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Role of gut microbiota-derived
signals in the regulation of
gastrointestinal motility
Zhipeng Zheng, Jingyi Tang, Yingnan Hu and Wei Zhang*

Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical
University, Hangzhou, China

The gastrointestinal (GI) tract harbors trillions of commensal microbes, called

the gut microbiota, which plays a significant role in the regulation of

GI physiology, particularly GI motility. The GI tract expresses an array of

receptors, such as toll-like receptors (TLRs), G-protein coupled receptors,

aryl hydrocarbon receptor (AhR), and ligand-gated ion channels, that sense

different gut microbiota-derived bioactive substances. Specifically, microbial

cell wall components and metabolites, including lipopeptides, peptidoglycan,

lipopolysaccharides (LPS), bile acids (BAs), short-chain fatty acids (SCFAs), and

tryptophan metabolites, mediate the effect of gut microbiota on GI motility

through their close interactions with the enteroendocrine system, enteric

nervous system, intestinal smooth muscle, and immune system. In turn, GI

motility affects the colonization within the gut microbiota. However, the

mechanisms by which gut microbiota interacts with GI motility remain to

be elucidated. Deciphering the underlying mechanisms is greatly important

for the prevention or treatment of GI dysmotility, which is a complication

associated with many GI diseases, such as irritable bowel syndrome (IBS) and

constipation. In this perspective, we overview the current knowledge on the

role of gut microbiota and its metabolites in the regulation of GI motility,

highlighting the potential mechanisms, in an attempt to provide valuable

clues for the development of gut microbiota-dependent therapy to improve

GI motility.

KEYWORDS

gut microbiota, gastrointestinal motility, gut microbial components, bile acid, short-
chain fatty acids (SCFAs), tryptophan metabolites

Introduction

The fundamental gastrointestinal (GI) functions include motility, sensation,
digestion, absorption, secretion, and barrier function. Among these functions, the
primary responsibility of GI motility is to mix gut contents with digestive secretions
and expose them to the absorptive surface, to accomplish propulsion along the GI
tract, to prevent retrograde movement of contents, and to dispose of residues, which
is essential for orderly digestion of food, appropriate absorption of nutrients and timely
expulsion of unwanted wastes (1). A better understanding of GI motility is important for
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the prevention and treatment of GI disorders, such as irritable
bowel syndrome (IBS), functional constipation, and post-
operative ileus (POI). IBS is a functional GI disorder with
symptoms including abdominal pain and a change in stool
form or frequency, which affects around 1 in 10 people
globally with a wide variation of prevalence in different regions
(2). Genetics, diet, and the gut microbiota are recognized
risk factors for IBS and the pathophysiology includes GI
motility disturbances, visceral hypersensitivity, and altered
central nervous system (CNS) processing (2, 3). The main
treatment of IBS includes patient education about dietary
changes and antispasmodic drugs, but people with severe
symptoms may also need central neuromodulators, intestinal
secretagogues, drugs acting on opioid or 5-hydroxytryptamine
(5-HT) receptors, antibiotics, and psychological therapies (3).
Functional constipation has a prevalence of 14% in adults with
common pathophysiological factors including genetic factors,
lifestyle factors, and psychological disorders (4). Management
of functional constipation is dependent on different subtypes:
normal transit, slow transit, or an evacuation disorder,
involving lifestyle interventions, pelvic floor interventions,
and pharmacological therapy (4). POI is a common clinical
problem that complicates the recovery of up to 30% of
patients undergoing GI surgery (5). These different GI disorders
undergo a similar pathophysiological process in which GI
motility is disturbed.

Gastrointestinal motility is regulated by the coordination
of various factors, including the enteric nervous system (ENS),
immune system, gut hormones, as well as gut microbiota (6–
8). Gut microbiota-regulated GI motility is based on the unique
architecture of the GI tract (Figure 1). The bowel wall is
composed of the mucosa layer (epithelium, lamina propria,
and muscularis mucosa), the submucosa layer (submucosal
plexus), the muscularis propria (circular smooth muscle,
myenteric plexus, and longitudinal smooth muscle), and the
serosa layer (8). Enteroendocrine cells (EECs) dispersed among
the mucosa layer of the GI tract are key players in the
communication between the gut microbiota, the ENS, and
the GI motility, through producing and secreting a variety
of hormones or signaling molecules, such as glucagon-like
peptides (GLPs) and peptide YY (PYY) (L cells), and serotonin
(enterochromaffin cells) (9). EECs, also termed “neuropod cells,”
directly communicate with neurons through modified synapses
(10). Enterochromaffin (EC) cells are responsible for the major
production of 5-HT, which functions as a critical activator of
many GI reflexes by signaling through a variety of receptors
located on the ENS (11). The ENS comprises a large number
of neurons, and the majority of them are in the submucosal
plexus and myenteric plexus. Profiling of the ENS at single-
cell resolution has been used to identify colonic neuronal
types: (1) sensory neurons, also called intrinsic primary afferent
neurons (IPANs), which sense and respond to chemical and
mechanical stimuli; (2) interneurons, which transfer signals

between neurons; (3) secretomotor neurons, which induce
secretions in other cell types and control blood flow; (4)
excitatory motor neurons and (5) inhibitory motor neurons,
which together innervate longitudinal and circular smooth
muscles and coordinate muscle contraction and relaxation in
the GI tract (12). The myenteric plexus is responsible for
the propulsion of intestinal contents under the movement of
the smooth muscle, while the submucosal plexus is mainly
involved in the secretion and absorption (8, 13). In particular,
motor neurons innervate circular muscle consisting of two main
types of functionally distinct myenteric neurons: ascending
excitatory neurons, containing neuromediators or enzymes
such as choline acetyltransferase (ChAT) and substance P; and
descending inhibitory neurons, containing vasoactive intestinal
peptides (VIPs) and neuronal nitric oxide synthase (nNOS)
(14). Non-neuronal, the interstitial cells of Cajal (ICCs) are
pacemaker cells located in the same area as the myenteric
plexus and are important for phasic myogenic contractions
by the generation of electrical oscillatory activity (15). ICCs
are responsible for peristalsis, and the electrical signaling of
ICCs underlying rhythmic muscle contractions is most relevant
to the segmentation motor patterns of the GI tract (16).
Besides, a distinct population of macrophages is distributed
in the muscularis propria of the GI tract, called muscularis
macrophages (MMs), taking part in the regulation of colonic
peristaltic activity (17).

The sensory components in the gut wall can detect luminal
substances from gut microbiota, which directly or indirectly
modulate GI motility. Certain gut microbial substances bind
to receptors on the luminal cell layer of the mucosa, such
as enterochromaffin cells (ECs) and L cells, and initiate
downstream signals that can activate receptors on enteric
neurons to regulate GI motility (18). In addition, 90% of 5-HT in
the intestine is produced by ECs, and 5-HT secretion is thought
to be important in regulating GI motility (19). Alternatively,
some microbial cell wall components or metabolites first need
to cross the intestinal epithelial cell layer of the mucosa, through
small molecule transporters (transcellular) or through tight
junctions (paracellular), which allow the transfer of molecules
smaller than 1.5 nm (20).

Besides, the anatomy of the GI tract shows remarkable
flexibility to gut microbial challenges in adults. The interaction
of gut microbiota with innate immune cells and pattern
recognition receptors regulates cellular and morphologic
properties of the GI tract, including the renewal and
differentiation of the epithelial lineage, the adaptation of the
intestinal microvasculature, and the shape of the ENS and the
intestinal smooth muscle layers (21). The ENS is an intrinsic
neuronal network that harbors various types of nerve cells
located along the GI tract, which not only controls GI motility,
fluid homeostasis, and blood flow but also interacts with
epithelial and immune cells in the intestine (13). GI motility
depends on intrinsic neural and myogenic mechanisms that
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FIGURE 1

Anatomy of the bowel wall ensures the effect of gut microbiota on gastrointestinal (GI) motility. Gut microbiota is geographically close to the
bowel wall, which is composed of the mucosa layer (epithelium, lamina propria, and muscularis mucosa), the submucosa layer (submucosal
plexus), the muscularis propria (circular smooth muscle, myenteric plexus, and longitudinal smooth muscle), and the serosa layer.
Enteroendocrine cells (enterochromaffin cells and L cells) dispersed among the mucosa layer can directly sense gut microbiota-derived signals
and then secrete hormones, such as glucagon-like peptides (GLPs) and peptide YY (PYY) (L cells), and serotonin (enterochromaffin cells),
affecting enteric nervous system (ENS) and gastrointestinal (GI) motility. The ENS comprising submucosal plexus and myenteric plexus plays a
central role in GI motility and can also sense and respond to gut microbiota-derived stimuli that cross the epithelium. The myenteric plexus is
responsible for the propulsion of intestinal contents under the movement of the smooth muscle, while the submucosal plexus is mainly
involved in the secretion and absorption. Intrinsic primary afferent neurons (IPANs) are activated by gut-derived signals and activate ascending
and descending interneurons, which stimulate inhibitory and excitatory motor neurons, as well as secretomotor neurons. Besides, musculari
macrophage and interstitial cells of Cajal (ICCs) in muscularis propria can be activated by gut microbiota-derived signals affecting GI motility.
Ach, acetylcholine; NO, nitric oxide; VIP, vasoactive intestinal peptide.

cooperate with extrinsic neural and hormonal influences (22),
which are also largely regulated by gut microbiota. Recent
studies also indicate that gut microbiota may be critical for the
ENS development and maturation, which is beyond the scope of
this review and has been excellently discussed by other review
articles (13, 23).

Gastrointestinal motility is highly
dependent on gut microbiota

Gastrointestinal motility is generated by coordination of
contraction as well as relaxation of the circular and longitudinal
smooth muscles, which is regulated by the ENS, pacemaker
cells called ICCs, EECs, and other factors (6, 24, 25). Significant
crosstalk between the ENS and EECs modulates GI motility. In
response to stimulation, such as microbial metabolite butyrate
and other short-chain fatty acids (SCFAs), EECs activate enteric
neurons through the release of 5-HT (26). In addition to 5-
HT, EECs produce neuropeptides such as somatostatin, motilin,

VIP, glucagon-like peptide-1 (GLP-1), and cholecystokinin,
which regulate ENS activity in a paracrine manner (27).
In addition to these host-specific genetic predispositions,
commensal microbiota is also an important modulator of GI
motility (7, 28). The common methods used to determine
GI motility in animal models in vivo include the Evans Blue
dye or charcoal propulsion test (small intestinal transit and
whole GI transit analysis), bead expulsion test (colonic transit
analysis), and fecal pellets collection (defecation frequency) (29).
Different methods are used to assess the motility of different
intestinal segments, but small intestinal transit analysis involves
putting the animals to death, whole GI transit analysis is time-
consuming, bead expulsion test needs to be repeated several
times, and fecal pellets collection is affected by the environment.
A combination of different methods is needed to fully evaluate
the GI motility.

Germ-free (GF) and antibiotic-treated animals with gut
microbiota deficiency have been used to investigate the role
of gut microbiota in GI motility. GF mice have a reduced
number of nitrergic neurons and a significant delay in GI
motility (30). GF rats display a significant delay in the intestinal
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transit and the contractility of the small intestine compared
to their conventional controls, which is partially reversed by
colonization with Lactobacillus acidophilus and Bifidobacterium
bifidum (31). GF mice have lower excitability in the myenteric
intrinsic afferent primary neurons (IPANs), which is normalized
when GF mice are conventionalized with intestinal bacteria
(32). Similarly, mice treated with antibiotics have significantly
lower defecation frequency, prolonged intestinal transit time,
and loss of enteric neurons in both submucosal and myenteric
plexuses in the ileum and proximal colon (33–35). However,
the antibiotic application does not completely deplete gut
microbiota and may select resistant bacteria or promote fungal
outgrowth (36, 37).

Besides, probiotic supplements improve GI motility
in animal and human studies. Daily single administration
of Lactobacillus rhamnosus GG (LGG) for at least 1 week
significantly increases defecation frequency and reduces whole
GI transit time in conventional mice in absence of diarrheal
phenotype, and the contractions of ileal circular muscle
strips of LGG-treated mice show a significant increase in
ex vivo experiments (38). A combination of four probiotics,
Lactobacillus plantarum 2362, Lactobacillus casei ssp. paracase
19, Leuconostoc raffinolactis 23∼77:1, and Pediococcus
pentosaceus 16:1, improves GI motility and protects ICCs
in mice with traumatic brain injury (39). Clostridium butyricum
(C. butyricum) suspension promotes ICCs proliferation and
improves GI motility (40). Both Akkermansia. muciniphila
and its outer membrane protein Amuc_1100 improve the
GI motility in antibiotic-treated mice (41), indicating some
ingredients of dead probiotics may also influence GI motility.
Altogether, these studies demonstrate that gut microbiota-
derived signals play an important role in the control of GI
motility (Figure 2).

Moreover, the altered composition of gut microbiota in the
lumen and mucus layer of the GI tract is often accompanied
by GI disorders (42). It has been revealed that complex
interactions of gut microbiota and host, such as immune and

metabolic responses, are involved in the pathophysiology of
GI dysmotility. Previous studies show that IBS patients have
significant changes in the composition of fecal microbiota,
and different subtypes of IBS are associated with different
microbiota (43). Intestinal microbiota signatures associated
with the severity of IBS symptoms have been identified (44).
A major dysbiosis of gut microbiota is observed in constipated-
IBS patients, which in turn may influences GI motility and
contributes to constipated-IBS pathogenesis (45). Moreover,
utilizing a well-defined donor with a specific favorable microbial
signature, fecal microbiota transplant (FMT) is an effective
treatment for IBS patients, and the response to FMT increases
in a dose-dependent manner (46). In contrast, FMT derived
from constipated donors delays GI transit time in mice (47).
In clinical practice, FMT improves the symptoms of slow
transit constipation patients by modulating gut microbiota
and metabolites involved in the protein digestion and
absorption pathways (48). These data suggest that regulating
the gut microbiota may be a novel therapeutic strategy
for GI dysmotility.

Gastrointestinal motility disorder is also a complication of
GI surgery and various diseases, such as inflammatory bowel
disease (IBD) and Parkinson’s disease (PD). GI dysmotility
after surgery with reconstruction of the GI tract is common,
ranging from POI to malabsorption associated with increased GI
motility, in which altered gut microbiota contributes to changes
in GI motility (49). Perioperative probiotic supplementation
with Bifidobacteria or Lactobacilli improves post-operative
recovery in patients undergoing GI surgery (50, 51). IBD
shares similar symptoms and some pathophysiology with FGID,
such as changes in gut motility associated with inflammatory
conditions (52). Gut microbiota dysbiosis has also been
demonstrated in IBD, and manipulating gut microbiota with
antibiotics, prebiotics, probiotics, or FMT is a promising
approach for the treatment of IBD (53). In non-GI diseases, GI
dysfunction in PD has been identified and changes in motility
play an important role in the GI manifestation of PD (54).

FIGURE 2

Gastrointestinal (GI) motility is highly dependent on gut microbiota. Both antibiotic-treated and germ-free (GF) rodents that lack gut microbiota
have slowed GI motility, with prolonged intestinal transit, attenuated contractility, reduced defecation frequency, and loss of enteric neurons.
Probiotic supplements, such as Lactobacillus acidophilus, Bifidobacterium bifidum, and Akkermansia. muciniphila can improve GI motility.
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Alterations of the gut microbiota in PD have been reported
by a large number of studies and dysbiosis may contribute
to both the genesis of PD itself and GI complications, such
as GI motility disorders (55). Alteration in GI motility and
gut microbiota, along with other factors such as diet and
drugs, interplay and impact the treatment response in PD
patients (54).

Gut bacteria regulate
gastrointestinal motility through
their cell wall components and
metabolic products

Gut microbiota can directly influence the GI motility
through bacterial cell wall components [lipopeptides,
peptidoglycan, and lipopolysaccharides (LPS)] binding to
TLRs expressed in the GI tract. Indirectly, gut microbiota
can also modulate the GI motility via the release of
metabolites or end products of bacterial biotransformation
and fermentation. Three main groups of bacterial metabolites,
including BAs, SCFAs, and tryptophan metabolites, have been
well studied in the regulation of GI motility. In addition,
other microbial metabolites belonging to a wide range of
chemical groups have also been shown to modulate GI
motility, and there are many more gut microbiota-derived
metabolites that need to be identified and investigated
for their potential role in the regulation of GI motility
(Table 1).

Gut microbial components regulate
gastrointestinal motility via binding to
toll-like receptors

Gut microbiota can directly affect the GI motility, which
is mediated by bacterial cell wall components, such as
lipopeptides, peptidoglycan, and LPS, through binding to
certain subtypes of the host toll-like receptors (TLRs), which are
expressed in intestinal epithelial cells, neurons, neuroglia, and
smooth muscle cells (56–59). TLRs can directly interact with
bacterial components to facilitate communication between gut
microbiota and GI cells. However, given the fact that TLRs are
expressed by several types of cells in the GI tract, it is difficult
to identify the specific cells connecting the signaling between
gut microbial components and the GI motility. Among all the
TLRs, TLR2 and TLR4 are the most important bacteria-sensing
receptors that regulate the ENS and gut motility (Figure 3).
TLR2 recognizes lipopeptides and peptidoglycan, whereas TLR4
recognizes LPS (60).

TLR2 is expressed on enteric smooth muscle cells, neurons,
and neuroglia of the intestinal tract. TLR2 knockout mice have

TABLE 1 Major bacterial components and metabolites and their effect
on gastrointestinal (GI) motility.

Major bacterial
components and
metabolites

Effects on gastrointestinal (GI)
motility

Lipopeptides and peptidoglycan Signaling through toll-like receptor 2
(TLR2), maintaining adult enteric nervous
system and nitrergic neurons

Lipopolysaccharides (LPS) Signaling via TLR4, playing dual function of
improving and delaying motility in different
manners

Deoxycholic acid (DCA) and
lithocholic acid (LCA)

By activating Taketa G-protein-coupled
receptor 5 (TGR5), modulating the release
of 5-hydroxytryptamine (5-HT) and
promoting GI motility

7-ketodeoxycholic acid and
muricholic acid

Associated with faster GI transit

Short-chain fatty acids (SCFAs) Stimulation of glucagon-like peptide-1
(GLP-1) and peptide YY (PYY) production,
modulating the release of 5-HT, playing dual
function of increasing and decreasing GI
motility

Tryptamine By activating epithelial 5-HT4, accelerating
GI transit

Indole-3-carboxaldehyde (IAld) Activating cholinergic enteric neurons to
promote GI motility

5-hydroxytryptophan (5-HTP) Converted to 5-hydroxyindole (5-HI) by
bacterial tryptophanase, improving GI
motility directly through activation of
L-type voltage-dependent calcium channels
(L-VDCCs)

Quercetin Promoting GI motility and mucin secretion

Putrescine and cadaverine Regulating intestinal peristalsis

γ-aminobutyric acid (GABA) Modulating both motor and secretory GI
activity

reduced βIII-tubulin+ neurons and fibers in submucosal plexus
with a lower number of HuC/D+ neurons, S100β+ enteric
glial cells (EGC), and neuronal nitric oxide synthase positive
(nNOS+) neurons in myenteric plexus, which is accompanied
by a loss of nitrergic modulation in intestinal contractility (58).
Besides, a reduced glial-cell-line derived neurotrophic factor
(GDNF) signaling is found in TLR2 knockout mice, and TLR2
agonists upregulate GDNF expression of isolated longitudinal
smooth muscle-myenteric plexus (LMMP) via nuclear factor-
κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK)
signaling. GDNF administration ameliorates ENS defects and GI
dysmotility in TLR2 knockout mice and wild-type (WT) mice
treated with antibiotics, confirming that the gut microbiota-
TLR2-GDNF axis plays an important role in ENS and GI
motility (58). In addition, antibiotic-treated mice show reduced
expression of TLR2 in the ileum and colon (61), with a delay of
GI transit, a significantly reduced frequency of stool expulsion,
loss of myenteric plexus neurons (reduced number of AChE+
and nNOS+ myenteric plexus neurons and a proportional
increase of SP+ myenteric plexus neurons), which are partly
restored by activation of TLR2 signaling (62).
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FIGURE 3

Gut microbial components regulate gastrointestinal (GI) motility via binding to toll-like receptor 2/4. Toll-like receptors (TLRs) expressed in the
GI tract sense gut microbial components take part in the regulation of GI motility. TLR2 is expressed on enteric smooth muscle cells, neurons,
neuroglia, and interstitial cells of Cajal (ICCs). Lipopeptides, peptidoglycan, and lipoteichoic acid from gut microbiota binding to TLR2 stimulate
the release of glial cell line-derived neurotrophic factor (GDNF), maintain neurons and neurogenesis, and play an anti-inflammation effect,
which can improve GI motility. In addition to TLR2, TLR4 is the best-characterized receptor recognizing gut microbiota-derived
Lipopolysaccharide (LPS). LPS binding to TLR4 expressed on muscularis macrophage (MM) stimulates the release of bone morphogenetic
protein 2 (BMP2), which improves GI motility. In response to BMP2, enteric neurons produce colony stimulatory factor 1 (CSF-1), which in turn
promotes MM homeostasis. However, LPS binding to TLR4 expressed on ICCs has a negative effect on GI motility.

By activating TLR2 expressed in smooth muscle,
lipopeptides, the main components of the intestinal
gram-positive bacteria, may possess anti-inflammatory
properties that can restore GI motor function in a MyD88-
independent manner (63). Mice given a TLR2 antagonist have
significant dysmotility with prolonged whole gut transit times
(WGTT) and lipoteichoic acid (LTA), a bacteria-derived TLR2
agonist, counteracts the prolonged effect of ampicillin on
WGTT, and the underlying mechanism is that gut microbiota-
regulated specific TLR2 signaling processes help to maintain
nitrergic neurons and neurogenesis in the intestine (59).

Other specific cell wall components of commensal bacteria
can also directly interact with TLR2. Amuc_1100, an outer
membrane protein of Akkermansia muciniphila (A. mucinphila),
promotes the intestinal biosynthesis of serotonin (5-HT)
and further improves the function of GI motility through
TLR2 signaling (41). Clostridium butyricum (C. butyricum), a
probiotic strain, increase the secretion of ghrelin and SP and
may promote GI motility by inducing the cell viability of ICCs
via activation of NF-κB and JNK in a TLR2-dependent manner,
but what bacterial components take the effect has not been
identified (40). Besides, Bacteroides thetaiotaomicron (Bt), a
human resident gut microbe, is able to increase colonic motor
complexes and restore the downregulated TLR2 expression in
the colon of GF mice (64), suggesting that Bt is likely to regulate
GI motility via TLR2 expression.

In addition to TLR2, TLR4 is the best-characterized receptor
recognizing gut microbiota-derived LPS, a major membrane
component of gram-negative bacteria, and also plays an
important role in the regulation of ENS and GI motility. TLR4
knockout mice exhibit reduced defecation frequency, delayed
colonic transit, impaired nitrergic colonic relaxation, and loss
of nNOS+ neurons, leading to intestinal dysmotility (30).
A similar phenotype was also observed in LPS-hyporesponsive
C3H/HeJ mice and enteric neuronal-specific Myd88, a key
adaptor signaling molecule for TLRs, knockdown mice (30).
Furthermore, gliosis in ileal myenteric plexus and a reduced
cholinergic excitatory response are found in TLR4 knockout
mice, which depend on enhanced inhibitory neurotransmission
mediated by both NO and ATP through nitrergic and purinergic
pathways (65), indicating that TLR4 signaling is essential for
proper bidirectional communication between neuron and glia
in the regulation of GI motility.

Besides, low-dose LPS treatment improves the survival of
primary enteric neurons isolated from WT mice but not from
LPS-hyporesponsive mice in an NF-kB-dependent manner (30).
In vivo, LPS supplementation partially improves GI motility in
antibiotic-treated mice by modulating the intestinal mucosal
immune system (17). The intestinal immune system plays an
important role in maintaining the homeostasis of the gut.
MMs, a subtype of macrophages that reside in close contact
with the myenteric plexus in the muscularis mucosa, secrete
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FIGURE 4

Bile acids (BAs) converted by gut microbiota regulate gastrointestinal (GI) motility. BAs are produced from cholesterol in the liver and released
into the GI tract when food intake. In the GI tract, conjugated BAs can be converted by microbial bile salt hydrolase (BSH) to unconjugated BAs,
which stimulate enteric neurons and promote GI motility. Primary BAs can be converted by microbial dehydroxylation to secondary BAs, which
binding to Taketa G-protein-coupled receptor 5 (TGR5) expressed L cell and enterochromaffin (EC) cell stimulate the release of glucagon-like
peptide 1 (GLP-1) and 5-hydroxytryptamine (5-HT), respectively. GLP1 leads to ileal brake and slows GI motility, whereas 5-HT promotes GI
motility. TGR5 is also expressed on intrinsic afferent primary neurons (IPANs), which can be activated by secondary BAs and produce calcitonin
gene-related peptide (CGRP) improving GI motility.

bone morphogenetic protein 2 (BMP2) in response to stimuli
from commensal microbiota, like LPS. BMP2 regulates GI
motility at a stable state by activating the BMP receptor (BMPR)
expressed on the enteric neurons, and in response to BMP2,
enteric neurons produce colony stimulatory factor 1 (CSF1),
which in turn promotes MM homeostasis (17). Thus, plastic
crosstalk between MMs and enteric neurons is driven by gut
microbiota that controls GI motility. However, in a recent
study, LPS supplementation at the same concentration only
prevents antibiotic-induced neuronal loss but does not reverse
or attenuate antibiotic-induced alterations in GI function (35).
On the contrary, higher does LPS has an inhibitory effect
on GI motility. The inflammation response of the GI tract
induced by LPS results in smooth muscle dysfunction and
resultant GI paralysis (66). Through binding to TLR4, LPS can
inhibit the pacemaker currents in ICCs through NF-κB and
p38 MAPK signaling pathway via prostaglandin E2- and NO-
dependent mechanism (67). Time-dependent changes are also
observed in the inhibitory action of LPS on GI motility. In
the early phase of LPS exposure, LPS induces cyclooxygenase-
2 (COX-2) to produce PGE2, which inhibits contractility via
activating PGE2 receptors on smooth muscle cells, and in
the late phase, iNOS is induced to produce NO, which in
turn inhibits contraction (68). Therefore, both increased and

decreased GI motility has been reported when the gut is exposed
to LPS, which may be due to the dose and type of LPS, the
region of the GI system that is studied, and the timing of
motility assessment.

Different gut microbial metabolites
regulate gastrointestinal motility in
different ways

Bile acids
Bile acids are produced from cholesterol in the liver,

stored in the gallbladder, and released into the GI tract upon
food intake. In the GI tract, conjugated primary BAs can be
deconjugated to unconjugated BAs and further dehydroxylated
to secondary BAs by the gut microbiota (69). In addition to their
role in the normal digestion and absorption of dietary fat, tryptic
cleavage of dietary proteins, and antimicrobial effects, BAs take
part in secretion and GI motility, and abnormal delivery of
BAs to the intestine caused by disease or therapy results in GI
disorders, such as constipation and diarrhea (70, 71). Luminal
BAs have region-specific effects on GI motility. They inhibit
the small intestine motility, which may slow ileal transit and
contribute to efficient absorption (72, 73). In contrast, BAs
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promote large intestine motility (74). Patients with constipation-
predominant IBS have a lower level of total BAs in feces
compared to healthy controls (75). An increased proportion
of fecal primary BAs is observed in diarrhea-predominant IBS,
which may be due to the altered composition of gut microbiota
(76), given that gut microbiota has an exclusive role in the
transformation of primary BAs into secondary BAs.

Deoxycholic acid (DCA) and lithocholic acid (LCA), the
major secondary BAs produced by microbial biotransformation
in the colon, are the most efficient agonists of Taketa G-protein-
coupled receptor 5 (TGR5) (77), which have been reported to
improve GI motility. TGR5 is a plasma membrane BA receptor
and is expressed by the EECs and enteric neurons in the
intestine. DCA has been shown to activate TGR5 on EECs to
stimulate the release of 5-HT, a major regulator of GI secretion
and motility, and GLP-1, an incretin and mediator of the ileal
brake (78, 79). DCA promotes peristaltic contractions of the
colon by stimulating a concentration-dependent release of 5-
HT and calcitonin gene-related peptide (CGRP), the major
neurotransmitters of the afferent limb of the peristaltic reflex,
via activating TGR5 expressed on colonic ECs and IPANs,
respectively (29). TGR5 deficiency leads to slower GI transit and
reduced frequency of defecation and fecal water content whereas
TGR5 overexpression accelerates colonic transit in mice (29).
Thus, TGR5 is a key mediator that gut microbiota-dependent
production of secondary BAs influences GI motility.

Particular Clostridium species possess high 7α-
dehydroxylation activity required for the production of
DCA from cholic acid (80, 81). Indigenous spore-forming
microbes (Sp), comprised largely of Clostridia, colonization
ameliorates GF-associated GI dysmotility with reduced total
transit time, increased fecal output, and increased colonic
activation of IPANs in the myenteric plexus (82). This may
be mediated by Sp-induced colonic 5-HT biosynthesis, given
that Sp colonization of GF mice completely restores serum and
colon 5-HT, elevates host colonic expression of tryptophan
hydroxylase (TPH1, a rate-limiting enzyme in the 5-HT
synthesis pathway in ECs), and decreases expression of SLC6A4
to levels observed in SPF mice (82). Besides, 5-HT modulated
by gut microbiota is associated with neurogenesis in the ENS
and intestinal transit, potentially via the 5-HT4 receptor (83).
Specific microbial factors that may be responsible for the
serotonergic effects of Sp have been identified. Sp-induced
increases in DCA and other microbial metabolites likely
contribute to its ability to improve GI motility by promoting
Tph1 expression and 5-HT biosynthesis in colonic ECs (82).

In addition, unconjugated BAs are also reported to regulate
gut sensorimotor activity (84). Unconjugated BAs, including
7-ketodeoxycholic acid and muricholic acid, produced by
microbial bile salt hydrolase (BSH) are correlated with faster
transit time and affect GI motility via modulation of Ret
signaling in the ENS (85). GI transit time is significantly
decreased in mice colonized with BSH-positive microbiota,

indicating that GI motility is dependent on gut microbiota-
mediated deconjugation of BAs (85). Moreover, greater BSH
activity of gut bacteria drives faster colonic transit, with greater
prokinetic effects in males than in females (86). In summary,
gut microbiota indirectly regulates GI motility through its effect
on the modification of BAs composition by deconjugation and
dehydroxylation (Figure 4).

Short-chain fatty acids
Short-chain fatty acids, a major class of bacterial metabolites,

can directly activate G protein-coupled receptors, inhibit
histone deacetylases, and serve as energy substrates and thus
play a key role in the regulation of host physiology, including
gut motility (87). SCFAs, including acetate, propionate, and
butyrate, are produced by gut microbial fermentation of
dietary indigestible polysaccharides (87). A recent meta-
analysis shows that constipation-predominant IBS (IBS-C)
patients have decreased concentrations of fecal propionate and
butyrate, whereas diarrhea-predominant IBS (IBS-D) patients
have increased concentrations of butyrate compared to healthy
controls, indicating the significant role of SCFAs in regulating
GI motility (88).

Germ-free and antibiotic-treated mice have reduced SCFAs,
increased proglucagon (Gcg) expression in L cells of the
colon, and increased GLP-1 in the plasma (89). GLP-1 as an
enterogastrone affects the regulation of gastric emptying and
GI transit (90). Overexpression of GLP-1 is associated with
markedly prolonged GI transit in patients with neuroendocrine
tumors (91), and elevated GLP-1 and slower GI transit have
also been found in patients with anorexia nervosa (92).
SCFAs, particularly butyrate, are a primary unique energy
source for colonocytes (93). Increasing energy availability by
supplementing SCFAs or SCFAs-producing bacteria suppresses
Gcg expression in the colon of GF mice, suggesting that colonic
L cells sense local energy availability and regulate basal GLP-
1 secretion (89). Colonic-derived GLP-1 has an important
function in slowing GI motility in order to allow more time for
nutrient absorption when energy availability is insufficient (89).

Butyrate also directly regulates the ENS and controls
GI motility involving at least in part the monocarboxylate
transporter 2 (MCT2) of enteric neurons (94). MCTs,
proton-linked membrane proteins of the SLC16A family,
are responsible for the transport of butyrate into cells (95).
Butyrate-induced ChAT expression involves the acetylation
of histone H3 lysine 9 (H3K9) and the Src-kinase signaling
pathway, which increases cholinergic phenotype resulting in
increased colonic contractility and shorter colonic transit time
(94). Administration of acetate promotes GI motility through
regulating 5-HT synthesis, neurotrophic factors expression, and
immunocyte differentiation by HDAC3 inhibition in the colon
(96). All three SCFAs promote colonic peristalsis by stimulating
5-HT release, which activates 5-HT4 receptors located on
intrinsic CGRP-containing sensory neurons (97). However,
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it also has been reported that different SCFAs exert different
effects on proximal and distal colonic motility in guinea pigs, in
contrast to butyrate, acetate and propionate seem to decrease
colonic motility, suggesting that the net effects of SCFAs
depend on the balance of SCFAs produced by gut microbiota
(98). Luminal propionate reduces anion secretion and slows
colonic motility via PYY mediation and enteric sensory neuron
activation, by stimulating GPR43 and GPR41, respectively (99).
The difference in the effects of different SCFAs may be due to
the different SCFA concentrations and animal models used in
the study because it has been reported that acetate and butyrate
can significantly affect TPH1 mRNA expression of ECs in a
concentration-dependent manner in vitro (100). Moreover,
chronically elevated SCFAs lead to a disbalance of activating
and inhibiting action resulting in a detrimental increased
colonic transit rate, which may play a role in the pathogenesis
of diarrhea-predominant IBS (101).

In addition, SCFAs alone enhance the survival of enteric
neurons and promote enteric neurogenesis in antibiotic-treated
mice, but do not affect GI function (35). Why the beneficial
effects of SCFAs in the ENS structure of antibiotic-treated mice
are not accompanied by recovery of GI function remains to
be elucidated. Nevertheless, SCFAs produced by gut microbiota
regulate GI motility (Figure 5).

Tryptophan metabolites
Tryptophan (Trp) metabolism has appeared as a crucial

metabolic pathway involved in the host-microbiota crosstalk,
which plays a central role in maintaining GI function (102).
Trp is an essential amino acid that entirely depends on dietary
intake, and its metabolism in the gut follows three major
pathways: (1) the indole pathway: direct transformation by
commensal microbiota into indole and indole derivatives; (2)
the kynurenine pathway: metabolized by epithelial and immune
cells into kynurenine through indoleamine 2,3-dioxygenase 1
(IDO1); and (3) the serotonin pathway: conversion by ECs
into 5-HT through TpH1, all of these pathways are directly
or indirectly controlled by gut microbiota (103). In various
GI diseases, Trp metabolic disorders have been found at least
one of these pathways, as in inflammatory bowel diseases
(IBD) and celiac disease (104, 105), hence it is necessary
to expound the role of gut microbiota-controlled tryptophan
metabolism in GI motility.

Tryptamine is a by-product of the indole pathway of Trp
metabolism by the gut microbiota and is abundant in human
and rodent feces. Tryptamine increases cAMP release from the
epithelium and anion-dependent fluid secretion in the proximal
colon, which is mediated by activating colonic epithelial GCPR
5-HT4R alone, not 5-HT4Rs expressed in colonic mucosa and
neuronal plexus (106). Engineered Bacteroides thetaiotaomicron
optimized to express tryptophan decarboxylase, the enzyme
responsible for decarboxylation of tryptophan to tryptamine,
effectively colonizes the gut, which produces tryptamine in vivo
and can accelerate WGTT by increasing colonic secretion

(106). Accordingly, a longitudinal multi-omics study in humans
demonstrates that tryptamine is elevated in the stools of a subset
of IBS patients with diarrhea (107). In addition, tryptamine,
as an aryl hydrocarbon receptor (AhR) ligand (103), may
also regulate GI transit through other different mechanisms.
Gut microbiota-dependent AhR expression and activation in
neurons of the distal GI tract enables these neurons to respond
to the luminal environment, thereby regulating intestinal
peristalsis, but the detailed molecular mechanism underlying
the downstream pathway of neuronal AhR signaling remains
to be characterized (34). Other bacteria-derived tryptophan
metabolites produced from the indole pathway, including indole
and indole-3-carboxaldehyde (IAld), are also AhR agonists, but
they can promote GI motility in an AhR-independent manner
by activating EECs, through transient receptor potential ankyrin
A1 (Trpa1), increase neurotransmitter 5-HT secretion by ECs,
and stimulate IPANs, which then activate cholinergic enteric
neurons to promote GI motility (108). 5-hydroxytryptophan (5-
HTP) is a chemical precursor and intermediate metabolite of
Trp in the biosynthesis of 5-HT and is often used as a food
supplement or as a drug. Administration of 5-HTP restores
5-HT to the ENS and normalizes GI motility and growth
of the enteric epithelium in a mouse model of depression
(109). 5-HTP can be converted to 5-hydroxyindole (5-HI)
by bacterial tryptophanase, which is dependent on the gut
microbiota composition and pH levels. 5-HI improves GI
motility directly through activation of L-type voltage-dependent
calcium channels (L-VDCCs) located on the colonic smooth
muscle cells and possible via its induction of 5-HT release from
ECCs activating 5-HT3 and 5-HT4 receptors on afferent nerve
terminals from the ENS (110).

These studies confirm that gut microbiota-controlled Trp
metabolism is a crucial factor in the crosstalk of host-microbiota
and the fine-tuning of GI motility (Figure 6), indicating that
Trp metabolism is a potential therapeutic target for GI motility
disorders. However, it is a complex therapeutic target because
modulation of one of its three metabolic pathways will affect
the others, therefore consequences for all of its three metabolic
pathways should be considered when modifying gut microbiota
and Trp metabolism.

Other gut microbial metabolites
Other products of gut microbial metabolization of nutrients

also have an effect on the regulation of GI motility. Quercetin
is an abundant flavonoid in many vegetables, fruits, and
grains (111). It is also produced by gut bacteria, specifically
Fusobacteria species (112), and promote GI motility and mucin
secretion in rat with loperamide-induced constipation through
regulation of the muscarinic acetylcholine receptor (mAChR)
signaling pathway (113). Putrescine and cadaverine, which are
polyamines and trace amine, respectively, produced by gut
bacteria may act on chemosensors and thus regulate intestinal
peristalsis in rate (114). Besides, gut microbiota mediates the
production of neurotransmitters, such as γ-aminobutyric acid
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FIGURE 5

Short-chain fatty acids (SCFAs) produced by gut microbiota regulate gastrointestinal (GI) motility. SCFAs, including acetate, propionate, and
butyrate, are produced from gut microbial fermentation of dietary polysaccharides. L cells sense SCFAs and produce glucagon-like peptide 1
(GLP-1) and peptide YY (PYY), both of which inhibit GI motility. Enterochromaffin (EC) cells sense SCFAs and produce 5-hydroxytryptamine
(5-HT), which promotes GI motility by activating the 5-HT4 receptor expressed on enteric neurons. SCFAs can also stimulate enteric neurons
through monocarboxylate transporter 2 (MCT2), playing a positive role in GI motility.

FIGURE 6

Tryptophan metabolism controlled by gut microbiota regulates gastrointestinal (GI) motility. Tryptophan can be metabolized by gut microbiota
to a variety of active substances. Aryl hydrocarbon receptor (AhR) ligands binding to AhR expressed on enteric neurons promote GI motility.
Tryptamine contributes to fluid secretion by activating the 5-hydroxytryptamine (5-HT) receptor on enterocytes, which increases GI motility.
Indole derivatives stimulate the release of 5-HT from enterochromaffin (EC) cells via transient receptor potential ankyrin A1 (Trpa1), which
improves GI motility through stimulating intrinsic afferent primary neurons (IPANs). 5-hydroxyindole (5-HI) can directly act on smooth muscle
cells via L-type voltage-dependent calcium channels (L-VDCCs) and then promotes GI motility.
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(GABA) produced from glutamic acid, involved in gut motility
(115, 116). GABA receptors are expressed in the GI tract,
where GABA modulates both motor and secretory GI activity
(117). The dietary histidine can be metabolized by Morganella
morganii and Lactobacillus reuteri into histamine, which shapes
colonic motility through activating histamine receptors along
the GI tract (118). Except for SCFAs, saturated long-chain fatty
acids, such as heptadecanoic acid and stearic acid, produced
by gut bacteria can promote colonic muscle contraction
and increase stool frequency in rats (119). Altogether, these
metabolites produced by gut microbiota play a crucial role in
the regulation of GI motility.

Conclusion

Mechanisms of GI motility are complex. Previous studies
support the notion of close crosstalk between the host and
gut microbiota, involving multiple integrated gut microbiota-
controlled signaling pathways on the host to modulate GI
motility. Taken together, a variety of gut microbiota-derived
signals are orchestrated and cooperate with each other in
the modulation of GI motility. Gut microbial components
and metabolites appear to have multiple effects on GI
motility. A comprehensive understanding of these roles of
gut microbiota-derived signals in GI motility will enable the
further development of rational specific therapies to either
directly prevent or improve GI dysmotility. However, the role
of gut microbiota-derived signals in GI motility discussed in
this review is mostly based on animal experiments, lessons
learned from animal models still need to be confirmed in clinical

settings. This process will elucidate gut microbiota-dependent
mechanisms that modulate GI motility and facilitate the
development of gut microbiota-targeted therapeutic approaches
to improve GI diseases with dysmotility.
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