and liver (µg/g wet weight) of Nile tilapia from three different sites in Egypt.

Trace element residues (µg/g) Location Pb Cd Cu Mn Zn

Muscles (µg/g) Aswan 0.34 ± 0.08 0.09 ± 0.9 0.23 ± 0.05 0.05 ± 0.04 1.31 ± 0.52

Abbassa 0.53 ± 0.10a 0.7 ± 0.46a 0.37 ± 0.04 0.99 ± 0.05 2.80 ± 0.30

Mariout 2.7 ± 0.25b 1.17 ± 0.15b 0.47 ± 0.05 1.41 ± 0.18 3.9 ± 0.17

Gills (µg/g) Aswan 1.87 ± 0.16a 0.40 ± 0.18 2.01 ± 0.82 3.81 ± 1.85 16.41 ± 1.37

Abbassa 3.19 ± 0.67b 2.79 ± 0.93b 2.91 ± 0.93 20.45 ± 2.0 22.8 ± 2.39

Mariout 5.39 ± 0.22a 7.81 ± 0.33b 8.11 ± 0.45a 23.4 ± 0.19 28.71 ± 4.1

Liver (µg/g) Aswan 0.78 ± 0.56a 0.61 ± 0.45a 2.76 ± 1.03 0.81 ± 1.08 21.5 ± 1.1

Abbassa 1.46 ± 0.37a 1.76 ± 0.96b 13.81 ± 1.22a 3.02 ± 0.29 50.13 ± 5.4a

Mariout 3.48 ± 0.22b 2.98 ± 0.33b 19.6 ± 0.45b 3.62 ± 0.19 59.49 ± 4.1a

International standard of permissible limits FAO, 1983 0.5 0.5 30 - 30

FAO/WHO, 1989 0.5 0.5 30 - 40

WHO, 1989 2 1 30 1 100

EC, 2006–2011 0.3 0.05 - - 50

Data are expressed as mean ± SD (n = 6), and mean values with different letters for each metal in the same row are significantly different (LSD post-hoc test, p < 0.05).

follows: in the liver, Zn > Cu > Cd > Mn > Pb; in gills, Zn >

Mn > Pb > Cu > Cd; and in muscles, Zn > Mn > Cd > Pb >

Cu. Finally, the orders of concentrations of all five trace elements
in different tissues of Nile tilapia from Aswan were as follows:
in the liver, Zn > Cu > Mn > Pb > Cd; in gills, Zn > Mn >

Cu > Pb > Cd; and in muscles, Zn > Pb > Mn > Cu > Cd
(Table 2).

The overall concentrations of all five trace elements Zn, Cu,
Mn, Pb, and Cd in Nile tilapia tissues collected from all three
locations in Egypt were in the order liver > gills > muscles.
The Pb content in different tissues of Nile tilapia from all three
locations was in the order gills > liver > muscle, Cu and Zn
contents were in the order liver > gills > muscles, Mn content
was in the order gills > liver > muscles, and Cd content in
different tissues of Nile tilapia from Aswan and Abbassa was in
the order liver > gills > muscle and in Nile tilapia from Mariout
was in the order gills > liver > muscles. The concentration of
trace elements in muscle tissues was usually more minor than
in the liver and gills. The overall accumulative concentration of
trace elements in Nile tilapia organs was in the order Mariout
Lake > Abbassa > Aswan. The highest concentration of trace
element was of Zn in the liver tissues of Nile tilapia fromMariout
Lake, while the lowest concentration of trace element was of Mn,
which was recorded in muscle tissues of Nile tilapia from Aswan
(Table 2).

Lead
The Pb content in muscle tissues of Nile tilapia caught from
Aswan was 0.34± 0.08µg/g, from Abbassa was 0.53± 0.10µg/g,
and from Mariout was 2.7 ± 0.25µg/g. The Pb content in
gills of Nile tilapia caught from Aswan was 1.87 ± 0.16µg/g,
from Abbassa was 3.19 ± 0.67µg/g, and from Mariout was
5.39 ± 0.22µg/g. Similarly, the Pb content in liver tissues of
Nile tilapia caught from Aswan was 0.78 ± 0.56µg/g, from
Abbassa was 1.46 ± 0.37µg/g, and from Mariout was 3.48
± 0.22µg/g. The average concentration of Pb in different
tissues of Nile tilapia ranges between 0.34 ± 0.08 and 5.39 ±

0.22µg/g. The highest concentration of Pb was recorded in gills
of Nile tilapia caught from Mariout Lake and the lowest in
muscle tissues of Nile tilapia caught from Aswan. The mean Pb
content recorded in this study was higher than the permissible
level (Table 2).

Cadmium
The Cd content in muscle tissues of Nile tilapia caught from
Aswan was 0.09 ± 0.9µg/g, from Abbassa was 0.7 ± 0.46µg/g,
and from Mariout was 1.17 ± 0.15µg/g. The Cd content in gills
of Nile tilapia caught from Aswan was 0.40 ± 0.18µg/g, from
Abbassa was 2.79 ± 0.93µg/g, and from Mariout was 7.81 ±

0.33µg/g. Similarly, the Cd content in liver tissues of Nile tilapia
caught from Aswan was 0.61 ± 0.45µg/g, from Abbassa was
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1.76 ± 0.96µg/g, and from Mariout was 2.98 ± 0.33µg/g. The
mean concentrations of Cd in all three tissues of Nile tilapia were
ranged between 0.09 ± 0.9 and 5.39 ± 0.22µg/g. The highest
concentration of Cd was recorded in gills of Nile tilapia caught
from Mariout and the lowest in the muscle tissues caught from
Aswan. In our study, the mean Cd concentration surpassed the
permissible limit (Table 2).

Copper
The Cu content in muscle tissues of Nile tilapia caught from
Aswan, Abbassa, and Mariout was 0.23 ± 0.05, 0.37 ± 0.04, and
0.47 ± 0.05µg/g, respectively. The Cu content in gill tissues of
Nile tilapia caught from Aswan, Abbassa, and Mariout was 2.01
± 0.82, 2.91± 0.93, and 8.11± 0.45µg/g, respectively. Similarly,
the Cu content in liver tissues of Nile tilapia caught from Aswan,
Abbassa, and Mariout was 2.76 ± 1.03, 13.81 ± 1.22, and 19.6 ±
0.45µg/g, respectively. The mean concentration of Cu in various
tissues of Nile tilapia was varied between 0.23 ± 0.05 and 19.6 ±
0.45µg/g. The mean concentration of Cu in this study did not
exceed the international recommended standard limits (Table 2).
The highest concentration of Cu was recorded in the liver of Nile
tilapia caught from Mariout and the lowest in the muscle tissues
caught from Aswan.

Manganese
The Mn content in muscle tissues of Nile tilapia caught from
Aswan, Abbassa, and Mariout was 0.05 ± 0.04, 0.99 ± 0.05, and
1.41 ± 0.18µg/g, respectively. The Mn content in gills of Nile
tilapia caught from Aswan, Abbassa, and Mariout was 3.81 ±

1.85, 20.45 ± 2.0, and 23.4 ± 0.19µg/g, respectively. Similarly,
theMn content in liver tissues of Nile tilapia was 0.81± 1.08, 3.02
± 0.29, and 3.62± 0.19µg/g from Aswan, Abbassa, andMariout,
respectively. The mean concentration of Mn in all tissues of Nile

tilapia was recorded between 0.05 ± 0.04 and 23.4 ± 0.19µg/g.
The highest concentration of Mn was recorded in gills of Nile
tilapia caught from Mariout and lowest in the muscle tissues
caught from Aswan. The Mn content recorded in Nile tilapia in
our study did not exceed the recommended level (Table 2).

Zinc
The Zn content in muscle tissues of Nile tilapia caught from
Aswan, Abbassa, and Mariout was 1.31 ± 0.52, 2.80 ± 0.30, and
3.9 ± 0.17µg/g, respectively. The Zn content in gills of Nile
tilapia caught from Aswan, Abbassa, and Mariout was 16.41 ±

1.37, 22.8 ± 2.39, and 28.71 ± 4.1µg/g, respectively. Similarly,
the Zn content in liver tissues of Nile tilapia caught from Aswan
was 21.5 ± 1.1µg/g, from Abbassa was 50.13 ± 5.4µg/g, and
finally from Mariout was 59.49 ± 4.1µg/g. The concentration of
Zn recorded in different tissues of Nile tilapia ranged between
1.31 ± 0.52 and 59.49 ± 4.1µg/g. The highest Zn content was
recorded in the liver of Nile tilapia caught from Mariout and the
lowest in the muscle tissues caught from Aswan. The mean Zn
residues recorded in this study did not surpass the recommended
level (Table 2).

Health Risk Assessment
The EDI of the trace elements Pb, Cd, Cu, Mn, and Zn
(µg/kg body weight/week) through consumption of Nile tilapia
caught from the three sites Aswan, Abbassa, and Mariout by
Egyptians was estimated and compared with PTDI (Table 3).
This study revealed that the EDI of Pb, Cd, Cu, Mn, and
Zn by ingesting Nile tilapia caught from Aswan, Abbassa, and
Mariout were less than the PTDI recommended by FAO/WHO
(Table 3). In contrast, high Pb residues in Nile tilapia caught
from Mariout and high Cd residues in Nile tilapia caught
from Abbassa and Mariout were consumed by children and

TABLE 3 | Estimated daily intakes (EDI) of trace elements (µg/day/person) in Nile tilapia consumed by a child, young person, and adult caught from three different sites in

Egypt.

Location Pb Cd Cu Mn Zn

EDI (µg/day/person 15 kg) (a child) Aswan 1.411 (37.95) 0.37 (166.6) 0.95 (32,608) 0.2 (77,600) 5.43 (11,450.3)

Abbassa 2.19 (24.45) 2.90a (21.42) 1.53 (20,270) 4.1 (3,919.1) 11.62 (5,357.14)

Mariout 11.20a (4.78) 4.8a (12.82) 1.95 (15,957.4) 5.85 (2,752.1) 16.18 (3,846.1)

EDI (µg/day/person 40 kg) (young) Aswan 0.529 (420) 0.14 (444.4) 0.35 (86,956.5) 0.07 (228,560) 2.03 (30,534)

Abbassa 0.824 (269.4) 1.08a (57.1) 0.57 (54,054.05) 1.54 (11,543.43) 4.35 (14,285.7)

Mariout 4.20a (52.88) 1.82a (34.18) 0.73 (42,553.19) 2.19 (8,104.9) 6.06 (10,256.4)

EDI (µg/day/person 70 kg) (adult) Aswan 0.3 (735) 0.08 (777.77) 0.2 (152,173) 0.04 (399,980) 1.16 (53,435.1)

Abbassa 0.471 (269.4) 0.62 (100) 0.329 (94,594) 0.88 (2,001) 2.49 (25,000)

Mariout 2.40a (92.55) 1.04 (59.82) 0.417 (744,680.8) 1.25 (14,183.6) 3.46 (17,948.7)

PTDI 3.57 1 50 285.7 1,000

PTDI15 53.55 15 7,500 3,880.5 15,000

PTDI40 142.8 40 20,000 11,428 40,000

PTDI70 249.9 70 35,000 19,999 70,000

The values in brackets are healthy daily intake of Nile tilapia that should not be exceeded to maintain the PTDI of each element for 15, 40, and 70 kg person = PTDI × BW/metal

concentration (µg/g) according to FAO/WHO (35). PTDI15 = PTDI × 15 kg, PTDI40 = PTDI × 40 kg, and PTDI70 = PTDI × 70 kg. Data are expressed as mean ± SD (n = 6) (LSD

post-hoc test, p < 0.05).
aThese EDI values are in accordance with tolerable concentrations published by FAO/WHO (35).
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young people, so their EDI was more significant than the PTDI
(Table 3). We calculated the daily quantity of Nile tilapia to
attain proper daily metal intake PTDI for a person of 15, 40, and
70 kg (Table 3).

Micronucleus Test
Biosynthesis of MN in erythrocytes harvested from Nile tilapia
from the three different locations on the Nile River, which
were Aswan, Abbassa, and Mariout, was observed at ×1,000
magnification under a microscope using an oil immersion lens.
Higher MN number represents the highest level of trace elements
contamination and other trace pollutants in the body of aquatic
animals. Apparent small nuclear anomalies, also known as
micronuclei, were observed, which were present in adjacent form
with the nucleus (Figure 2A). We observed that the order of
concentrations ofMN induction in fishes wasMariout>Abbassa

> Aswan, with frequencies of 5.24, 2.89, and 0.14% compared
with baseline 0.65% (Figure 2B).

SDS-PAGE and qPCR Analysis of Hsp70 in
Different Tissues of Nile Tilapia
In order to analyze differential gene expression under trace
elements stress, first of all, total protein content and then
RNA was extracted from muscles, liver, and gills tissues of
Nile tilapia caught from each experimental site in triplicate
manner. Total protein from each sample was boiled at 100◦C
with Coomassie Brilliant Blue buffer and loaded in SDS-PAGE
gel along with a protein marker. We observed very obvious
Hsp70 protein bands of 70 KD in muscle, liver, and gill tissues
of Nile tilapia caught from Mariout and Abbassa, but an
Hsp70 protein band was absent in Nile tilapia muscle, liver,
and gill tissues caught from Aswan (Figure 3A). Subsequently,

FIGURE 2 | (A) Images taken by oil immersion lens of (1) normal erythrocyte, and samples from (2) Aswan, (3) Abbassa, and (4) Mariout of Nile tilapia fish (×1,000) =

10µm and (B) micronucleus frequencies in the three tested sites compared with the baseline (0.65%). The different letters represent statistically significant differences

(P < 0.05) between treatment and control.

FIGURE 3 | (A) SDS-PAGE of protein loci. Lane M: PageRulerTM Plus pre-stained protein ladder Fermentas and (B) relative HSP70 gene expression for Nile tilapia

from three studied areas. The different letters represent statistically significant differences (p < 0.05) between treatment and control.
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the expression level of Hsp70 genes was evaluated in three
tissues of Nile tilapia—muscle, liver, and gills—by employing
qPCR. The overall highest expression of Hsp70 genes was
observed in liver tissues in all samples, followed by gills
and muscles (Figure 3B). According to sampling location,
the highest expression of Hsp70 genes in different tissues
of Nile tilapia was in the manner liver > gill > muscles
(Figure 3B).

DISCUSSION

Specific concentrations of trace elements such as Zn, Mn, and
Cu are an essential part of animals and the human diet, which
play a significant role in growth and development. In contrast,
toxic elements such as Cd and Pb have negative effects. Analysis
of bioaccumulation of these trace elements in the fish organs,
which is a rich source of protein, is highly recommended for
early detection of the concentration of toxic elements. Moreover,
metals are easily dissolved in water then subsequently absorbed
by fish and invertebrates, inducing a wide range of biological
effects, from essential to lethal for living organisms. After heavy
metal is ingested, it is then transported into different body
compartments, i.e., organs and blood, by lipoproteins where they
specifically can be directed to different centers: (a) action centers
where an endogen macromolecule such as protein or a certain
cellular structure interacts with the toxic metal; (b) metabolism
centers where detoxified enzyme acts on the metal; (c) storage
centerswhere the metals are collected in a toxic inactive state; and
(d) excretion centers to dispose of the metals. The lethal effects
of metals in aquatic animals were induced by inhibiting cellular
respiration enzymes (46).

Tilapia fish was used as a model organism to investigate
bioaccumulation of trace elements caught from Mariout Lake,
Abbassa, and Aswan in Egypt and analyzed to disclose the level
of genotoxicity caused by Zn, Mn, Cu, Cd, and Pb. Currently,
Lake Mariout is considered a highly polluted wetland in north
Egypt (47). The primary cause of the critical degradation is its
proximity to Alexandria City and industrial and human activities
(e.g., urban wastewater discharges and agricultural drainage).
However, fishing remains one of the major activities on Lake
Mariout, as it represents high fishing rates in the past (48).
The higher concentrations of metals in sediments of Abbassa
is due to the application of animal manures, which are high
in concentrations of metals (49). At the same time, the River
Nile in Aswan is lowly contaminated and polluted except for a
few sites nearest to pollution resources (50). The estimation of
trace metals intake is an indicator of health risk assessment. It
can be compared with the permissible tolerable recommended
intake level by international committees such as FAO andWHO.
Our findings demonstrated that the estimated weekly intake
(EWI) of Cd and Pb were safe for adults and youth but not
suitable for children who consume Nile tilapia, similar to Clarias
gariepinus (16).

Cu, Mn, and Zn are essential trace elements required for
proper metabolic and enzyme activities. Cu is an essential
trace element that serves as a co-factor for the biosynthesis of

hemoglobin and other enzymatic activities (51). Still, excessive
consumption of Cu (1.5–3mg) can cause poisoning, blood vomit,
sickness, gastrointestinal pain, diarrhea, liver damage, fever, and
Wilson’s disease (52). The highest concentration of Cu was
19.6µg/g recorded in liver tissues of Nile tilapia, which was
significantly higher as compared to 0.01µg/g in Cyclocheilichthys
apogon and 0.05µg/g inHampala macrolepidota caught from the
mining pool, Selangor (53, 54). The Cu, Mn, and Zn contents
were below permissible human consumption limits according
to FAO/WHO (Table 2), and these findings agree with El-
Moselhy (55).

Mn is essential for bone structure, reproduction, and regular
activity of enzymatic reactions (56, 57). Skeletal and reproductive
disorders are mainly caused by lack of Mn (58, 59). However,
excessive consumption of Mn may lead to psychological and
neurological disturbances. According to the UK Community
of Expert on Vitamins and Minerals and the Food and Drug
Administration (FDA), high intakes of Mn (up to 200 µg/kg)
cause manganism (Parkinson’s disease). The highest Mn content
23.4µg/g was recorded in gills which was significantly higher
than 5.61µg/g in the liver of Nile tilapia caught from the Nile
River, Egypt (8), but significantly lower than 735.84µg/g in
the gills of Chrysichthys nigrodigitatus (1). Zn is required for
optimal animal growth, reproduction, and survival of animals
and humans (60, 61). Higher consumption of Zn (50 mg/day)
can cause poisoning, severe diarrhea, and fever (52, 62); interferes
with the availability of Cu to the body by stimulating the synthesis
of metallothionein in the digestive tract (63); and lowers immune
response and high-density lipoprotein (HDL) level (64, 65). The
highest Zn content, 59.49µg/g, was recorded in liver tissues,
significantly higher than 0.434µg/g in the muscle tissues of
Nile tilapia and 0.14µg/g in Nemurus caught from a mining
pool in Beranang, Selangor (53, 66). The leading causes of Zn
toxicity are smelting, mining, and wastewater disposal (67). The
EDI of Cu, Mn, and Zn trace elements for children, youth, and
adults consuming Nile tilapia in Egypt were less than PTDI
recommended by FAO/WHO.

Cd and Pb are not essential for growth and development and
often have adverse effects on the nervous system and cause renal
failure, liver injury, slowdown of reflex arc, demineralization
of bones, lung cancer, stomach cancer, coma, and even death;
i.e., Cd 2.4–10µg/g of creatinine causes renal failure, and
children who consume Pb content>16 g/dl suffer from profound
IQ deficiency level 3.0 (13, 68, 69). The highest Cd content,
6.76µg/g, was recorded in liver tissues and was higher than
3.50µg/g in the liver of Nile tilapia caught from Ogun River,
Southwestern Nigeria (1). The highest Pb content, 5.39µg/g,
was recorded in gills and was significantly lower than 30.83µg/g
in gills of Nile tilapia caught from Ogun River, Southwestern
Nigeria (1). The possible source of Pb pollution could be
fuel effluents from cruise ships (70). In agreement with our
observations, non-essential trace elements Pb and Cd were
slightly above the permissible limits according to FAO/WHO.

Micronuclei are synthesized during cell division (anaphase)
when an entire chromosome or its part fails to become part of
any daughter cell nucleus due to genetic damage (14, 71). MN
test is a common technique to investigate implications caused
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by heavy metal contents on genotoxicity in erythrocytes (72).
The key points to consider before starting to measure MN are
(a) its diameter must be equal to or less than one-third of
the central nucleus, (b) exist independently, (c) distinguished
nuclear boundaries, and (d) stained the same as the central
nucleus. Biosynthesis of MN in erythrocytes harvested from
Nile tilapia was observed at ×1,000 magnification. We observed
that the concentrations of MN induction in fishes were as
follows: Mariout > Abbassa > Aswan, with frequencies of 5.24,
2.89, and 0.14% compared with baseline 0.65% (73). Higher
MN number represents the highest level of trace elements
contamination (74) and other trace pollutants in the body of
aquatic animals (Figures 2A,B) (75). The micronuclei frequency
increased progressively with the increase in the concentration
of Zn, Cu, Pb, and Cd in Nile tilapia (14). Our results of
the MN test about genotoxicity, water quality, the health
status of aquatic animals, and their potential health risks to
humans were consistent with previously published data (14, 72,
76). Similar findings have been reported in previous studies,
such as the frequency of MN biosynthesis being highest in
European minnow (Phoxinus phoxinus), eel (Anguilla anguilla)
(77), Nile tilapia (78), crucian carp (79), and brown trout (Salmo
trutta) (80).

Heavy metals stimulate overexpression of Hsp70 in fish
muscles but also causes a decline in antioxidants (81, 82). Heat
shock protein 70 plays a key role in protein homeostasis and
cellular stress response (15, 83). Hoq and Das (84) used Hsp70
of fish as a biomarker of water quality in Bangladesh. Mohanty et
al. (85) demonstrated that it is a sensitive indicator of exposure
of aquatic animals to different pollutants and causes an abnormal
increase of proteins in the nucleus and cytosol (86, 87). Due to
trace elements contamination, Hsp70 protein bands in muscle
tissues of Nile tilapia caught from Mariout and Abbassa was
obvious but absent in muscle tissues of Nile tilapia caught from
Aswan (Figure 3A), similar to AbdEl-Rahim et al. (88) and
Deen (89). The expression of Hsp70 was upregulated in the liver
(Figures 3A,B) because it is responsible for the accumulation and
detoxification of toxins (90) and performs multiple key functions
as energy metabolism. Our results revealed that heavy metal
contents in selected water resources were in the order Mariout >
Abbassa > Aswan, and our findings are in accordance with Rasid
et al. (91). Consequently, the consumption of Nile tilapia caught
from Abbassa and Mariout Lake with higher Pb and Cd contents
may have serious health implications for children, youth, and
adults, excluding adults who consume Nile tilapia caught from
Mariout. The Egyptian government had implemented National
Water Resources Strategy (2017–2037) to curb the toxicity
of fresh water resources which will approximately cost EGP
900 billion.

CONCLUSIONS

The average trace elements in Nile tilapia caught from Mariout
Lake, Abbassa, and Aswan of Egypt were significantly higher in
the liver. The EDI of Pb, Cd, Cu, Mn, and Zn by eating Nile
tilapia was less than the PTDI recommended by FAO/WHO.

The concentrations of essential elements Cu, Zn, and Mn in Nile
tilapia were lower, while toxic elements Pb and Cd in Nile tilapia
caught from Abbassa and Mariout were slightly higher than the
intake limit recommended by FAO, WHO, and EC. Micronuclei
concentration in erythrocytes of Nile tilapia caught from different
regions were Mariout > Abbassa > Aswan, and in different
organs were liver > gills > muscle, which displayed genotoxic
effect of trace elements. SDS-PAGE and qPCR analysis revealed
upregulated expression of heavymetals responsive Hsp70 protein
inmuscle tissues of Nile tilapia caught fromMariout and Abbassa
and low in Nile tilapia caught from Aswan. Thus, Nile tilapia,
with other genotoxicity assessments, is a good indicator for
aquatic environmental pollution due to its high sensitivity to
low concentration of contaminants and hence is considered
a bio-accumulator.
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