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Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual
disability, resulting from a mutation in the FMR1 gene and subsequent loss of its
protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically
complex disorder with a range of physical and neurocognitive disruptions. While
numerous molecular and cellular pathways are affected by FMRP loss, there is growing
evidence that circuit hyperexcitability may be a common convergence point that can
account for many of the wide-ranging phenotypes seen in FXS. The mechanisms
for hyperexcitability in FXS include alterations to excitatory synaptic function and
connectivity, reduced inhibitory neuron activity, as well as changes to ion channel
expression and conductance. However, understanding the impact of FMR1 mutation
on circuit function is complicated by the inherent plasticity in neural circuits, which
display an array of homeostatic mechanisms to maintain activity near set levels. FMRP
is also an important regulator of activity-dependent plasticity in the brain, meaning
that dysregulated plasticity can be both a cause and consequence of hyperexcitable
networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation
from the myriad and pleiotropic compensatory changes associated with it, both of
which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence
for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing
on similarities/differences across brain regions, cell-types, and developmental time
points; (2) examine how excitability and plasticity disruptions interact with each other
to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic
and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and
sensory hypersensitivity. Through this discussion of where the current field stands, we
aim to introduce perspectives moving forward in FXS research.

Keywords: fragile X syndrome, circuit hyperexcitability, homeostatic plasticity, E/I balance, sensory
hypersensitivity, epilepsy

INTRODUCTION

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability (ID) and one
of the leading known genetic causes of autism spectrum disorders (ASD; Hagerman et al., 2017).
FXS is most commonly caused by the expansion and hyper-methylation of CGG-repeats around
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the FMR1 gene, leading to its transcriptional silencing and
the subsequent loss of its protein product, Fragile x mental
retardation protein (FMRP; Bhakar et al., 2012). In rare cases,
FXS can also arise from point mutations or deletions in the
FMR1 gene (Hammond et al., 1997; Myrick et al., 2014, 2015;
Suhl and Warren, 2015). FMRP is a well-conserved neuronal
RNA-binding protein involved in the transport and translational
regulation of a large number of mRNA in the brain (Ashley
et al., 1993; Siomi et al., 1993; Stefani et al., 2004; Santoro
et al., 2012). The known genetics of FXS and the evolutionarily
conserved nature of FMRP have allowed for the development
of well-validated animals models of the disorder (Bhogal and
Jongens, 2010; Schroeder et al., 2017). FXS has thus emerged as a
prototype for amolecularmedicine approach to neuropsychiatric
disorders, i.e., treating diseases with complex pathophysiology by
targeting underlying molecular and cellular alterations identified
in pre-clinical models (Krueger and Bear, 2011). However,
recent clinical trial failures in FXS have also underscored the
potential pitfalls of attempting to translate therapies developed
from molecular pathology identified in animal models into
suitable clinical treatments (Berry-Kravis et al., 2018). These
setbacks highlight the need for further understanding of how
cellular and molecular perturbations caused by loss of FMRP
contribute to neural circuit dysfunction in FXS, as these circuit
abnormalities are most relevant to understanding how the
behavioral phenotypes associated with FXS arise. Elucidating the
consequences of FMR1 mutation at the circuit and behavioral
level is complicated by the wide-ranging, multifunctional role of
FMRP as well as the vast compensatory mechanisms utilized by
the brain to maintain neuronal function within an optimal range.

FMRP is highly enriched in neurons and expressed across
various cell compartments, cell-types, and brain regions (Abitbol
et al., 1993; Devys et al., 1993; Verheij et al., 1995; Feng et al.,
1997; Christie et al., 2009; Olmos-Serrano et al., 2010). FMRP
expression is also developmentally regulated in both humans
(Abitbol et al., 1993) and mice (Saffary and Xie, 2011), with
expression starting at early embryonic stages, peaking during
early post-natal developmental critical periods, but remaining at
sustained levels throughout adulthood (Till, 2010; Bonaccorso
et al., 2015; Gholizadeh et al., 2015). Most evidence indicates
that FMRP is a translation repressor, with the ability to inhibit
both translation initiation (Napoli et al., 2008) and elongation
(Ceman et al., 2003). Indeed, a majority of FMRP is associated
with stalled polyribosomes (Feng et al., 1997; Stefani et al., 2004;
Darnell et al., 2011) and loss of FMRP often results in increased
cerebral protein synthesis rate (Osterweil et al., 2010; Qin
et al., 2013; Jacquemont et al., 2018). Several high-throughput
approaches have indicated that FMRP associates with thousands
of mRNA targets (approximately 4–8% of all brain mRNA) with
wide-ranging effects on neuronal function (Brown et al., 2001;
Darnell et al., 2011; Ascano et al., 2012). Targets include a large
fraction of the synaptic proteome in both pre- and post-synaptic
compartments, ion channels important for regulation of cellular
excitability, as well as transcription factors and chromatin-
modifying proteins that can broadly affect the genetic and
proteomic content of cells. FMRP can also influence cell
excitability through direct protein–protein interactions with

voltage- and ligand-gated ion channels (Deng and Klyachko,
2021).

Because of its ubiquitous expression and ability to regulate
a large portion of the neuronal proteome, it is perhaps not
surprising that loss of FMRP has far-reaching consequences on
neuronal function. However, accumulating evidence suggests
that neuronal hyperexcitability and network hyperactivity are
important points of convergence for FXS pathophysiology
(Contractor et al., 2015). In many instances, neuronal
hyperexcitability is likely the direct result of loss of FMRP and
its canonical role in regulating mRNA translation or ion channel
function. However, a number of studies have also indicated
that hyperexcitability in FXS can occur as a result of aberrant
activity-dependent and/or homeostatic plasticity mechanisms,
especially in early post-natal weeks when the neuronal circuits
undergo immense changes owing to sensory experiences. In
yet other cases, synaptic and cellular alterations that appear
to promote hyperexcitability in FXS models may actually be
compensatory changes that act to stabilize network activity.
Loss of FMRP function is therefore likely to have multiple
and sometimes even contradictory effects on circuit function,
and interpreting these circuit level complexities requires an
understanding of both the pleiotropic effects of FMR1 mutation
as well as the adaptive and maladaptive homeostatic responses to
these primary changes. This balancing act is not unique to FXS
either, as altered network and cellular homeostasis are thought
to contribute to the pathogenesis of genetically-diverse forms
of ASD (Bourgeron, 2015; Nelson and Valakh, 2015) as well as
other neurodevelopmental and neurocognitive disorders (Frere
and Slutsky, 2018; Kavalali and Monteggia, 2020). Thus, the
goal of this review is to use FXS as a model for understanding
the dynamic and varied processes that contribute to emergent
circuit dysfunction in neuropsychiatric disorders. Below we will
examine the evidence for altered excitability and plasticity in FXS
models, primarily focusing on the Fmr1 KO mouse. We will pay
particular attention to the complex interplay between excitability
and plasticity phenotypes, and discuss how these synaptic
and circuit deficits contribute to disease-relevant behavioral
phenotypes like epilepsy and sensory hypersensitivity.

HYPEREXCITABLE NEURONS AND
NETWORKS IN FRAGILE X SYNDROME

Many FXS phenotypes can be understood through the lens
of neuronal hyperexcitability, with the prevalence of sensory
hypersensitivity, hyperactive/aggressive behavior, epileptic
seizures, and abnormal EEGs in FXS individuals and FMR1 KO
animal models confirming neuronal network hyperexcitability
as a characteristic defect owing to FMRP deficiency (Musumeci
et al., 2000; Berry-Kravis, 2002; Lozano et al., 2014). While
hyperexcitability is observed across many cortical and subcortical
brain regions, the exact mechanisms generating this phenotype
appear to vary by brain region and this may have important
implications for the treatment of the disorder. A wide range
of studies have pointed out that the loss of FMRP disrupts
innumerable signaling pathways essential for the maintenance
of normal synaptic function and neuronal network stability
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(Bhakar et al., 2012). Hyperexcitability in FXS can be explained
as a function of a number of changes, including: (1) abnormal
activity-dependent refinement of synaptic connectivity leading
to elevated numbers of excitatory synapses in certain neuronal
populations; (2) impaired inhibitory neuron function and/or
synaptic properties leading to an altered balance between
excitatory and inhibitory strength (E/I imbalance); and
(3) disruption in ion channel function or expression, leading to
increased intrinsic excitability and altered dendritic integration.
Indeed, there is evidence for changes in all of these processes in
the FMR1 deficient brain (Figure 1) and that they interact with
one another in a complex fashion.

Altered Excitatory Synaptic Function and
Plasticity in FXS
One of the earliest synaptic phenotypes identified in FXS was
the presence of abnormal dendritic spines, where the majority
of excitatory synapses are formed in the brain. Golgi stain studies
have found an overabundance of immature spines in both FMR1
KO mice (Comery et al., 1997; Galvez and Greenough, 2005;
Mckinney et al., 2005) and FXS human tissue (Hinton et al.,
1991; Wisniewski et al., 1991; Irwin et al., 2001). Subsequent
live-imaging experiments using two-photon microscopy have
found spine density and/or shape phenotypes to be more
variably expressed in FXSmodels, being sensitive to brain region,
developmental age, and genetic background (Nimchinsky et al.,
2001; Meredith et al., 2007; Cruz-Martín et al., 2010; Harlow
et al., 2010; Pan et al., 2010; He and Portera-Cailliau, 2013).
However, these live-imaging studies also highlighted the fact
that, regardless of overall number or shape differences, dendritic
spines in FMR1 KO animals exhibit atypical dynamics and
were much less sensitive to changes in activity levels or sensory
experience (Wisniewski et al., 1991; Antar et al., 2006; Goel et al.,
2006; Pan et al., 2010). Thus, loss of FMRP leads to impaired
activity-dependent changes to spine structure and number,
resulting in abnormal synaptic maturation, stabilization, and/or
elimination (Comery et al., 1997; Cruz-Martín et al., 2010;
Pfeiffer et al., 2010).

Consistent with anatomical studies of spine dynamics,
electrophysiological experiments have found differences in
excitatory synaptic function in FMR1 KO models, once again
with an emphasis on disrupted activity-dependent modifications
(Sidorov et al., 2013). Early studies found no alteration to basal
synaptic transmission or long-term potentiation (LTP) in the
hippocampus of FMR1 KOmice (Godfraind et al., 1996; Paradee
et al., 1999), although subsequent studies have found subtle
LTP deficits in the hippocampus (Lauterborn et al., 2007; Hu
et al., 2008) and other brain regions (Meredith et al., 2007;
Koga et al., 2015). The most prominent synaptic plasticity
phenotype observed in FMR1 KO models is excessive group
1 metabotropic glutamate receptor (mGluR1/5)-dependent
long-term depression (LTD) at excitatory synapses (Huber et al.,
2002; Koekkoek et al., 2005; Hou et al., 2006; Till et al., 2015).
Expression of mGluR-LTD in the mature brain is mediated
via post-synaptic internalization of AMPA receptors (Snyder
et al., 2001; Gladding et al., 2009), which is stabilized by rapid
de novo synthesis of proteins from pre-existing, dendritically-

localized mRNA (Huber et al., 2000). Interestingly, FMRP itself
is one of the proteins synthesized by mGluR 1/5 activation
(Weiler et al., 1997; Antar et al., 2004; Hou et al., 2006).
These findings, coupled with FMRP’s role in repressing activity-
dependent protein synthesis, have led to the idea that FMRP
acts as a negative feedback regulator to limit mGluR-mediated
protein synthesis (Bear et al., 2004). Consistent with this notion,
basal protein synthesis rates are elevated in the hippocampus
of FMR1 KO mice and mGluR5-mediated increases in protein
synthesis are occluded in slices from FMR1 animals (Todd
et al., 2003; Osterweil et al., 2010). Similarly, mGluR-LTD is
not only exaggerated in FMR1 KO animals but it no longer
requires new protein translation (Hou et al., 2006; Nosyreva and
Huber, 2006). Importantly, post-natal re-expression of FMRP
in FMR1 KO slices can restore normal levels of mGluR-LTD
(Zeier et al., 2009). It is unclear how exaggerated mGluR-LTD
contributes to neuronal hyperexcitability in FXS, as enhanced
synaptic depression at excitatory synapses would likely act to
decrease excitatory drive onto neurons. However, it may be
more informative to view mGluR-LTD as a sensitive functional
read-out of mGluR-stimulated protein synthesis in dendrites,
which has a number of consequences in addition to LTD that
could directly contribute to neuronal hyperexcitability, such
as facilitating the persistence of LTP (LTP priming; Raymond
et al., 2000) and inducing prolonged epileptiform discharges
(Bianchi et al., 2009). Indeed, mGluR-mediated priming of LTP
(Auerbach and Bear, 2010) and mGluR-induced epileptiform
activity (Chuang et al., 2005; Zhao et al., 2011) are enhanced
and/or uncoupled from activity-dependent protein synthesis in
the hippocampus of FMR1 KO mice, both of which would act to
increase circuit excitability.

Disrupted Critical Period Plasticity and Synaptic
Refinement
Activity-dependent synaptic modification is a crucial step in
normal development (Faust et al., 2021). As FMRP is highly
expressed during early life critical periods (Till, 2010; Bonaccorso
et al., 2015; Gholizadeh et al., 2015), loss of FMRP may
lead to altered excitatory synaptic development, which in turn
could contribute to hyperexcitability phenotypes in FX. There
is indeed evidence for deficient or disrupted critical period
plasticity in FMR1 KO mice. Whole cell recordings from layer
4 stellate cells in barrel cortex slices from juvenile FMR1
KO mice have found increased persistence of silent synapses,
those containing NMDAR but not AMPAR currents, at later
developmental time points compared to wild-type (WT) animals,
which corresponded with a shift in the temporal window for LTP
induction at these synapses (Harlow et al., 2010). Intracortical
connections in the barrel cortex of FMR1 KO mice were
also shown to exhibit abnormal development in a temporally
restricted manner (Bureau et al., 2008). In the auditory system,
passive exposure to tones during the auditory critical period
results in shifts to the tonotopic map of sound frequency
representation in the auditory cortex (Zhang L. I. et al., 2001).
This critical period auditory plasticity was absent in FMR1 KO
mice (Kim et al., 2013), potential due to impaired stabilization
of LTP at auditory thalamocortical synapses at this development
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FIGURE 1 | Neuronal and circuit hyperexcitability in Fragile X Syndrome (FXS). Hyperexcitability owing to loss of function of the FMR1 gene and its protein product
FMRP manifests across levels of the CNS via a variety of mechanisms. (A) Several lines of evidence indicate that disrupted excitatory/inhibitory synaptic balance due
to altered activity-dependent refinement of synaptic connectivity and impaired synaptic transmission and plasticity contribute to circuit hyperexcitability in FXS. In
particular, there is evidence for a reduction in inhibitory synaptic transmission in several brain regions of FMR1 KO animals which, in addition to excessive excitatory
connectivity in some cases, can result in increased E/I ratio and circuit hyperexcitability. (B) FMRP deficiency is also associated with dysregulated ion channel
function and expression, resulting in changes to intrinsic excitability, action potential (AP) slope and duration, and increased the axon initial segment (AIS) length in
some brain areas. AIS is enriched in many of the ion channels that are directly or indirectly regulated by FMRP. (C) Hyperexcitability in FXS can also arise from
impaired homeostatic plasticity, which is an essential mechanism for maintaining basal network activity and preventing circuit hypo- or hyperexcitability. For instance,
FMR1 KO neurons exhibit dysregulated homeostatic changes to intrinsic excitability in response to activity blockade, resulting in increased AP slope and cellular
hyperexcitability compared to WT neurons.

time-point (Yang et al., 2014). It is also important to note that
FMRP’s role in circuit development is not restricted to the
cortex, as post-synaptic reduction of FMRP in chick auditory
brainstem via in utero electroporation leads to a delay in dendrite
branch retraction and the prevention of presynaptic endbulb
development (Wang et al., 2018). These studies indicate that
FMRP is important for defining the critical window for neuronal
circuit refinement during development.

How might dysregulated critical period plasticity result in
hyperexcitable circuits? A central mechanism for developmental
refinement of neural circuits is synaptic pruning, i.e., the
activity-dependent elimination of synapses (Sakai, 2020; Faust
et al., 2021). Several studies have indicated that synapse
elimination is disrupted in FMR1 KO animals. In drosophila,
loss of FMRP has been shown to alter dendritic complexity
and synapse growth at glutamatergic neuromuscular junctions
(Zhang Y. Q. et al., 2001) and in the central nervous
system (Pan et al., 2004; Kennedy et al., 2020). Dual patch
experiments have found evidence for overconnectivity of
excitatory neurons in acute slices from the somatosensory
cortex of FMR1 KO mice (Patel et al., 2014). Interestingly,
this hyperconnectivity phenotype was not due to increased
development of synaptic connections in FMR1 KO mice but
rather to a failure in activity-dependent synaptic elimination

between 3 and 5 weeks postnatal. Similar synaptic pruning
deficits have been observed in hippocampal slice cultures, where
it was shown that synapse elimination via the activity-dependent
transcription factor MEF2 is absent in slices from FMR1 KO
mice (Pfeiffer et al., 2010). Importantly, acute post-synaptic
re-expression of FMRP was able to restore MEF2-dependent
synapse elimination in KO slices, suggesting FMRP regulates
excitatory synapse elimination in a cell-autonomous manner.
FMRP was subsequently shown to regulate MEF2-dependent
synapse elimination via PP2A-mediated dephosphorylation of
the ubiquitin E3 ligase murine double minute-2 (Mdm2), which
promotes the degradation of the synaptic scaffolding protein
PSD-95 (Tsai et al., 2017). Most recently, post-synaptic loss
of FMRP in the somatosensory cortex has been shown to
result in impaired activity-dependent development of callosal
inputs, resulting in increased local intracortical connectivity but
impaired long-range cortical-cortical connections (Zhang et al.,
2021).

FMRP is also expressed in pre-synaptic terminals (Christie
et al., 2009), and pre-synaptic loss of FMRP may regulate
excitatory post-synaptic development as well (Antar et al., 2006).
Indeed, studies using mosaic deletion of Fmr1 in hippocampal
slice culture found that pre-synaptic loss of FMRP was
sufficient to increase synaptic connectivity while postsynaptic
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deletion did not alter connection probability (Hanson and
Madison, 2007). While the mechanisms governing abnormal
pre-synaptic development with FMR1 deletion remain to be
fully elucidated, there is intriguing evidence that FMRP can
regulate pre-synaptic transmitter release via direct modulation
of ion channel function independent of its role in translation
regulation (see Section ‘‘Ion Channel Dysregulation and Altered
Intrinsic Excitability in FXS’’; Ferron et al., 2014; Myrick et al.,
2015). Whether pre- or post-synaptic in nature, deficient synapse
elimination has the potential to lead to hyperexcitability in
mature circuits. For instance, in vivo recordings from the lateral
superior olive (LSO), an auditory brainstem area important
for sound localization, found evidence for increased sound-
evoked activity and hyperexcitability at the population level
in FMR1 KO mice (Garcia-Pino et al., 2017). Parallel whole
cell slice recordings found no difference in the properties of
individual excitatory or inhibitory synapses in this region, but
rather that hyperexcitability was the result of an increased
number of excitatory connections converging onto individual
LSO neurons. Ultrastructure analysis in the somatosensory
cortex shows that loss of FMRP results in a three-fold increase
in multiply-innervated spines, leading to increased single-spine
excitation that promotes circuit hyperexcitability (Booker et al.,
2019). Thus, hyperexcitable circuits in FXS could be due in
part to failures of synaptic pruning during development as a
consequence of dysregulated experience-dependent plasticity.

Altered Inhibitory Neuron Function in FXS
Efficient information processing in neural circuits requires a
tightly regulated balance between excitatory and inhibitory
activity (E/I balance; Haider et al., 2006; Shew et al., 2011;
Yizhar et al., 2011). As discussed above, loss of FMRP alters the
development and function of excitatory synapses in a number
of ways that could affect neuronal excitability. FMRP is also
broadly expressed in GABAergic neurons (Feng et al., 1997;
Olmos-Serrano et al., 2010) and many lines of evidence point to
altered inhibitory neuronal function in FXS as well. FMR1 KO
mice have reduced levels of several GABAA receptor subunits,
the major fast-acting inhibitory ionotropic receptor in the brain,
at both the mRNA (D’hulst et al., 2006; Gantois et al., 2006) and
protein levels (El Idrissi et al., 2005; Gantois et al., 2006; Curia
et al., 2009). Pre-synaptically, expression of the rate-limiting
GABA synthesizing enzyme glutamic acid decarboxylase (GAD)
has been shown to be reduced in FMR1 KO mice (Olmos-
Serrano et al., 2010), although other studies have found increased
GAD65/67 expression in some brain regions (El Idrissi et al.,
2005). Down-regulation of GABAA receptors and GAD have
also been observed in the drosophila fly model of FXS (Gatto
et al., 2014). Anatomical defects in GABAergic and/or glycinergic
neurons have been observed in the cortex (Selby et al., 2007) and
brainstem (Mccullagh et al., 2017) of FMR1 KO mice. In vivo
imaging studies have found impaired sensory-evoked activity in
inhibitory neuron populations in the cortex of FMR1 KOmice as
well (Goel et al., 2018). Human PET imaging studies have found
evidence for diminished GABAA receptor binding in the brains
of FXS individuals (D’hulst et al., 2015). Electroencephalography
(EEG; Ethridge et al., 2017; Wang et al., 2017) and transcranial

magnetic stimulation studies (TMS; Morin-Parent et al., 2019)
have found indirect evidence for reduced inhibition in humans
with FXS in the form of altered neuronal oscillations and reduced
short-interval suppression of TMS-evoked potentials, which both
depend on local intracortical inhibition (Kujirai et al., 1993; Chen
et al., 2008; Cardin et al., 2009; Sohal et al., 2009). Thus, there
is general agreement that FMR1 mutation results in a broad
dampening of GABAergic inhibition in the brain which could
lead to hyperexcitable networks (Figure 1A). However, it is also
clear that the concept of a single E/I balance is overly simplistic,
as there are different sources of inhibition within a single
microcircuit that target distinct cellular compartments and affect
different aspects of neuronal function (O’donnell et al., 2017).
It is also likely that disruptions to excitatory synaptic function
in FXS can evoke changes to inhibitory transmission and vice
versa. Thus, it is important to understand the precise manner in
which inhibitory synaptic and circuit function are altered in FXS
in order to fully understand the consequences of these changes
on network excitability and information processing.

Deficient GABAergic Transmission in FMR1 KO
Models
Electrophysiological studies have found evidence for reduced
GABAergic inhibition onto excitatory principal cells in FMR1
KO animals in a variety of brain areas, albeit with region-
specific differences. Consistent with evidence for changes to the
pre- and post-synaptic machinery for GABAergic signaling in
FXS, both the frequency and amplitude of spontaneous and
miniature inhibitory post-synaptic potentials (sIPSCs, mIPSCs)
are reduced in the amygdala of adult (Olmos-Serrano et al.,
2010) and juvenile (Vislay et al., 2013) FMR1 KO mice.
Conversely, GABAergic inhibition was found to be enhanced
in the striatum of adult FMR1 mice via increased pre-synaptic
transmitter release (Centonze et al., 2008). Basal GABAergic
transmission was not altered in layer 2/3 pyramidal neurons
in the somatosensory cortex of FMR1 KO mice, but mGluR-
mediated activation of low-threshold spiking (LTS) interneurons
was deficient, resulting in reduced activity-dependent inhibition
(Paluszkiewicz et al., 2011). mGluR-dependent decreases in
inhibitory function via retrograde endocannabinoid signaling
have also been observed in the hippocampus (Zhang and
Alger, 2010), striatum (Maccarrone et al., 2010), and cortex
(Rio et al., 2018) of FMR1 KO mice, once again highlighting
the role of FMRP in mGluR-dependent plasticity. Action
potential evoked feed-forward inhibitory input to the CA1 region
of the hippocampus is reduced in FMR1 KO mice in
an input-specific manner (Wahlstrom-Helgren and Klyachko,
2015, 2016). Decreased feed-forward inhibition onto excitatory
neurons has also been observed in the lateral amygdala (Svalina
et al., 2021) and the somatosensory cortex (Antoine et al.,
2019; Domanski et al., 2019) of FMR1 KO mice. Loss of
feedforward inhibition is associated with marked changes in
E/I balance, increased spike probability, and reduced spike
precision, all of which are likely to contribute to circuit
hyperexcitability and impaired information processing in these
areas. However, it should also be noted that, in some cases,
decreased inhibitory synaptic transmission and enhanced E/I
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ratio in FMR1 KO mice may actually act to stabilize circuit
excitability. For instance, Antoine and colleagues found that
FMR1 KO mice exhibited reduced feedforward inhibition onto
layer 2/3 pyramidal neurons in the somatosensory cortex but
that this reduction in inhibitory conductance was not associated
with increased whisker-evoked spiking activity in these neurons
(Antoine et al., 2019). Instead, modeling experiments suggested
that rather than promoting network hyperexcitability, altered E/I
balance in layer 2/3 neurons may actually reflect a homeostatic
process to maintain stable synaptic drive.

GABAA receptors not only mediate fast-acting, synapse-
specific phasic inhibition but in some brain areas can
also mediate slower, sustained tonic inhibition involving
extrasynaptic GABAA receptors (Farrant and Nusser, 2005).
Both phasic and tonic inhibition were shown to be deficient
in the amygdala of FMR1 KO animals (Olmos-Serrano et al.,
2010; Martin et al., 2014), while tonic but not phasic inhibition
was disrupted in the subiculum (Curia et al., 2009). Increased
tonic inhibition did not alter overall synaptic conductance
or E/I balance in FMR1 KO animals, but it impaired the
timing between feedforward excitation and inhibition, and this
disruption in the temporal precision of stimulus-evoked E/I
balance may contribute to hyperexcitability (Martin et al., 2014).
Acute treatment of FMR1 KO mice with gaboxadol, a GABAA
receptor agonist selective for extrasynaptic receptors mediating
tonic currents, rescues hyperexcitability of amygdala principal
neurons and rescued certain behavioral phenotypes in FMR1
KO mice, suggesting reduced tonic GABAergic inhibition in
the amygdala contributes to hyperexcitability phenotypes in FXS
(Olmos-Serrano et al., 2010, 2011). In fact, recently completed
phase 2 clinical trials investigating the use of gaboxadol to
treat FXS have shown promising results (Budimirovic et al.,
2021). Thus, circuit hyperexcitability in many brain regions
of FMR1 KO animals is likely due in part to decreased
basal GABAergic transmission and/or altered activity-dependent
changes to inhibitory drive onto excitatory neurons.

GABAB receptors are metabotropic receptors that can
regulate cellular excitability both pre- and post-synaptically by
hyperpolarizing neurons and limiting neurotransmitter release
via activation of inwardly-rectifying K+ channels and inhibition
of voltage-gated Ca2+ channels (Pinard et al., 2010). Due to
their broad regulation of pre- and post-synaptic excitability,
and specifically, their potential to reduce glutamate release
and subsequent downstream activation of mGluR5, GABAB
agonists like arbaclofen have been explored as a potential FXS
therapy (Berry-Kravis et al., 2012, 2017). Arbaclofen has indeed
been shown to normalize protein synthesis rates as well as a
variety of physiological and behavioral phenotypes in FMR1
KO mice (Henderson et al., 2012; Silverman et al., 2015;
Sinclair et al., 2017a). However, clinical trials with arbaclofen
have proved unsuccessful (Berry-Kravis et al., 2017) and recent
animal studies found that chronic baclofen treatment can
actually result in exacerbation of FXS phenotypes, potentially
due to drug tolerance development (Zeidler et al., 2018). Drug
tolerance development may also limit the effectiveness of other
potential FXS therapies, like mGluR5 inhibitors (Stoppel et al.,
2021). It is also important to note that GABAB receptors are

also expressed at pre-synaptic inhibitory terminals. Indeed,
decreased feedforward inhibition in the hippocampus on FMR1
KO mice was shown to be driven by increased pre-synaptic
GABAB receptor signaling, leading to reduced GABA release
(Wahlstrom-Helgren and Klyachko, 2015). Thus, treatments
that enhance GABAB signaling may act to promote FXS
hyperexcitability phenotypes in some cases as well.

Finally, in addition to changes in GABAergic synaptic
transmission, altered excitatory drive onto inhibitory neurons
has been observed in FMR1 KO animals. Dual patch clamp
recordings from directly coupled excitatory and inhibitory
neurons in the somatosensory cortex of juvenile FMR1 KO mice
have shown that there is reduced feedforward excitatory input
onto layer 4 fast-spiking (FS) inhibitory neurons (Gibson et al.,
2008). This decrease in feedforward excitation was also associated
with an increase in persistent UP states in both in slice (Gibson
et al., 2008) and in vivo (Hays et al., 2011), which are brief
periods of persistent depolarized firing states in neurons that are
indicative of increased network excitability. Transient increases
in UP states were also observed in layer 2/3 somatosensory
cortical neurons of FMR1 KO mice during the critical period
(Goncalves et al., 2013). Prolonged UP states in FMR1 KO mice
were rescued by genetic reduction or pharmacological inhibition
of mGluR5, suggesting this hyperexcitability phenotype may
be related to altered glutamatergic signaling (Hays et al.,
2011). Interestingly, reduced excitatory input onto FS inhibitory
neurons appears to be due to pre-synaptic loss of FMRP,
as selective deletion of Fmr1 in excitatory neurons resulted
in prolonged UP states while selective deletion in inhibitory
neurons had no effect (Hays et al., 2011). Indeed, mosaic
deletion of Fmr1 demonstrated that pre-synaptic loss of FMRP
in the somatosensory cortex resulted in a specific reduction
in presynaptic glutamate release onto post-synaptic inhibitory
neurons without affecting excitatory-excitatory connections,
indicative of target-specific function for presynaptic FMRP (Patel
et al., 2013). Coupled with the evidence for deficits in pruning
at excitatory-excitatory connections discussed above (Hanson
and Madison, 2007; Pfeiffer et al., 2010; Patel et al., 2014),
these studies indicate that pre- vs. post-synaptic loss of FMRP
may differentially regulate excitatory and inhibitory synaptic
connectivity, resulting in an imbalance to E/I connectivity and
network hyperexcitability.

Cell-Type-Specific Changes in Inhibitory Neuron
Function
Inhibitory interneurons consist of genetically and anatomically
diverse cell populations that subserve distinct roles in circuit
function. Thus, understanding the consequences of altered
inhibitory function in FXS requires understanding the cell-type
specific effects of inhibitory neuron sub-populations. The
three most common genetically-defined interneuron classes
in the cortex are parvalbumin positive (PV), somatostatin
positive (SST), and vasoactive intestinal peptide positive (VIP)
interneurons (Defelipe et al., 2013). PV neurons largely overlap
with FS basket cells that provide strong perisomatic inhibition
to regulate excitatory neuron output. Anatomical studies have
found a pronounced decrease in PV neuron density in the cortex
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of FMR1 KO animals (Selby et al., 2007), and in vivo Ca2+

imaging from genetically-identified PV neurons found reduced
sensory-evoked activity in PV neuron populations in the visual
cortex of FMR1 KO mice, which corresponded with impaired
perceptual learning (Goel et al., 2018).

Fast-spiking PV neurons play an integral role in regulating
the synchronization of cortical circuits, particularly in the high
frequency gamma range (Cardin et al., 2009; Sohal et al., 2009).
Interestingly, EEG studies have observed increased cortical
gamma oscillation in FXS individuals (Ethridge et al., 2017;
Wang et al., 2017) as well as FMR1 KO mice (Lovelace
et al., 2018) and rats (Kozono et al., 2020). Similar changes in
gamma power are observed in acute cortical slices from FMR1
KO animals as well, suggesting observed EEG abnormalities
are driven in part by local alterations in neocortical circuits
(Goswami et al., 2019). Interestingly, EEG alterations in
FMR1 KO mice can be rescued by genetic reduction of
matrix metallopeptidase 9 (MMP9), an enzyme involved in the
degradation of perineuronal nets (PPNs) which preferentially
stabilize synaptic connections with PV neurons (Lovelace
et al., 2016; Wen et al., 2018) and whose mRNA has
been shown to be a target of FMRP (Janusz et al., 2013).
As PV neurons strongly overlap with electrophysiologically
characterized FS interneurons, reduction in sensory-evoked PV
activity and altered EEG oscillations may be due to deficient
intracortical excitatory input onto FS interneurons described
above (Gibson et al., 2008), potentially as a consequence of
altered MMP9 activity (Wen et al., 2018). Consistent with this
notion, forebrain deletion of FMR1 specifically in excitatory
neurons recapitulates increased MMP9 activity and a majority of
EEG deficits seen in global FMR1KOmice (Lovelace et al., 2020).
Recent studies have demonstrated that minocycline treatment,
an FDA-approved antibiotic that can inhibit MMP9 activity,
reverses electrophysiological and/or behavioral disturbances in
FMR1 KO mice (Bilousova et al., 2009; Lovelace et al., 2020),
drosophila FXS models (Siller and Broadie, 2011), and FXS
individuals (Leigh et al., 2013).

Beyond PV neurons, the function of other inhibitory
interneuron subtypes in FXS has been less well-characterized.
Slice recordings from the somatosensory cortex found impaired
mGluR-dependent activation of SST-expressing LTS neurons
that target distal dendrites to regulate the integration of
synaptic input. This reduced activity-dependent inhibition onto
excitatory neurons resulted in altered cortical synchronization
in the form of elevated low-frequency theta oscillations
(Paluszkiewicz et al., 2011). Thus, loss of FMRP can have distinct
effects on network function via differential regulation of distinct
inhibitory interneurons subtypes. VIP interneurons are less
numerous than PV and SST neurons but can have a broad impact
on cortical circuit function via targeting of other interneuron
subtypes, forming a disinhibitory circuit (Pfeffer et al., 2013). To
our knowledge, no studies have directly assessed VIP interneuron
function in FXS models to date.

Altered GABAergic System Development in FXS
The above studies suggest that abnormal inhibitory neuron
function in FMR1 KO animals results from a combination of

decreased inhibitory drive onto excitatory neurons and decreased
excitatory drive onto inhibitory neurons. These changes are
associated with marked changes in E/I balance and neuronal
processing in diverse brain regions. As discussed in section
‘‘Altered Excitatory Synaptic Function and Plasticity’’, FMRP
is an important regulator of activity-dependent refinement of
excitatory synaptic function. GABAergic transmission also plays
a critical role during early brain development, where it acts
via paracrine, non-synaptic signaling to depolarize neurons due
to high intracellular Cl- concentration at this developmental
time point (Represa and Ben-Ari, 2005). Recent studies have
demonstrated that Fmr1 deletion delays the developmental
switch in GABA polarity from depolarizing to hyperpolarizing
in the cortex (He et al., 2014) and hippocampus (Tyzio et al.,
2014) due to the developmentally elongated expression of the
juvenile Cl- transporter NKCC1. No differences in the expression
level of the adult Cl- transported KCC2 were observed at
any post-natal timepoint in FMR1 KO mice (He et al., 2014).
This delayed maturation of GABAergic signaling is likely to
have a profound impact on synaptic and circuit development,
similar to altered critical period plasticity of excitatory synaptic
function observed in FMR1 KO animals. Indeed, it was recently
shown that inhibiting NKCC1 with the FDA-approved drug
bumetanide during the somatosensory critical period corrects the
development of thalamocortical excitatory synapses and altered
whisker-evoked receptive fields in adult FMR1 KO mice (He
et al., 2018).

Inhibitory synapse formation is also developmentally
regulated, characterized by a rapid increase in synapse number
and maturation around the end of the 4th postnatal week
(Micheva and Beaulieu, 1996; Oh and Smith, 2019). This
maturation of cortical GABAergic neurons, particularly
PV interneurons, is thought to contribute to the closure of
developmental critical periods (Pizzorusso et al., 2002; Balmer
et al., 2009). Intriguingly, this inhibitory maturation and critical
period closure also coincide with the formation of PNNs. Indeed,
there is evidence that PNN-dependent stabilization of PV neuron
function directly contributes to the closure of critical period
plasticity windows (Lee et al., 2017; Lensjo et al., 2017; Murase
et al., 2017). Thus, it is possible that the abnormal development
of PNNs and PV cells observed in the cortex of FMR1 KO
animals (Selby et al., 2007; Wen et al., 2018) may underly delayed
or impaired critical period plasticity seen at excitatory synapses
in these animals (Harlow et al., 2010; Kim et al., 2013), although
this hypothesis remains to be explicitly tested. Taken together,
these studies indicate that altered excitatory circuit development
in FXS may be due in part to GABAergic defects.

Ion Channel Dysregulation and Altered
Intrinsic Excitability in FXS
FMRP acts through a variety of direct and indirect mechanisms
to regulate the expression and function of multiple ion
channels in the brain, including: voltage-gated Na+, K+, and
Ca2+ channels; hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels; and small- and big- conductance Ca2+-
activated (SK, BK) K+ channels (Deng and Klyachko, 2021;
Figure 1B). Several ion channels have been identified as FMRP

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 January 2022 | Volume 14 | Article 805929

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Liu et al. Hyperexcitability and Homeostasis in FXS

targets (Darnell et al., 2011), suggesting that FMR1 deletion
can influence cellular excitability through its canonical role as
a translation regulator. These include Kv3.1 (Strumbos et al.,
2010), Kv4.2 (Lee et al., 2011), and HCN1 channels (Brager
et al., 2012). Interestingly, FMRP can also modulate the function
of several ion channels via direct protein-protein interactions,
including the Na+-activated K+ channel Slack (Brown et al.,
2010), BK (Deng et al., 2013; Myrick et al., 2015), and SK (Deng
et al., 2019) channels. Finally, loss of FMRP can influence cellular
excitability indirectly through dysregulation of cell signaling
pathways (Chuang et al., 2005; Zhao et al., 2011; Deng and
Klyachko, 2016a). Thus, ion channel function is altered through
a variety of mechanisms in FXS and this is likely to influence a
wide-range of neuronal processes, including intrinsic excitability,
neurotransmitter release, and dendritic integration.

Increased Intrinsic Excitability in Fmr1 KO
Models
Several studies have demonstrated increased intrinsic excitability
across brain regions in FMR1KO animals, although as in the case
of synaptic disturbances, the effects vary across brain regions. In
addition to reduced feedforward excitation onto FS interneurons,
a modest increase in the excitability of layer 4 principal neurons
in the somatosensory cortex is observed in FMR1 KO mice
as a result of increased membrane capacitance and input
resistance (Gibson et al., 2008; Domanski et al., 2019). Several
studies have observed increased stimulus-evoked action potential
(AP) generation in layer 5 cortical pyramidal neurons, which
appears to depend on altered mGluR activity and downstream
signaling components (Hays et al., 2011; Osterweil et al., 2013;
McCamphill et al., 2020). However, whole-cell recordings from
layer 5 pyramidal cells in entorhinal (Deng et al., 2013) and
somatosensory (Zhang et al., 2014) cortex found no difference in
intrinsic parameters in these neurons, suggesting this stimulus-
evoked hyperexcitability may be synaptically generated. Intrinsic
hyperexcitability in the entorhinal (Deng and Klyachko, 2016a)
and prefrontal (Routh et al., 2017) cortex of FMR1 KO mice
was shown to depend on increased non-inactivating persistent
Na+ current (INaP). Interestingly, increased INaP current in the
entorhinal cortex was not due to direct modulation of ion
channel expression or function by FMRP, but rather through
exaggerated mGluR5 signaling (Deng and Klyachko, 2016a).
Few studies have directly assessed the intrinsic properties of
inhibitory neurons in FMR1 KO models, but those that have
found no differences (Gibson et al., 2008).

FMRP has been shown to directly regulate the expression
of the voltage-gated K+ channel Kv3.1 (Darnell et al., 2011),
whose experience-dependent expression gradients are altered in
the medial nucleus of the trapezoid body (MNTB) of FMR1
KO mice (Strumbos et al., 2010). Abnormal expression of
Kv3.1 in the MNTB leads to faster repolarization and higher
firing rates, indicative of hyperexcitability (El-Hassar et al.,
2019). The MNTB is an essential component of the sound
localization circuitry of the auditory brainstem, which requires
rapid temporal processing of incoming sound information to
compute interaural cue differences (Grothe et al., 2010). Thus,
tight regulation of neuronal excitability is essential for allowing

MNTB principal cells to fire at high rates with high temporal
fidelity. Slack channels account for a major component of the
total K+ current in principal neurons of MNTB and some of
the first evidence for direct FMRP-ion channel interactions
was observed for Slack channels in the MNTB (Brown et al.,
2010). Loss of FMRP reduces Slack currents, thereby increasing
neuronal excitability and reducing temporal precision of spiking.
MNTB principal neurons send glycinergic projections to the
LSO, which uses a precise comparison of inhibitory inputs from
the MNTB and excitatory inputs from the cochlear nucleus
to compute interaural level differences (Park et al., 1996).
Interestingly, hyperexcitability is also observed in principal cells
of LSO in FMR1 KO mice, but in the absence of intrinsic
property differences (Garcia-Pino et al., 2017). Rather, LSO
hyperexcitability was found to be caused by increased excitatory
synaptic connectivity from cochlear nucleus afferents, while
inhibitory inputs from the MNTB were unchanged. As tightly
regulated E/I balance is essential in this sound localization circuit,
it is tempting to speculate that altered excitatory connectivity in
the LSO may arise to compensate for hyperexcitable inhibitory
inputs from the MTNB or vice versa.

Effect of Ion Channel Dysregulation on Synaptic
Function in FXS
Ion channels are not only involved in setting AP threshold
and firing rate but can affect a variety of synaptic processes
as well. For instance, BK channels play a critical role not only
in regulating neuronal excitability but also in modulating AP
duration and neurotransmitter release (Salkoff et al., 2006).
FMRP has been shown to regulate BK channel conductance and
expression and loss of this regulation in FMR1 KO mice leads
to decreased BK activity, resulting in AP broadening, which
in turn leads to elevated presynaptic Ca2+ influx, increased
glutamate release, and alterations to short-term pre-synaptic
plasticity (Deng et al., 2013; Zhang et al., 2014; Myrick
et al., 2015). Genetic upregulation of the BK β4 subunit
rescues the observed excitability and synaptic defects (Deng
and Klyachko, 2016b). Moreover, treatment of FMR1 KO mice
with the BK channel open BMS-204351 corrected a variety
of hyperexcitability and behavioral phenotypes, suggesting BK
channels may be a valuable therapeutic target to treat FXS (Zhang
et al., 2014; Carreno-Munoz et al., 2018). FMRP-dependent
AP broadening is observed in both hippocampal and cortical
pyramidal neurons and has a cell-autonomous pre-synaptic
origin (Deng et al., 2013). Future work must determine how
FMRP-BK channel interaction may contribute to alterations in
excitatory-excitatory and/or excitatory-inhibitory connectivity
observed in the hippocampus and cortex of FMR1 KO mice
that has been shown to depend on pre-synaptic loss of
FMRP as well (Hanson and Madison, 2007; Patel et al.,
2013). FMRP has also been shown to regulate pre-synaptic
GABA release in cerebellar basket cells via modulation of
the expression and activity of Kv1.2 (Yang et al., 2020). Loss
of FMRP-mediated regulation of Kv1.2 leads to enhanced
pre-synaptic Ca2+ influx and excessive GABA release onto
Purkinje neurons. While these changes would appear to
counteract hyperexcitability, Purkinje cells themselves are
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inhibitory, so the net effect of these changes would be
disinhibition of Purkinje targets and thus still promote circuit
hyperexcitability.

Ion channel regulation is not only important for pre-synaptic
transmitter release, but also for the dendritic integration of
post-synaptic signals (Stuart and Spruston, 2015). One of the
first channels identified as a target of FMRP was the voltage-
gated K+ channel Kv4.2, whose expression was shown to be
elevated in the hippocampus FMR1 KO mice (Lee et al., 2011).
Kv4.2 is a dendritic localized channel that mediates A-type
currents that act to suppress AP-backpropagation into dendrites,
which is important for modulating LTP induction (Chen et al.,
2006). Thus, increased Kv4.2 expression may contribute to
elevated thresholds for LTP induction in FMR1 KO animals
(Lauterborn et al., 2007; Meredith et al., 2007). However, other
studies have found evidence for reduced Kv4.2 levels in FMR1
KO mice (Gross et al., 2011) and dendritic recordings from
hippocampal pyramidal neurons found decreased A-current
in FMR1 KO mice, which was associated with enhanced
rather than impaired LTP induction (Routh et al., 2013). The
discrepancies between these studies remain unclear, as similar
biochemical techniques and LTP induction protocols were used.
One potential explanation is a difference in the properties of
more proximal synapses near the soma compared to distal
dendritic synapses examined by Routh and colleagues. It will
be important for future studies to examine both somatic and
dendritic excitability in FMR1 KO animals in combination with
plasticity levels. A recent study has added another element
to these contrary findings by demonstrating that FMRP can
also directly interact with Kv4 channels to change their gating
properties, resulting in reduced cellular excitability and increased
LTP thresholds in cerebellar granule cells (Zhan et al., 2020).
Importantly, reintroduction of an FMRP fragment that can bind
Kv4 into FMR1 KO mice restored deficits in mossy fiber LTP
induction and behavioral hyperactivity assessed via open field
test (Zhan et al., 2020).

HCN channels are cation permeable channels that underly
the hyperpolarization-activated inward current (Ih) that plays
a crucial role in setting resting membrane potential and
dendritic excitability (Shah, 2014). HCN1-subunit expression
and dendritic Ih are elevated in CA1 pyramidal neurons of FMR1
KO mice, resulting in decreased input resistance and reduced
temporal summation (Brager et al., 2012). Conversely, in layer
4 stellate and layer 5 pyramidal cells, HCN1 expression and
dendritic Ih are reduced, leading to increased dendritic gain and
sensory hyperexcitability (Zhang et al., 2014). Interestingly, this
cell-type-specific bidirectional regulation of HCN channels may
be the result of a cell-autonomous protein-protein interaction
between FMRP and HCN, providing a potential mechanism
for cell-type-specific differences in FMR1 deletion (Brandalise
et al., 2020). L-type voltage-gated Ca2+ channels (VGCCs) are
another class of ion channels important for dendritic excitability
and the mRNA for several VGCCs have been shown to be
targets of FMRP (Chen et al., 2003; Darnell et al., 2011).
Interestingly, despite being an FMRP target, expression of
Cav1.3 is downregulated in the cortex and cerebellum of FMR1
KO mice (Chen et al., 2003), and reduced expression of L-type

VGCCs is associated with impaired spike-timing-dependent-
plasticity (Meredith et al., 2007). While FMRP has been shown
to predominantly suppress mRNA translation, there is evidence
that FMRP can promote the translation of certain mRNA
transcripts (Bechara et al., 2009; Fahling et al., 2009; Gross et al.,
2011). Alternatively, reduced VGCC expression in juvenile and
adult FMR1 KO animals could be a compensatory change, as it
has been shown that there is increased Ca2+ influx through L-type
VGCCs in neural progenitor cells from FMR1 KO mice and FXS
human-derived pluripotent stem (iPS) cells (Danesi et al., 2018).
Together, these studies indicate the wide-ranging effects that
dysregulated ion channel function can have on cellular, synaptic,
and circuit properties in FXS models.

HOMEOSTATIC PLASTICITY IN FXS

A confluence of molecular, synaptic, and cellular perturbations
contribute to the generation of circuit hyperexcitability in FXS.
Some of these disruptions are likely due to abnormal embryonic
and early post-natal development of brain circuits, while others
appear to be due to persistent loss of FMRP function in
adulthood. Because FMRP is involved in a variety of neuronal
processes across developmental time-points, it is also important
to consider the array of compensatory mechanisms utilized
by the brain to maintain optimal activity ranges and circuit
stability when attempting to elucidate the consequences of FMR1
deletion. This is complicated by the fact that FMRP is important
for many forms of activity-dependent plasticity as well, and
recent evidence has highlighted the role of FMRP in regulating
homeostatic plasticity both during development and in the
mature brain. In this section, we will review recent findings of
how FMRP contributes to homeostatic plasticity and how the
loss of this regulation contributes to hyperexcitability phenotypes
in FXS.

Homeostatic Mechanisms for Maintaining
Circuit Stability
Sensory acquisition in the brain begins as early as the fetal
stage and occurs throughout the life of an individual (Partanen
et al., 2013). Sensory experience and learning process tend to
destabilize the associated neuronal circuit, which is part of
a normal plasticity mechanism (Beston et al., 2010; Morgan
et al., 2019). However, in order to regain circuit stability, such
destabilizing forces need to be balanced by a counteracting
process such as homeostatic plasticity. Information storage in
neural circuits relies on Hebbian forms of synaptic plasticity,
which involve activity-dependent changes in synaptic strength
owing to LTP and LTD. These activity-dependent changes in
synaptic strength depend on the precisely correlated firing of pre-
and post-synaptic neurons. After the onset of LTP induction, the
potentiated synapses enter a positive feedback loop, leading to
continuous synaptic strengthening and circuit hyperexcitability
(Turrigiano and Nelson, 2000; Turrigiano, 2008; Vitureira and
Goda, 2013). On the other hand, induction of LTD enforces
activity-dependent weakening of synapses and continuous LTD
would lead to eventual silencing of synapses (Collingridge
et al., 2010). Therefore, in the absence of mechanisms that can
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attenuate the hypo- or hyperexcitability owing to uncontrolled
LTD or LTP, respectively, robust destabilizing forces in a
circuit could pose devastating consequences on network activity
(Abbott and Nelson, 2000). Because Hebbian plasticity requires
FMRP-dependent protein synthesis (Shang et al., 2009; Sidorov
et al., 2013; Guo et al., 2016), homeostatic plasticity may also
require FMRP and a deficit of homeostatic plasticity may
contribute to imbalanced network activity seen in FMR1 KO
mice (Jewett et al., 2018).

The main purpose of homeostatic plasticity is to sense and
regulate network excitability to a set-point value to prevent
instability and optimize information processing. Studies have
shown that neural network stability can be achieved in a
number of ways, such as: (1) maintaining E/I balance in the
network (Maffei et al., 2004; Gonzalez-Islas and Wenner, 2006;
Landau et al., 2016; Keck et al., 2017); (2) regulating intrinsic
neuronal firing rates in an activity-dependent manner (Desai
et al., 1999; Marder and Prinz, 2003; Zhang and Linden, 2003;
Joseph and Turrigiano, 2017); and (3) synaptic scaling, which
up- or down-regulates excitatory synapses to modulate overall
synaptic activity while maintaining the balance between synaptic
weights (Turrigiano and Nelson, 2004; Davis, 2006). One of
the most well-studied forms of homeostatic plasticity operating
in CNS excitatory synapses is synaptic scaling. Turrigiano and
colleagues were the first to demonstrate the presence of synaptic
scaling in cortical neuronal culture, where they showed that
tetrodotoxin (TTX)-mediated chronic blockade of neural activity
caused upscaling of the strength of individual synapses. On
the contrary, chronically inhibiting GABAergic transmission
through the use of bicuculline or picrotoxin to promote neural
activity causes a homeostatic reduction in the strength of
individual excitatory synapses, with firing rates returning to
baseline values following an initial elevation (Turrigiano et al.,
1998). Moreover, selective activity blockade of a neuron using
TTX microperfusion in its soma caused proportionate upscaling
of synaptic transmission, suggesting that synaptic scaling is a
cell-autonomous phenomenon (Ibata et al., 2008).

Studies investigating the signaling pathway of synaptic
scaling have revealed the involvement of both N-Methyl-
D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors (AMPARs)
in mediating homeostatic synaptic scaling at excitatory
synapses (Watt et al., 2000; Maffei et al., 2004; Wierenga
et al., 2005; Rodriguez et al., 2019). Synaptic upscaling in
response to blocking postsynaptic transmission was shown to
be achieved by increased surface expression of AMPARs and
it involves the insertion of both GluA1 and GluA2 AMPAR
subunits. Activity blockade in cultured neurons by TTX has
been shown to enhance phosphorylation of GluA1 at the
Ser845 residue. GluA1–Ser845 phosphorylation subsequently
led to increased GluA1 surface accumulation in the postsynaptic
compartment (Diering et al., 2014). A similar increase in
GluA1–Ser845 phosphorylation was also shown to be responsible
for synaptic upscaling via increased AMPAR–mEPSC in the
visual cortex following visual deprivation (Goel et al., 2006,
2011). Apart from GluA1, the C-terminus of GluA2 alone
can regulate synaptic scaling following TTX-induced synaptic

upscaling in vivo (Gainey et al., 2009). Additionally, many other
signaling molecules or postsynaptic proteins, such as brain-
derived neurotrophic factor (BDNF), Arc (activity-regulated
cytoskeleton-associated protein), TNFα (tumor necrosis factor
α), MHC1 (major histocompatibility complex class 1), PICK1
(protein interacting with C kinase 1), β3 integrins, PSD93
(postsynaptic density protein 93), and PSD95 (postsynaptic
density protein 95), also play important roles in synaptic scaling
(Rutherford et al., 1998; Shepherd et al., 2006; Stellwagen and
Malenka, 2006; Goddard et al., 2007; Sun and Turrigiano, 2011;
Elmer and Mcallister, 2012). Compelling evidence suggests the
existence of different forms of homeostatic plasticity in order
to operate either as a global mechanism for all synapse types or
local and specific to a certain neuronal subtype. In a nutshell,
homeostatic plasticity ensures the stability of neural circuits
essential for normal brain function. Because many of the genes
that encode the aforementioned molecules for homeostatic
plasticity are direct targets of FMRP (Niere et al., 2012; Tsai
et al., 2012), it is logical to speculate that FMR1 KO neurons may
exhibit altered homeostatic plasticity. Next, we will discuss the
discovery and significance of impaired homeostatic plasticity
in FXS.

Homeostatic Synaptic Plasticity Is Altered
in FXS
As discussed in the previous section, loss of FMRP results
in a number of changes to excitatory and inhibitory synaptic
function and connectivity. There is also a plethora of studies
showing that FMR1 KO neurons fail to adjust their synaptic
strength to a basal set point in response to both unconstrained
network activity and activity blockade, indicative of impaired
homeostatic synaptic plasticity mechanisms in FXS. In particular,
there is evidence for altered regulation of AMPARs during
synaptic scaling in FMR1 KO animals (Soden and Chen, 2010;
Lee et al., 2018). The surface expression of GluA1-containing
AMPARs, in addition to being mediated by phosphorylation
of GluA1 at the Ser845 residue as mentioned above, is also
known to be regulated by the ubiquitination of multiple lysine
residues in the intracellular C-terminus of GluA1 (Schwarz
et al., 2010; Lin et al., 2011). Ubiquitination of GluA1 via
the E3 ubiquitin ligase named neural precursor cell expressed
developmentally down-regulated gene 4-like (Nedd4l, or Nedd4-
2) leads to a reduction of surface AMPARs and this has
been observed to occur during synaptic downscaling (Jewett
et al., 2015). In cortical neuron cultures of FMR1 KO mice,
such Nedd4-2-mediated ubiquitination is deficient, leading to
impaired synaptic downscaling (Lee et al., 2018).Mechanistically,
Lee and colleagues found that dephosphorylation of Nedd4-
2 following the chronic blockade of GABAergic transmission is
responsible for the defect, as ectopically expressing a phospho-
mimetic Nedd4-2 can restore GluA1 ubiquitination and synaptic
downscaling in cultured FMR1 KO cortical neurons.

Another reported mechanism concerning the regulation of
surface AMPARs during synaptic scaling is through retinoic
acid (RA) and retinoic acid receptor α (RARα) signaling in
visual cortical circuits. RA regulates local homeostatic plasticity
at the level of individual dendritic spines. In the case of
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activity blockade, a drop in Ca2+ levels stimulates RA synthesis,
which in turn enhances local protein synthesis, increases surface
insertion of GluA1-containing AMPARs, and ultimately restores
Ca2+ levels (Aoto et al., 2008). This entire cascade of events
leads to synaptic upscaling at excitatory synapses. This form
of synaptic upscaling was absent in FMR1 KO mice and could
be restored by post-synaptic re-expression of FMRP (Soden
and Chen, 2010). Research from the same group suggests
that, apart from synaptic scaling-up at excitatory synapses
(Chen et al., 2014), RA/RARα signaling also mediates inhibitory
homeostatic plasticity in the mouse primary visual cortex (Zhong
et al., 2018). Treatment with RA causes reduced inhibitory
drive onto layer 2/3 pyramidal neurons and similar effects are
triggered by visual deprivation. This RA-dependent reduction in
inhibition was due to reduced inhibitory synaptic transmission
from PV interneurons. Interesting, visual deprivation- and
RA-dependent downregulation of inhibition was absent in the
visual cortex of FMR1 KO mice and selective deletion of
Fmr1 in PV neurons recapitulated these deficits in inhibitory
synaptic downscaling. Thus, loss of FMRP in excitatory neurons
impairs homeostatic up-scaling of excitatory synapses while
loss of FMRP in PV inhibitory neurons impairs down-scaling
of inhibitory synapses. Similar impairments in RA-dependent
homeostatic plasticity were observed in FMR1 deficient human
pluripotent stem cells (Zhang et al., 2018). In addition, a
recent study surprisingly revealed a physical interaction between
FMRP and RARα, and such interaction mediates transcription-
independent RA signaling and homeostatic plasticity (Park et al.,
2021). Altogether, these findings suggest that FMRP is crucial
for homeostatic synaptic plasticity, and the inability of FMR1
deficient neurons to regulate E/I balance in the face of changes
to overall activity levels may contribute to altered synaptic
development and synaptic hyperexcitability in FXS.

Homeostatic Intrinsic Plasticity Is Altered
in FXS
Homeostatic synaptic plasticity is essential for preventing
network hyperexcitability, particularly during early
developmental periods when neuronal networks are undergoing
immense modification and refinement. What other homeostatic
mechanisms could be responsible for the hyperexcitability of
neuronal networks in adult brains, especially in the case of FXS?
One possibility lies in the homeostatic control of the intrinsic
excitability of the neurons. Many studies have shown basally
altered intrinsic excitability in FMR1 KO mice, as discussed
above in ‘‘Ion Channel Dysregulation and Altered Intrinsic
Excitability in FXS’’ section. Interestingly, in line with these
findings on the intrinsic properties of FMR1 KO neurons, a
recent study indicated that FMR1 KO neurons show a significant
increase in input resistance along with distinct alterations in
homeostatic intrinsic plasticity in different subsets of cortical
neurons. Bülow et al. (2019) found that, depending on the
pattern of spikes following steps of current injections, FMR1
KO cortical neurons exhibit strikingly different intrinsic scaling
phenotypes. In comparison to WT neurons, single-spiking
FMR1 KO neurons show impaired intrinsic upscaling, whereas
multispiking FMR1 KO neurons show exaggerated intrinsic

upscaling. Furthermore, Bülow and colleagues demonstrated
that activity blockade in FMR1 KO neurons alters action
potential parameters, with an increase in the maximum slope of
the AP rising phase (Figure 1C). This change in AP parameter
in FMR1 KO neurons may be due to increased activity of Na+

channels, contributing to abnormal intrinsic excitability. While
the molecular mechanism underlying the differences between
single-spiking and multispiking neurons during intrinsic
upscaling is unclear, the study introduced the first evidence for
homeostatic intrinsic plasticity deficits in FMR1 KOmice.

Although it remains unknown how the altered homeostatic
intrinsic plasticity at the single-cell level ultimately affects
network stability as a whole, a recent study looking at
homeostatic network plasticity may give us a clue. Jewett and
colleagues demonstrated that FXS cortical neuron cultures fail
to achieve homeostatic network synchronization in response
to chronic activity stimulation in a multielectrode array
recording (Jewett et al., 2018). This deficit was described
by a novel signaling pathway, suggesting the involvement of
FMRP-dependent ubiquitination of tumor suppressor p53 by
the E3 ligase Mdm2 in response to chronic activity stimulation
of cortical neurons. In FMR1 KO neurons, this signaling is
hampered, likely due to basally altered activity of Mdm2 (Tsai
et al., 2017), and thus the homeostatic reduction in the amplitude
of neuronal network spikes is absent (Jewett et al., 2018).
This study, together with other studies using single-neuron
recordings, suggests that the cortical neurons and networks in
FMR1 KO mice exhibit impaired homeostatic plasticity which
could be responsible, at least in part, for circuit hyperexcitability
and associated behavioral defects in FXS. It is likely that
homeostatic plasticity disruptions are occurring in other brain
areas as well. For example, Svalina and colleagues reported that
principal cells in the lateral amygdala show enhanced excitability
owing to reduced feed-forward inhibition, indicating a potential
deficit in homeostatic plasticity in the amygdala (Svalina et al.,
2021), which could be relevant to the anxiety issues in FXS.

Finally, others studies have revealed that some forms
of homeostatic plasticity are intact in FMR1 KO animals.
For instance, homeostatic changes at the circuit level are
normal ex vivo in auditory cortical slice cultures following
chronic stimulation (Motanis and Buonomano, 2020).
Homeostatic changes to axon initial segment (AIS) length,
which plays a crucial role in neuronal excitability, are intact in
CA1 hippocampal neurons of FMR1 KO animals as well (Booker
et al., 2020). However, this study also found that AIS length was
increased in FMR1KO neurons (Figure 1B), leading to increased
cellular excitability. Interestingly, these neurons had reduced
functional input from the entorhinal cortex, suggesting that
AIS-dependent hyperexcitability in FMR1 KOmice may actually
be an adaptive homeostatic change to compensate for reduced
synaptic input. Thus, in some cases, cellular hyperexcitability
observed in FXmodels may act to stabilize rather than destabilize
circuit function, as has been suggested for changes to E/I balance
in the somatosensory cortex (Antoine et al., 2019). It should
be noted that decreased feed-forward inhibition (Wahlstrom-
Helgren and Klyachko, 2015) and altered post-synaptic dendritic
integration (Brager et al., 2012) are also observed in this
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entorhinal-CA1 circuit in FMR1 KO mice, and future work
must delineate the relationship between these changes to
synaptic function, intrinsic properties, and AIS length. In
other cases, it appears that intact homeostatic mechanisms fail
to correct hyperexcitability in FMR1 KO animals, as seen in
the amygdala, where homeostatic upregulation of inhibitory
synaptic transmission during critical stages of development
cannot be maintained in the mature brain (Vislay et al.,
2013). Therefore, while compelling evidence from the growing
body of studies strongly suggests that hyperexcitability in
FXS can be partially attributed to impairment in homeostatic
plasticity, the contradictory results reiterate the complexity
of brain hyperexcitability in FXS. More in vivo studies using
physiological simulations would be needed to further consolidate
the observations about homeostatic plasticity in FXS animal
models.

BEHAVIORAL CONSEQUENCES OF
HYPEREXCITABLE CIRCUITS IN FXS

The studies highlighted in the previous sections demonstrate
that hyperexcitable networks are a common outcome of loss
of FMRP, but that the mechanisms leading to this phenotype
involve complex changes to synaptic and circuit function and
plasticity that are highly region-specific. An important question
is how does hyperexcitability ultimately contribute to the
neurocognitive phenotypes of FXS, and how can we parse the
influence of different cellular and molecular mechanisms across
brain regions, as this will have important consequences for
clinical treatment. The clinical features of FXS are also quite
complex with multiple physical and neuropsychiatric symptoms,
including intellectual disability, autistic behavior, social anxiety,
perseverative behaviors, hyperactivity/impulsivity/aggression,
language deficits, and disrupted sleep (Lozano et al., 2014). In a
majority of cases, FX individuals exhibit sensory alterations that
range from hypersensitivity to sensory stimuli and hyperarousal
to seizures. These last symptoms are particularly relevant for
this review, as they may provide a tractable window for
understanding how hyperexcitability and homeostatic plasticity
in different brain regions may relate to core behavioral
impairments in FX.

Elevated Seizure Susceptibility in FXS
Hyperexcitability has been linked to elevated susceptibility to
seizures in FXS individuals. Some of the earliest works looking at
epilepsy in FXS revealed that 10–20% of FXS individuals become
epileptic early in childhood (Musumeci et al., 1999; Berry-Kravis,
2002). Despite an apparent epileptiform abnormality on EEG,
studies suggest that the abnormal EEG pattern in FXS patients
appear to resemble that of a benign focal epilepsy of childhood
(BFEC; Berry-Kravis, 2002; Qiu et al., 2008) in which the patients
rarely develop status epilepticus (SE; Gauthey et al., 2010).
In addition, the patients usually respond well to anti-epilepsy
medicine, and most of the patients enter seizure remission before
adulthood (Musumeci et al., 1999; Berry-Kravis, 2002). Although
seizures and epilepsy are easily controlled for most patients, these
seizures are still considered one of the serious comorbidities

of FXS, and the EEG pattern in FXS is used as one of the
endophenotypes to guide personalized treatment (Cowley et al.,
2016).

Elevated seizure susceptibility has been documented in
FMR1 KO mice as well, with the increased preponderance of
audiogenic seizures (AGSs) being one of the most reliable and
consistent approaches to assessing hyperexcitability in vivo. In
AGS experiments, mice are presented with a 110–120 dB siren
or alarm sound for a duration of 1–3 min. The mice are then
scored for behavioral seizures with SE and death as a common
final end point for the FMR1 KO mice (Musumeci et al.,
2000). Interestingly, conditional deletion of FMR1 in subcortical
glutamatergic neurons reproduces the AGS phenotype, while
re-expression of FMRP selectively in the inferior colliculus of
global FMR1 KO mice eliminates AGSs (Gonzalez et al., 2019).
Thus, while auditory EEG abnormalities that contribute to
auditory processing deficits in FMR1 KO mice appear to depend
on altered cortical function (Goswami et al., 2019; Lovelace
et al., 2020), AGSs are generated subcortically, likely within the
auditory midbrain. It is also worth noting that FMR1 KO rats
did not exhibit AGSs as compared to FMR1 KO mice (Wong
et al., 2020), suggesting that AGS is likely a mouse-specific
phenotype. In the model of kindling-induced seizures, despite a
similar electrographic seizure threshold between FMR1 KOmice
and their WT littermates, FMR1 KO mice displayed accelerated
seizure progression both behaviorally and electrographically
(Qiu et al., 2009). Despite similar susceptibility between FMR1
KO mice and their WT littermates following systemic injections
of kainic acid in the model of chemically-induced seizures, FMR1
KO mice did not exhibit homeostatic response triggers by the
seizures (Liu et al., 2021), suggesting the possibility that the
FMR1 KO mice might exhibit higher susceptibility to multiple
or sequential seizures. This finding requires future investigation
to validate it.

In summary, elevated seizure susceptibility is common in
patients and animal models of FXS. While the seizures are
usually not spontaneous, they do indicate a hyperexcitable
brain circuit in FXS and provide a means for evaluating
excitability imbalance in research models and testing therapeutic
interventions for FXS.

Sensory Hypersensitivity in FXS
Atypical sensory processing is a common and debilitating
feature of FXS and ASD (Sinclair et al., 2017b). Sensory
abnormalities are present early in development and are predictive
of disease phenotypes that emerge later in life, such as
increased anxiety and abnormal social behavior (Baranek et al.,
2008, 2013). Sensory phenotypes in FXS can be complex,
typically manifesting across sensory domains and characterized
by both over- and under-responsiveness to sensory stimuli
as well as avoidance and/or sensory seeking behavior (Rais
et al., 2018). However, hypersensitivity to sensory stimuli is
often the most common and most disruptive symptom, and
this may be directly related to neuronal hyperexcitability in
sensory areas. Evidence for heightened sensory sensitivity in
FXS comes from validated scales and parental questionnaires,
such as the Short Sensory Profile (Rogers et al., 2003;
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Baranek et al., 2008), as well objective measures, including
increased electrodermal response to stimuli (Miller et al.,
1999) and altered event-related brain potentials (ERPs; Sinclair
et al., 2017b). In addition to being a clinically important
aspect of the FXS phenotype, sensory dysregulation affords
an opportunity to link underlying disease mechanisms to
behavioral symptoms in animal models of FXS, as sensory
systems are relatively well-conserved across species and there are
well-characterized behavioral and electrophysiological read-outs
of sensory processing.

Some of the first evidence for sensory hypersensitivity in
FXS animal models came from examination of the acoustic
startle response (ASR), with FMR1 KO mice exhibiting an
increase in this full body reflexive response to loud sound
stimuli (Chen and Toth, 2001). More recently, the BK channel
opener BMS-204352 was shown to reverse ASR increases
in FMR1 KO mice, providing a link between altered ion
channel regulation, neuronal hyperexcitability, and sensory
hypersensitivity (Zhang et al., 2014). However, other studies
have observed a decrease (Frankland et al., 2004; Paylor
et al., 2008) or no change (Mccullagh et al., 2020) in
ASR in FMR1 KO mice. The cause of these discrepancies
is unclear but may be due in part to background strain
effects (Errijgers et al., 2008) and methodological differences
(Lauer et al., 2017). Despite the inherent variability in ASR
phenotype, studies have shown that the ASR is directly
related to FMRP expression (Yun et al., 2006) and ASR
phenotypes in FMR1 KO animals can be rescued with the
reintroduction of the Fmr1 gene (Paylor et al., 2008), indicating
that some aspects of the ASR are directly related to loss
of FMRP.

Examination of ASR in FXS humans has found no change in
baseline startle responses but impaired pre-pulse inhibition of
the ASR (PPI), a modification of the paradigm where a startle-
eliciting sound is preceded by a lower level auditory or tactile
cue that reflexively reduces ASR magnitude (Frankland et al.,
2004; Hessl et al., 2009). PPI alterations are also commonly
observed in FMR1 KO mice, however often in the opposite
direction as seen in humans, with enhanced rather than reduced
PPI magnitude (Chen and Toth, 2001; Nielsen et al., 2002;
Frankland et al., 2004; Paylor et al., 2008; Orefice et al., 2016;
Kokash et al., 2019). These discrepancies may once again be
due to methodological details (Hessl et al., 2009). A recent
study using different PPI cues, such as gaps in sound or
different spatial locations of sound sources, found decreased
PPI in FMR1 KO mice (Mccullagh et al., 2020) while no PPI
alterations were observed in FMR1 KO rats using a novel,
robust methodological approach (Miller et al., 2021). Despite
differences from the human phenotype, PPI alterations in FMR1
KO animals are sensitive to treatments that also reverse auditory
hyperexcitability phenotypes, such as mGluR5 inhibitors (de Vrij
et al., 2008) or genetic reduction of MMP9 (Kokash et al., 2019).
However, the variability in results across studies using these
reflexive assays has limited their utility for understanding sensory
processing issues in FX.

Operant perceptual decision-making tasks, where animals are
conditioned to respond to specific stimuli, allow for quantitative

assessment of sensory processing in a manner that can be
directly translated to human studies. A recent study assessed
sound hypersensitivity in FMR1 KO rats using an operant sound
detection task (Auerbach et al., 2021). FMR1 KO rats learned
the task at the same rate as WT counterparts and reached
similar peak performance for detection of near threshold sounds.
However, FMR1 KO rats exhibited significantly faster auditory
reaction times (RT) at suprathreshold intensities, suggestive
of increased perceptual sensitivity. Indeed, RT-intensity
functions have been shown to be a reliable psychoacoustic
measure of loudness growth in both humans (Marshall and
Brandt, 1980) and animal models (Radziwon and Salvi, 2020).
FMR1 KO rats also displayed abnormal integration of sound
duration and bandwidth in a manner consistent with altered
loudness perception. These results provide evidence for aberrant
low-level auditory processing and excessive loudness growth
in FMR1 KO animals using a task design with potential for
clinical translation. RT differences were also sensitive to
mGluR5 inhibition, demonstrating this phenotype is related to
a core molecular pathology in FXS. Future work must determine
the neurophysiological correlates of this behavioral phenotype,
but multiple studies have found evidence of sound-evoked
hyperactivity and circuit hyperexcitability in the auditory cortex
of FMR1 KO mice (Rotschafer and Razak, 2013; Lovelace et al.,
2018; Goswami et al., 2019) and FXS individuals (Van der
Molen et al., 2012; Ethridge et al., 2016). In particular, increased
event-related potentials (ERPs) and reduced synchronization
to auditory chirp stimuli, an amplitude modulated sound
that is modulated by a sinusoid with increasing or decreasing
frequency, are observed in FMR1 KO mice and FX individuals
(Ethridge et al., 2017; Lovelace et al., 2018; Jonak et al.,
2020). These processing deficits could underly the observed
behavioral impairments in loudness perception and temporal
integration.

A recent study by Goel and colleagues has provided some of
the most complete evidence linking circuit hyperexcitability
to sensory processing issues in FXS (Goel et al., 2018).
By combining in vivo Ca2+ imaging from genetically-
identified PV interneurons and putative excitatory neurons
in the visual cortex of mice performing an orientation
discrimination task, they found delayed perceptual learning
and impaired fine-tuned discrimination in FMR1 KO
mice that correlated with deficits in orientation tuning of
principal cells and reduced stimulus-evoked activity in PV
neurons. Chemogenetic activation of PV neurons rescued
the behavioral impairments in FMR1 KO mice, suggesting a
causal relationship between disrupted E/I balance and impaired
sensory processing. Furthermore, parallel human psychophysics
studies using an analogous paradigm to one used in mice
found similar visual discrimination impairments in FXS
individuals.

Similar hypersensitivity (He et al., 2017) and perceptual
learning deficits (Arnett et al., 2014) have been observed
in the tactile domain of FMR1 KO mice. Using a novel
assay for tactile defensiveness, He and colleagues found
that head-fixed FMR1 KO mice exhibited an exaggerated
motor response in attempts to avoid whisker stimulation.
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While numerous ex vivo studies have found evidence for
hyperexcitability in the somatosensory cortex of FMR1 KO
animals (see Section ‘‘Hyperexcitable Neurons and Networks
in Fragile X Syndrome’’), no differences in overall whisker-
evoked activity were seen in FMR1 KO mice in this study,
as assessed by two-photon Ca2+ imaging of layer 2/3 neurons
(He et al., 2017). This is consistent with in vivo cell-attached
recordings showing no difference in whisker-evoked spiking
activity from this same neuronal population (Antoine et al.,
2019). However, He and colleagues did find a pronounced
deficit in neuronal adaption to repetitive stimulation in FMR1
KO animals, suggesting that tactile hypersensitivity may be
driven in part by impaired habituation to sensory input. Similar
habituation deficits have been observed in the auditory (Lovelace
et al., 2016) and visual (Pak et al., 2021) domains of FMR1
KO mice as well. Interestingly, auditory habituation measured
behaviorally using ASR has been shown to depend on intact BK
channel function (Typlt et al., 2013). Loss of FMRP-mediated
regulation of BK channel conductance (Deng et al., 2013;
Deng and Klyachko, 2016b) could therefore conceivably account
for impaired habituation in FMR1 KO animals, although this
has not been directly tested yet. While less characterized,
there is evidence for altered olfaction in FXS models as well
(Bodaleo et al., 2019). Interestingly, studies in FMR1 KO mice
(Schilit Nitenson et al., 2015) and a FXS drosophila model
(Franco et al., 2017) both found that FXS animals exhibited
decreased odor sensitivity, contrary to findings from other
sensory domains.

Animal model studies have highlighted several promising
molecular targets for the treatment of FXS and, as discussed
above, recent studies have uncovered novel treatment targets
aimed at circuit-level disruptions that may work in parallel or
perhaps even synergistically with existing molecular therapies.
However, an important lesson learned from recent clinical
trials in FXS is the need for quantitative, objective behavioral
read-outs that translate between pre-clinical animal models and
clinical trials (Berry-Kravis et al., 2018). Sensory processing
disruptions may provide a unique behavioral platform for
pre-clinical drug screening using disease-relevant phenotypes
that are relatively well-conserved between humans and animal
models.

CONCLUSION

Here we have highlighted the number of ways in which loss
of FMRP can lead to neuronal hyperexcitability, and how these
cellular and circuit changes contribute to the FXS phenotype.
Because FMRP regulates multiple activity-dependent processes
and is regulated in an activity-dependent manner itself, it
is difficult to disentangle the direct effects of FMRP loss
from secondary consequences. While some of the phenotypes
described above are likely to be compensatory adaptions rather
than direct pathologies related to FMR1 deletion, it is possible
that both these primary and compensatory changes contribute
to hyperexcitability phenotypes in FXS. The exact consequence
of FMR1 deletion at the synaptic, cellular, and circuit level
also depends greatly on the brain region and developmental

time point being examined. However, some general themes
have emerged regarding the role of FMRP in neuronal and
circuit excitability: (1) FMRP is important for activity-dependent
development and refinement of synaptic connectivity and
loss of FMRP during early life critical periods can lead
to abnormal excitatory and inhibitory synaptic connectivity,
resulting in altered E/I balance that is likely to contribute
to circuit hyperexcitability; (2) FMRP is required for ongoing
activity-dependent plasticity in the mature brain and seems
particularly important for regulating mGluR-dependent changes
to excitatory synaptic function, inhibitory transmitter release,
and cellular excitability; (3) FMRP regulates the expression
and function of multiple ion channels through a variety
of direct and indirect mechanisms. Changes to ion channel
function with loss of FMRP not only directly affect intrinsic
excitability in a manner to promote hyperactivity, but can
lead to profound changes in pre-synaptic release properties
and post-synaptic dendritic integration, which in turn will
influence synaptic function and plasticity in a variety of
ways; and (4) FMRP is an important regulator of homeostatic
plasticity, which is essential for stabilizing activity levels in
the brain, and impairments to this stabilization mechanism
are likely to contribute to circuit hyperexcitability in FXS. The
wide-ranging consequences of FMR1 deletion underscore the
importance of examining multiple aspects of neuronal function
(e.g., cellular excitability, synaptic plasticity, and network
activity) in FMR1 KO models under the same experimental
conditions, ideally using approaches that span from single
neurons to intact circuits to behavior. Future studies must
also continue to make use of spatial and temporally restricted
deletion of FMR1 to parse the contribution of different
cell-types, brain regions, and developmental timepoints to
FXS phenotypes. The development of FMRP-tat peptides to
reintroduce different FMRP segments to FMR1 KO neurons is a
powerful tool for dissociating FMRPs function via direct protein-
protein interactions from its canonical role in translational
regulation (Zhan et al., 2020; Park et al., 2021). Finally,
the development of novel FXS models—such as the FMR1
KO rat (Till et al., 2015; Golden et al., 2019; Auerbach
et al., 2021) and FXS human derived iPS cells (Telias et al.,
2013; Bhattacharyya and Zhao, 2016) and organoids (Kang
et al., 2021), will help identify which phenotypes are most
highly conserved across species and highlight new treatment
strategies.
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