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Bacilli are commonly used as plant growth-promoting agents but can be limited in effectiveness to certain crop and soil en-
vironments.*e objectives of this study were to (1) identify Bacillus strains that can be consistent in promoting the growth of corn,
wheat, and soybean and (2) determine whether physiological traits expressed in vitro can be predictive of growth promotion
efficacy/consistency and be used for selecting effective strains. Twelve Bacillus strains isolated from wheat rhizospheres were
evaluated in greenhouse pot tests with nonsterile soil for their effects on the growth of corn, soybean, and wheat. *e strains also
were assessed in vitro for multiple physiological traits. All 12 strains increased corn growth significantly compared to the controls.
*e four most efficacious strains on corn—Bacillus megateriumR181, B. safensisR173, B. simplex R180, and Paenibacillus graminis
R200—also increased the growth of soybean and wheat. No set of traits was a predictor of growth promotion efficacy.*e number
of traits expressed by a strain also was not an indicator of efficacy as strain R200 that was positive for only one trait showed high
growth promotion efficacy. Effective strains can be identified through pot tests on multiple crop plants, but in vitro physiological
assays are unreliable for strain selection.

1. Introduction

*ere is growing interest in the use of root-colonizing, plant
growth-promoting rhizobacteria (PGPR) as supplements or
alternatives to the use of chemicals to increase crop pro-
ductivity in agriculture. Studies have shown that PGPR have
great potentials to increase growth and/or yields of different
crops. Crop yield increases because PGPR can be as high as
57%, depending on the crop [1–3].

Many bacterial genera have been utilized as PGPR, in-
cluding Agrobacterium, Arthrobacter, Azotobacter, Azospir-
illum, Bacillus, Burkholderia, Caulobacter, Chromobacterium,
Erwinia, Flavobacterium, Micrococcus, Pseudomonas, and
Serratia [4]. Among these, members of the rod-shaped,
endospore-forming Gram-positive Bacillus group are the
most commonly commercialized [5]. *is group includes

bacteria previously classified in the genus Bacillus but now
separated into different genera such as Bacillus, Paenibacillus
and Lysinibacillus [6]. *ese bacteria are favored for com-
mercialization as PGPR in part for their ability to produce
heat and desiccation-tolerant endospores. *ese structures
are critical in maintaining high cell viability and prolonging
shelf life in formulations kept in storage [6]. Some Bacillus
PGPR strains also have been reported to perform well under
different environmental conditions [7, 8].

Although the potentials for using PGPR to improve crop
production and increase yields are well recognized, the use
PGPR is not yet a widespread practice in a large part because
of inconsistency in plant growth promotion by most PGPR
strains under different field conditions [9]. One factor that
may be responsible for the inconsistency of a PGPR strain is
its sensitivity to plant and soil conditions that limit its ability
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to colonize the rhizosphere and express growth promotion
mechanisms; these conditions include soil type, temperature,
moisture content, organic matter, and pH [7, 10, 11]. Because
these conditions can vary considerably across different geo-
graphic locations, the effectiveness of PGPR is frequently
reported to vary depending on the location in which they are
applied. For example, Suslow et al. [12] reported that a strain
of PGPR increased sugar beet yield in California field tests but
failed consistently when tested in Idaho, whereas another
strain that caused the greatest yield benefits in Idaho had no
significant effect in California trials. Also, a commercial seed
treatment product containing Bacillus firmus I-1582, a PGPR
and nematode biocontrol strain isolated in Israel, had no
effect on soybean yields and was ineffective in controlling
soybean cyst nematode when tested in several locations in
Nebraska [13]. While commercial success of a PGPR requires
that it performwell under different environments, selection of
such organisms continues to be a challenge.

PGPR increase plant growth via direct or indirect
mechanisms [14]. Direct plant growth promotion occurs
when PGPR increase plant growth by supplying growth
factors such as nutrients and hormones to plants [15]. Ex-
amples of direct growth promotion mechanisms include
nitrogen fixation [16]; phosphate solubilization or iron mo-
bilization by microbial siderophores [17]; and provision of
hormones such as indole acetic acid, cytokinin, and gibber-
ellin [18–21]. Indirect plant growth-promotion occurs when
PGPR increase plant growth by suppressing the growth or
activity of plant pathogens and deleterious rhizosphere
inhabiting microorganisms [22–26]. *is can occur through
the production of antibiotics and lytic enzymes, competition
for nutrients, or induced systemic resistance against patho-
gens [4, 15, 27, 28]. Among these mechanisms or traits, it is
unclear which individual trait or set of traits could be pre-
dictive of growth promotion and thus be used as criteria for
selecting the best growth promoters among potential strains.

*e research reported here is a part of the efforts at the
University of Nebraska-Lincoln to develop PGPR for use in
multiple field crops under the diverse cropping systems of
Nebraska, as well as biological control agents for soilborne
pathogens [29]. It has been suggested that PGPR strains
isolated from a region are better adapted to conditions
prevalent in that region and, thus, would be more effective
when applied to fields in the same region [30].*us, bacteria
were isolated fromNebraska plants for this effort. Because of
the advantages of using Bacillus as PGPR, and little research
has been conducted previously on Bacillus PGPR in
Nebraska, this study focused on bacterial isolates in Bacillus
group. In this study, twelve Bacillus strains, isolated from the
rhizosphere of wheat grown in Nebraska, were assessed for
growth-promotion potentials on corn, soybean, and wheat
in the greenhouse, with the objective of identifying strains
that can effectively and consistently promote the growth of
multiple crop plants. *e same strains were evaluated in
laboratory tests for expression of physiological traits asso-
ciated with plant growth promotion. *e objective was to
determine the relationship between physiological traits
expressed in vitro and growth promotion efficacy. Screening
of organisms for growth promotion potential using

conventional greenhouse pot tests might be time-consuming
when evaluating large numbers of candidate organisms.
Identification of traits that are predictive of growth pro-
motion efficacy might be useful in developing and/or im-
proving screening strategies for effective PGPR strains.

2. Materials and Methods

2.1. Strains and General Bacteriological Methods. *e twelve
Bacillus strains investigated in this study were isolated from
the roots of wheat plants grown near North Platte, Nebraska.
*e isolates were selected from our collection based on
preliminary screening in a previous study and were iden-
tified via 16s rDNA using 27F/1492R primer set through the
method described by Parikh et al. [29]. Sequencing was done
at the Institute for Integrative Genome Biology, University
of California, Riverside. Sequences were edited using the
Seqbuilder and EditSeq modules of DNASTAR® Lasergene
Software v14 (DNASTAR, Madison, WI). Nucleotides were
compared to the NCBI database through the Basic Local
Alignment Search Tool (BLAST) algorithm and the se-
quences were submitted to the GenBank.*e test strains and
other microorganisms used in this study are listed in Table 1.
All bacterial strains were stored at −75°C in nutrient broth
amended with 10% glycerol and were routinely cultured on
tenth-strength tryptic soy agar (10% TSA). Cell suspensions
used in generating lawn cultures or inoculating seed were
prepared by harvesting cells which has been incubated on
10% TSA for 36 to 48 h at 28°C, and the cells were suspended
in 10mM sodium phosphate buffer (PB) at pH 6.0. A
spectrophotometer was used to measure the absorbance
(600 nm) of each cell suspension which was then diluted
with sterile phosphate buffer to an absorbance level corre-
sponding to 108 cfu/mL.

2.2. Evaluation of Growth Promotion through Greenhouse Pot
Tests. *ree greenhouse pot experiments were conducted,
the first evaluating all twelve Bacillus strains for the ability to
promote growth of corn. *e five most efficacious strains in
the corn experiment were subsequently evaluated in separate
experiments using soybean and wheat. Each experiment was
performed at least three times.

Seeds of corn (sweetcorn Sugar Buns F1 se+, Johnny’s
Selected Seeds), wheat (Overland W5-52, Huskers Genetics),
and soybean (Vikings 2265, Johnny’s Selected Seeds) were
surface disinfected by soaking in 2% commercial bleach so-
lution for 3 minutes and rinsed with sterile distilled water 10
times. Seeds were air dried in a laminar airflow-hood and kept
at 4°C for later use. Surface-disinfected corn and wheat seeds
were treated with bacterial strains by soaking in cell sus-
pensions for 60 minutes, while soybean seeds were soaked in
cell suspensions for 30 minutes. *e soaking periods were
determined in preliminary experiments to maximize pop-
ulations of the applied bacteria on the seed without negatively
affecting seed germination. Seeds were soaked in sterile PB as
the control. To determine the populations of cells adhering to
the treated seeds after soaking, samples of the seeds were
washed in sterile PB and the wash was used in dilution plating
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on 10% TSA. Populations of applied test strains on treated
seed were typically around 107 cfu/seed.

Treated seeds were sown into a nonpasteurized potting
mix comprised of a loam soil and sandmixed in 2 to 1 ratio by
volume. *e same soil was used in all greenhouse experi-
ments. Analysis of the potting mix showed that it was made
up of 61% sand, 26% silt, and 13% clay and contained 1.0%
organic matter, 4.1 parts-per-million (ppm) nitrate-nitrogen,
7.0 ppm bicarb phosphorus, and 161 ppm exchangeable po-
tassium. One corn seed was sown per pot, three soybean seeds
were sown per pot, and five wheat seeds were sown per pot.
Plastic pots with a dimension of 13 cm diameter and 11 cm
depth was used in all studies.*ere were five to eight replicate
pots for each seed treatment in every experiment. Pots were
arranged in a completely randomized design on a bench in
a greenhouse where temperatures varied from 24°C (night) to
31°C (day). Each experiment lasted for 20 days during which
pots were watered once a day without fertilization. At the end
of the experiment, soil was carefully washed off the plant roots
under low running tap water, and the shoots and roots were
separated. Shoot height, fresh and dry shoots, and root
weights were measured. Dry weights were determined after
drying for 3 days at 70°C.

2.3. Statistical Analysis of Greenhouse Experiments. Two
procedures were applied to analyze growth parameter data
(i.e., shoot height and shoot and root weights) using SAS
software (SAS Institute, Cary, NC). Data from each ex-
periment trial were analyzed separately. Dunnett’s test was

used to determine whether a growth variable measurement
of a bacterial treatment was significantly different (P≤ 0.05)
from the control. To compare bacterial treatments with each
other, analysis of variance (ANOVA) was conducted first to
determine if there was a significant treatment effect within
an experiment trial, and then mean separation was per-
formed using Fisher’s LSD test (α� 0.05) when a significant
treatment effect was found in the ANOVA. In preliminary
analysis of dry and wet biomass data, within-treatment
variability was found to be lower for fresh biomass mea-
surements compared to dry biomass measurements.
*erefore, only fresh biomass measurements were analyzed
further and are reported here.

Growth parameter data were used in calculating three
values that were not subjected to statistical analysis.*e first,
“percent growth increase” (PGI), denotes the amount to
which a strain increased a growth variable relative to the
control in an experiment trial. It was calculated using the
following equation:

PGI �
Mt − Mc

Mc
× 100, (1)

where Mt and Mc are the mean measurements of the
treatment and the control, respectively. Another value,
“growth stimulation frequency” (GSF), denotes how con-
sistently a strain increased growth across trials of an ex-
periment. GSF is expressed as the percentage of all cases
(i.e., growth parameters across all trials of an experiment) in
which a strain yielded a significant increase (95% confidence
level) compared to the control. *e third value, “frequency

Table 1: Microorganisms used in this study.

Organism Purpose/accession number Source
Bacillus acidiceler R228 Test strain/KY515411

Identified in
this study

B. megaterium R181 Test strain/KY807994
B. megaterium R232 Test strain/KY515414
B. pumilus R174 Test strain/KY515394
B. pumilus R183 Test strain/KY515399
B. pumilus R190 Test strain/KY515404
B. safensis R173 Test strain/KY515393
B. safensis R176 Test strain/KY515395
B. simplex R180 Test strain/KY515398
Lysinibacillus fusiformis R198 Test strain/KY515408
Paenibacillus cineris R177 Test strain/KY515396
P. graminis R200 Test strain/KY515409
Azospirillum brasilense 99B-817 Positive control for nitrogen fixation assay

Dr. Joseph Kloepper,
Auburn University,

Alabama

B. mojavensis AP-209 Positive control for protease enzyme assay
B. amyloliquefaciens IN937A Positive control for bacterial inhibition assay
Lysinibacillus macroides AP-282 Positive control for IAA assay.

Serratia marcescens 94A-429 Positive control for siderophore and phosphate
solubilization assays

B. amyloliquefaciens KPS46 Positive control for fungal inhibition assay

Dr. Gary Yuen,
University of

Nebraska-Lincoln

Lysobacter enzymogenes C3 Positive control for biosurfactant and chitinase assays
Clavibacter michiganensis subsp. nebraskensis Plant pathogenic bacteria for inhibition assay
Pectobacterium carotovorum Plant pathogenic bacterium for inhibition assay
Xanthomonas campestris pv. phaseoli Plant pathogenic bacterium for inhibition assay
Fusarium graminearum PH-1 Plant pathogenic fungus for inhibition assay
Rhizoctonia solani R251 Plant pathogenic fungus for inhibition assay
Pythium irregulare Plant pathogenic oomycete for inhibition assay
Pythium ultimum Plant pathogenic oomycete for inhibition assay
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in top 3” (FIT3), was determined in the corn experiment,
while a comparable value, “frequency in top 2” (FIT2), was
determined in the soybean and wheat experiments. FIT3 and
FIT2 are the percentages of all cases in repeated experiments
in which a strain was among the three top strains and two
top strains, respectively, in respect to the magnitude of
growth variable measurements. In the corn experiments, the
top three strains reflected the top quartile of the 12 strains
tested. In the soybean and wheat experiments, only the top
two strains were identified, which represented roughly the
top third because fewer bacterial strains were evaluated.

2.4. In Vitro Tests for Indirect Growth Promotion Traits.
*e 12 Bacillus strains were evaluated for these traits as-
sociated with indirect growth promotion: antagonism
against bacteria and fungi (i.e., true fungi and oomycetes);
proteolytic and chitinolytic enzyme activities; and bio-
surfactant and siderophore production.

Antagonism against three phytopathogenic bacteria
(Clavibacter michiganensis subsp. nebraskensis, Xanthomonas
campestris pv. phaseoli, and Pectobacterium carotovorum) was
evaluated on 10%TSA and nutrient agar (NA).*e pathogens
were selected (1) to represent diverse bacterial pathogens and
(2) because of their relevance in Nebraska to the crops being
evaluated. For example, Clavibacter michiganensis subsp.
nebraskensis causes Goss’s bacterial wilt and leaf blight, which
is a major disease of corn in Nebraska and Midwest United
States. Lawn cultures were generated for each bacterial
pathogen by spreading 0.5mL cell suspensions onto the
surfaces of agar plates and then allowing the agar surfaces to
air-dry aseptically in a transfer hood. Five 3mm diameter
wells were made in the agar of each plate using a sterile cork-
borer. Each well was filled with 15 µL cell suspension of a test
Bacillus strain or sterile PB (negative control). Bacillus
amyloliquefaciens IN937a was used as the positive control.
Each Bacillus test strain was tested against each of the three
bacterial pathogens on three plates of each medium. *e
plates were kept in the transfer hood for 15min to allow
absorption of the suspensions into the medium before in-
cubation at 28°C for 2 days. Presence of a clear halo zone
around a well was an indication of antagonism by the test
strain against the bacterial pathogen. A test strain was con-
sidered to have antibacterial activity if it inhibited the growth
of any one of the bacterial pathogens on any medium.

Antagonism against two phytopathogenic fungi (Fusa-
rium graminearum and Rhizoctonia solani) and two
oomycetes (Pythium ultimum and P. irregulare) was eval-
uated on 10% TSA and potato dextrose agar (PDA). *ese
pathogens are important fungal pathogens to the three crops
used for this study. *e center of each agar plate was in-
oculated with a 3mm diameter fungal plug cut with
a sterilized cork-borer from a 3-day-old PDA culture of a test
fungus or oomycete. Each plate was coinoculated with B.
amyloliquefaciens KPS46 (positive control), sterile PB
(negative control), and three test Bacillus strains using sterile
toothpicks and incubated for 3 days at 25°C. Presence of
a zone of hyphal growth inhibition around a bacterial colony
was an indication of antagonism of the strain against the

mycelial organism. A test strain was considered to have
antifungal activity if it inhibited the growth of any fungus or
oomycete on any medium.

Bacillus test strains were evaluated for protease and
chitinase activities using indicator media containing the
respective substrates. Protease activity was evaluated using
a milk agar medium containing (g/L) powdered milk (10),
yeast extract (0.5), ammonium sulfate (0.5), calcium chloride
(0.5), potassium phosphate monobasic (0.1), potassium
phosphate dibasic (0.1), and agar (18) and pH adjusted to
7.0± 0.2. Strain AP-209 of B. mojavensis was used as the
positive control. Chitinase activity was evaluated on col-
loidal chitin medium as described by Abirami et al. [31] with
Lysobacter enzymogenes C3 used as the positive control. In
both assays, loopfuls of test strains and the positive control
were applied to three plates of the indicator medium. *e
plates were incubated at 28°C for 2 or 5 days for the protease
and chitinase assay, respectively, and then examined for
zones of clearing around bacterial colonies as indication of
enzymatic digestion of the substrate.

Biosurfactant activity was assessed using the method
described by Kobayashi and Yuen [32]. *ree 50 µL droplets
of fluid from a 2-day old tryptic soy broth (TSB) culture of
each test strain were applied to the surface of Parafilm.
Culture fluid of Lysobacter enzymogenes C3 and sterile TSB
were used as positive and negative controls, respectively.
Droplet diameters were measured; a droplet diameter
greater than the negative control was an indication of
droplet spread due to the presence of a biosurfactant.

Siderophore production was detected using the Chrome
Azurol S (CAS) siderophore assay [33]. Each test strain was
spot inoculated onto three plates of the medium using
a sterile inoculating loop and incubated for 5 days at 28°C.
Culture plates were flooded with 1mL CAS solution. Plates
were inoculated with Serratia marcescens 94A-429 as the
positive control. A blue to pink color change in the agar
under and around a bacterial colony within 30min of
flooding with CAS solution was an indication of siderophore
production by the bacterium.

2.5. In Vitro Tests for Direct Growth Promotion Traits.
*e Bacillus strains were evaluated for these traits associated
with, or indicative of direct growth promotion: phosphate
solubilization, nitrogen fixation, indole acetic acid (IAA)
production, and promotion of corn growth in a semisterile
environment (growth pouches).

Phosphate solubilization activity was evaluated on
Pikovskaya’s agar medium [34]. *ree plates of the medium
were inoculated with a loopful of a test strain, and plates were
inoculated with Serratia marcescens 94A-429 as the positive
control. *e plates were incubated at 28°C for 7 days and then
examined for zones of clearing around the bacterial colonies
indicative of phosphate solubilization activity.

Nitrogen fixation activity was evaluated on glucose
nitrogen-free mineral (GNFM) agar medium using bro-
mothymol blue (BTB) as an indicator [35]. *e BTB was
prepared by dissolving 0.5 g BTB into 100mL distilled water
and filter-sterilized. Each test strain was inoculated onto
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three GNFM plates. Azospirillum brasilense 99B-817 was
used as positive control. Plates were incubated at 28 °C for 7
days, flooded with BTB solution, and then examined for
color change in the agar from green to dark blue or bluish
green as an indication of nitrogen fixation activity.

Indole acetic acid production was evaluated using Sal-
kowski’s reagent and nutrient broth supplemented with
0.5 g/L L-tryptophan [36]. Each test strain was first cultured in
10mL 10%TSB for 1 day at 28°C, and then 2mL of the culture
was transferred into 20mL tryptophan-supplemented nu-
trient broth. Lysinibacillus macroides AP-282 was used as the
positive control, and Lysobacter enzymogenes C3 and sterile
NB were used as negative controls. *e cultures were in-
cubated at 28°C for 6 days and centrifuged at 13000× g for
15min. One mL of culture supernatant was mixed with 2mL
Salkowski’s reagent with a drop of orthophosphoric acid. *e
mixture was incubated in the dark for 30min and then ex-
amined for the development of pink color as an indication of
indole acetic acid production.

Direct growth promotion activity in a semisterile, soil-
less environment was evaluated using surface-disinfected
seeds of corn (sweetcorn Sugar Buns F1 se+) sown in
growth pouches (Mega International, Minnesota). *e
growth pouch is a plastic bag lined with paper towel
material that was sterilized before use. *e seeds were
surface disinfected and treated with strains as performed
for the greenhouse test. Seeds treated with sterile PB were
used as the negative control. Treated seeds were sown 3
seeds per pouch, and seven replicate pouches were made for
each treatment. *e pouches were watered with 10mL
sterile distilled water every other day and kept at room
temperature under 16 h light and 8 h dark for 10 days. At
the end of the experiment, shoots and roots were separated.
Shoot fresh weight, shoot height, and root length were
measured, and numbers of lateral roots were counted. *e
experiment was conducted three times. In each trial of the
experiment, Dunnett’s test was used to determine whether
a bacterial treatment was significantly different (P≤ 0.05)
from the control. A strain was considered positive for
growth promotion if it increased the same growth pa-
rameter in two or more trials or increased two or more
growth parameters in the same trial.

3. Results

3.1. Growth Promotion Effects in Greenhouse Pot Tests

3.1.1. Response of Corn to Test Strains. All the 12 Bacillus
strains enhanced corn growth compared to the control
(Table 2). Using Dunnett’s test to compare individual strains
with the control, each of the strains caused a significant
increase of one or more growth variables in at least two trials
(Table 2). Bacillus simplex R180 showed the highest growth
stimulation frequency (GSF) of 100%, that is, it increased all
growth parameters across trials, followed by B. safensis R176
(GSF of 83%) and B. megaterium R181 (GSF of 78%). Other
strains induced growth stimulation in less than 70% of the
growth parameters across all trials. Bacterial treatments had
dramatic considerable effects on shoot and root weights,

with the highest increases exceeding 200%. Effects on shoot
height were much lower, with percent increases being less
than 60%. *ere was large variation between trials in the
percentage growth increase for all strains. For example,
shoot height increases by strain R181 ranged from 18 to 45%,
shoot weight increases ranged from 40 to 140%, and root
weight increases ranged from 32 to 136%. *ere also was
considerable within-treatment variability for fresh root
measurements in trial 3 such that for some bacterial
treatments, in which increases in root weight compared to
the control exceeded 100%, the difference from the control
was not statistically significant at the 95% confidence level.

Significant treatment effects were found through
ANOVA tests in 6 out of 9 growth parameters (Table 3).
Significant differences among strains, as indicated by the
LSD test, occurred in 5 of the 6 growth parameters in which
a significant treatment effect occurred (Table 3). Strains
R181, R180, and R200 were found most often among the
top 3 strains having FIT3 of 56, 50, and 50%, respectively.
Strains R176, R190, and R198 did not appear among top 3
strains in any of the measurements. *ere was no signif-
icant difference among the top 3 strains for most growth
parameters. *e only one exception was a higher root
biomass for strain R181 compared to the other strains in
trial 1 (Table 3).

*e four most effective strains—R177, R180, R181, and
R200—from the corn growth promotion experiments, based
on highest GSF and FIT3 (Tables 2 and 3), were selected for
further evaluation on wheat and soybean. Although B.
safensis R176 had a relatively high GSF of 83% (Table 2), it
was not selected because it did not appear among the top 3
strains for any growth parameter (Table 3). Instead, B.
safensis R173 was selected to represent the species in the
experiments on soybean and wheat.

3.1.2. Responses of Soybean and Wheat to Five Strains.
In the soybean experiment trials, four strains—R173, R180,
R181, and R200—induced significant growth increases
compared to the control (Table 4). Each of these strains
caused significant increases in root and shoot compared to
the control, as indicated by Dunnett’s test or the LSD test, in
one or more trials of the experiment (Table 4). Bacillus
safensis R173 had the highest GSF of 88%, whereas the GSF
for the other three strains did not exceed 50%. *e strains
had greater effects on root growth than shoot growth, with
the percent increases for root growth exceeding 90% inmany
cases, whereas percent increases for shoot growth were less
than 50% (Table 4). *e highest increases in shoot weight
(46%) and root weight (144%) were lower than that found in
the experiments with corn. None of the strains induced
a significant increase in shoot height (data not shown).
Among the four strains, R173, R180, and R181 were most
frequently found in the top 2 strains category with FIT2
values of 100, 50, and 50%, respectively, whereas strain R200
had a relatively low FIT2 value of 25% (Table 4). *ere was
no significant difference between the top 2 strains for any
growth parameter (Table 4).

*e same four strains that were positive for growth
promotion on soybean (R173, R180, R181, and R200) also
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increased the growth of wheat compared to the control
(Table 5), each strain causing a significant increase of two or
more growth variables in two or more trials compared to the
control according to Dunnett’s or LSD tests. Strains R181
and R200 had a GSF value of 62%, while GSF values for R180
and R173 were 33 and 25%, respectively. Growth promotion
was higher for root growth than for shoot growth, with
increases in root weight induced by the four strains ranging
from 43 to 115%, whereas shoot weight increases did not
exceed 50%. *ese values were lower than that found in the
corn experiments but similar to results found in the soy-
bean experiments. Strains R181 and R200 were most
consistently found among the top 2 strains with FIT2 of
75 and 63%, respectively (Table 5). *ere was no significant
difference among the top 2 strains for any growth pa-
rameter (Table 5).

*ese results showed that four Bacillus strains (B. safensis
R173, B. simplex R180, B. megaterium R181, and P. graminis

R200) were effective for promoting soybean and wheat growth
in greenhouse pot experiments.*is indicated that theseBacillus
strains have broad spectrum plant growth-promotion activity.

3.2. In Vitro Tests for Indirect Growth Promotion Traits.
*e results of the in vitro assays are summarized in Table 6
Only three strains—B. megaterium R181 and B. pumilus
strains R183 and R190—exhibited antagonism against
phytopathogenic bacteria (Table 6). Each of these strains was
inhibitory to either Clavibacter michiganensis subsp.
nebraskensis or Xanthomonas campestris, but not both, and
none inhibited Pectobacterium carotovorum (data not
shown). *e same three strains, in addition to B. pumilus
R174, exhibited antagonism against fungi (Table 6). *at
activity was limited to a transitory inhibition against
F. graminearum, while R. solani and the two Pythium spp.
were unaffected (data not shown).

Table 3: Comparison of twelve Bacillus strains for effects on corn shoot and root growth in greenhouse pot experiments, with the three
strains having the highest measurements for each parameter indicated with shading.

Strain
Shoot height (cm) Shoot fresh weight (g) Root fresh weight (g)

FIT3 (%)w
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Bacillus acidiceler R228 46 47bax 40a 6.0 6.0bc 3.2ab 3.2b 3.5ab 0.9 22
B. megaterium R181 51 48ab 40a 8.0 6.5abc 3.0ab 4.9a 3.2ab 1.1 56
B. megaterium R232 50 48ab 35cde 7.0 6.6abc 2.5abcd 3.4b 3.1b 1.3 44
B. pumilus R174 49 47b 33cde 7.0 6.0bc 2.4bcd 3.5b 3.1b 0.9 11
B. pumilus R183 48 47b 40ab 7.0 5.5bc 3.1ab 3.6b 3.2ab 1.1 33
B. pumilus R190 — 46b 35bcde — 4.8c 2.5abcd — 2.8b 1.0 0
B. safensis R173 44 48ab 36abcd 6.0 6.4bc 2.9ab 3.1b 3.9ab 1.6 22
B. safensis R176 — 47b 37abc — 5.7bc 2.7abc — 3.3ab 1.0 0
B. simplex R180 — 47b 41a — 5.9bc 3.2a — 3.2b 1.5 50
Lysinibacillus fusiformis R198 45 48ab 36abcd 6.0 6.0bc 2.5abcd 2.7b 3.5ab 1.2 0
Paenibacillus cineris R177 47 50ab 37abc 7.0 6.9ab 2.7abcd 3.7b 3.9ab 0.5 44
P. graminis R200 — 53a 37abcd — 8.4a 2.6abcd — 4.3a 0.9 50
Control 43 33c 31e 5 2.7d 1.9d 3.6b 1.5c 0.5 NAy

ANOVA P 0.081 <0.001 0.002 0.224 0.001 0.042 0.014 0.005 0.614 NA
wFIT3� frequency in top 3 strains category. xNumbers followed by the same letter in each column are not significantly different at α� 0.05 according to LSD
test. yNA�Not applicable. —�no data or strain was not tested.

Table 2: Promotion of corn shoot and root growth by twelve Bacillus strains in three greenhouse pot experiments.

Strain

% increase compared to controlw

GSF (%)xShoot height Shoot fresh weight Root fresh weight
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Bacillus acidiceler R228 7 42∗ 28∗ 7 118∗ 66 −11 155∗ 92 44
B. megaterium R181 19∗ 45∗ 28∗ 40 140∗ 59∗ 36∗ 121∗ 132 78
B. megaterium R232 17 45∗ 12 24 144∗ 32∗ —6 107∗ 173 44
B. pumilus R174 13 41∗ 7 30 126∗ 24 —3 117∗ 91 33
B. pumilus R183 12 40∗ 28∗ 33 103∗ 62 0 122∗ 12 44
B. pumilus R190 — 38∗ 13 — 77∗ 32 — 93∗ 104 50
B. safensis R173 3 44∗ 15∗ −15 137∗ 51∗ −14 167∗ 222 56
B. safensis R176 — 34∗ 20∗ — 111∗ 42∗ — 124∗ 110 83
B. simplex R180 — 41∗ 30∗ — 118∗ 68∗ — 112∗ 206∗ 100
Lysinibacillus fusiformis R198 5 47∗ 17∗ 6 122∗ 33∗ −25 135∗ 147∗ 56
Paenibacillus cineris R177 9 51∗ 20∗ 20 155∗ 42 3 168∗ −8 67
P. graminis R200 — 54∗ 18∗ — 215∗ 37 — 203∗ 75 67
wPercentage increase of a growth variable by bacterial treatment compared to the control. xGSF� growth stimulation frequency; frequency at which a strain
increased growth (at 95% confidence level) in all measurements across trials. ∗Significant difference between treatment and control (P≤ 0.05) according to
Dunnett’s test. —�no data because strain was not tested.
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Table 4: Growth promotion effects of five Bacillus strains on soybean plants in 4 greenhouse pot experiments, with the two strains having
the highest measurements for each parameter indicated with shading.

Strain
Shoot fresh weight (g) (% increase)t Root fresh weight (g) (% increase)t GSF

(%)u
FIT2
(%)vTrial 1 Trial 2 Trial 3 Trial 4 Trial 1 Trial 2 Trial 3 Trial 4

Bacillus
megaterium R181 1.3bcw (18) 1.3ab (18) 3.7ab∗ (16) 3.8ab (3) 0.42b (−9) 0.64b (60) 1.7b∗ (89) 2.1a (31) 50 50

B. safensis R173 1.5ab∗ (36) 1.5a∗ (36) 4.2a∗ (31) 4.2a (14) 0.62ab (35) 0.97a∗
(142) 2.2a∗ (144) 2.1a (31) 88 100

B. simplex R180 — — 3.9a∗ (22) 3.1b
(−16) — — 2.2a∗ (144) 1.3c (−19) 50 50

Paenibacillus
cineris R177 1.1c (0) 1.1c (0) — — 0.38b (−17) 0.35c (−13) — — 0 0

P. graminis
R200 1.6a∗ (46) 1.2bc (9) 3.5ab (9) 3.6ab

(−3) 0.88a∗ (91) 0.41c (3) 1.5b∗ (67) 1.8ab (13) 38 25

Control 1.1c 1.1bc 3.2ab 3.7b 0.46b 0.40c 0.9c 1.6bc NAx NA
ANOVA P 0.001 0.004 0.054 0.059 0.003 <0.001 <0.001 0.004 NA NA
tPercentage increase of a growth variable by bacterial treatment compared to the control. uGSF� growth stimulation frequency; frequency at which a strain
increased growth (at 95% confidence level) in all measurements across trials. vFIT2 � Frequency in top 2 strains category. wNumbers followed by the same
letter in each column are not significantly different at α� 0.05 according to LSD test. xNA� not applicable. ∗Significant difference between treatment and
control (P≤ 0.05) according to Dunnett’s test. —� no data or strain was not tested.

Table 5: Growth promotion effects of five Bacillus strains on wheat plants in 3w greenhouse pot experiments, with the two strains having the
highest measurements for each parameter indicated with shading.

Strain
Shoot height

(cm) (% increase)t Shoot fresh weight (g) (% increase)
Root fresh
weight

(% increase)
GSF
(%)u

FIT2
(%)v

Trial 1 Trial 2 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3
Bacillus megaterium
R181 38a∗w (15) 35∗ (21) 0.44a∗ (47) 0.13 (30) 0.46 (7) 0.33a∗ (154) 0.36a (29) 0.10a (43) 62 75

B. safensis R173 36ab (9) 31 (7) 0.42a∗ (40) 0.11 (10) 0.54 (26) 0.29ab∗ (123) 0.27ab (−4) 0.08ab (14) 25 38
B. simplex R180 37a (12) 33 (14) 0.31b (3) 0.13 (30) 0.59∗ (37) — — 0.07b (0) 33 33
Paenibacillus cineris
R177 — — — — — 0.20bc (54) 0.24b (−14) — 0 0

P. graminis R200 38a∗ (15) 33 (14) 0.43a∗ (43) 0.13∗ (30) 0.49 (14) 0.28ab∗ (115) 0.18b (−36) 0.11a∗ (57) 62 62
Control 33b 29 0.30b 0.10 0.43 0.13c 0.28ab 0.07b NAx NA
ANOVA P 0.060 0.160 0.001 0.074 0.093 0.005 0.018 0.035 NA NA
sShoot height data for trial 3 not presented because no strains caused an increase compared to the control based on Dunnett’s test and there was no significant
treatment effect in the ANOVA. tPercentage increase of a growth variable by bacterial treatment compared to the control. uGSF� growth stimulation
frequency; frequency at which a strain increased growth (at 95% confidence level) in all measurements across trials. vFIT2� frequency in top 2 strains
category. wNumbers followed by the same letter in each column are not significantly different at α� 0.05 according to LSD test. xNA� not applicable.
∗Significant difference between treatment and control (P≤ 0.05) according to Dunnett’s test. —�no data because strain was not tested

Table 6: Profile of in vitro physiological traits exhibited by Bacillus strains with high and low effectiveness in promoting corn growth as
determined in greenhouse pot experiments.

Strain Antib Antif Pro Bios Sid Phos IAA Pouch assay Efficacy on corn
B. megaterium R181 + + + − + + + +

High

B. safensis R173 − − + + − + + −
B. safensis R176 − − + + − − + +
B. simplex R180 − − + − + − − +
Paenibacillus cineris R177 − − − − − + + +
P. graminis R200 − − − − − − − +
Bacillus acidiceler R228 − − + − − − + +

Low

B. megaterium R232 − − + − + + + +
B. pumilus R174 − + + + − − − +
B. pumilus R183 + + + + − − − −
B. pumilus R190 + + + + + − − −
Lysinibacillus fusiformis R198 − − − − − − + +
Antib� antibacterial inhibition; Antif� antifungal inhibition; Pro� protease activity; Bios� biosurfactant production; Sid� siderophore production;
Phos� phosphate solubilization; IAA� indole acetic acid; pouch assay� promotion of corn growth in growth pouches. + (shaded)� trait exhibited; −� trait
absent. Note. Chitinase and nitrogen fixation results are not shown because these traits were negative for all strains.
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Nine out of the twelve test strains were positive for
protease activity on milk agar medium (Table 6) including
the three strains (B. pumilus R183 and R190, and B. meg-
aterium R181) that exhibited antibacterial activity. In con-
trast, none of the test strains exhibited chitinase activity
(Table 6). All strains of B. pumilus and B. safensis were
positive for biosurfactant activity (Table 6. Four of the
Bacillus strains (R180, R181, R190, and R232) were positive
for siderophore production on CAS agar medium (Table 6).

3.3. In Vitro Tests for Direct Growth Promotion Traits.
Strains R173 and R177 of B. safensis and strains R181 and
R232 of B. megaterium exhibited phosphate solubilization
on Pikovskaya’s agar medium (Table 6). None of the twelve
test strains was found to exhibit nitrogen fixation activity
(Table 6). Seven of the twelve test strains, including all strains
of B. megaterium and B. safensis, were found to produce
indole acetic acid (Table 6). None of the three strains of B.
pumilus, however, exhibited this activity.

Nine of the twelve strains exhibited the potential to
increase plant growth under semisterile conditions in
growth pouches, increasing a single growth parameter
compared to the control in at least two trials or multiple
growth parameters in a single trial (Table 7).

3.4. Relationship of Physiological Traits to Growth Promotion
Efficacy. Bacillus test strains are listed in Table 6 according
to growth promotion efficacy demonstrated in the green-
house corn experiments, along with each strain’s profile of in
vitro physiological traits. *ere was no individual specific
trait or group of traits that clearly distinguished the high
growth promotion efficacy group from the low-efficacy
group. *ere also appeared to be no relationship between
numbers of physiological traits and effectiveness in growth
promotion. *e highest number of traits was exhibited by B.
megaterium R181 in the high-efficacy group, but the lowest
number of traits also was found in a member of the high-
efficacy group, P. graminis R200.

4. Discussion

All of the 12 Bacillus strains tested in this study exhibited the
potential to increase plant growth in the corn experiments.
Four strains—B. megaterium R181, B. safensis R173, B.
simplex R180, and P. graminis R200—were shown to have
broad-spectrum activity as they were effective in increasing
the growth of soybean and wheat as well. Growth promotion
of all three crop plants by Bacillus megaterium R181 in this
study agrees with previous studies that demonstrated B.
megaterium strains being effective for growth promotion on
a variety of crop plants [19, 37]. Our findings with strains
R173, R180, and R181 set new precedencies for the species
represented by the strains. First, B. safensis was reported
previously to increase plant growth on corn [38]; our study
expands the range of crop plants that can be stimulated by B.
safensis to include soybean and wheat. Second, while growth
promotion by strains of B. simplex was demonstrated pre-
viously on kiwifruit [39], pea [40], strawberry [41], and

tomato [42], our study is the first to demonstrate that a strain
of B. simplex can increase growth in corn and soybean.
*ird, strains of P. graminis were reported to exhibit growth
promotion-associated traits in vitro such as nitrogen fixation
and extracellular enzyme production [43], but this is the first
demonstration of a P. graminis strain having plant growth
promotion ability.

We found that corn was more responsive in general to
the Bacillus strains than soybean or wheat, and this finding is
in line with other studies. For example, Tilak and Reddy [44]
reported that strains of Bacillus circulans and B. cereus in-
creased growth in corn, wheat, and pigeon pea, but the
highest response to the bacterial treatments was found in
corn. In another study, Khalid et al. [45] evaluated thirty
bacterial strains’ plant growth promotion on wheat seedlings
and found only four to be effective.

We observed trial-to-trial variation in growth promotion
by every Bacillus strain. Such variability has been reported in
other growth promotion studies and could be due to vari-
ations in many edaphic and host factors [7, 10, 11]. For
example, Cakmakçi et al. [10] reported that variability in
plant growth responses to bacterial inoculation was partly
due to changes in soil organic matter content. But the pot
experiments in our study were conducted using the same
potting medium and efforts were made to maintain uniform
moisture condition, while greenhouse conditions were
controlled to minimize seasonal temperature changes. *us,
we cannot point to any obvious environmental condition
that could explain the variability we observed. *e broad-
spectrum strains identified in this study were more con-
sistent in activity between trials than the other strains,
suggesting that they might be more tolerant to variations in
soil conditions. *e effectiveness of these broad-spectrum
strains in different field environments, however, needs to be
determined.*e results from testing of in vitro physiological
traits associated with direct and indirect growth promotion
provide clues as to the mechanisms by which individual
Bacillus strains can enhance the growth of corn. Direct
growth promotion appeared to be the most common mode
of action as 10 of the 12 strains exhibited the ability to
promote corn growth in growth pouches or some combi-
nation of growth promotion in growth pouches, phosphate
solubilization activity, and IAA production. In contrast,
growth promotion by B. pumilus appears to involve indirect
mechanisms primarily as all three strains exhibited anti-
bacterial and antifungal antagonism, as well as combinations
of siderophore, biosurfactant, and protease activities in vitro.

When in vitro physiological traits are examined relative
to effectiveness in growth promotion, there was no indi-
vidual specific trait or group of traits that clearly distin-
guished the high growth promotion efficacy group from the
low-efficacy group. Four traits—protease, biosurfactant,
antibacterial, and antifungal inhibition—were found more
commonly among the low-efficacy strains than the high-
efficacy strains (Table 7). Indole acetic acid production and
phosphate solubilization are two traits that were more
common among strains in the high-efficacy group than
strains in the low-efficacy group, but these traits were absent
from two high-efficacy strains, R180 and R200. Based on
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these findings, we consider indole acetic acid production and
phosphate solubilization to be traits that might contribute to
high growth promotion efficacy, but their expression is not
predictive of growth promotion efficacy. *e relationship
between physiological traits and effectiveness in growth
promotion also was examined from the perspective of the
number of physiological traits exhibited by strains in the
high- and low-efficacy categories. Expression of numerous
traits by a strain was not always consistent with exhibition of
high plant growth-promotion efficacy. For example, B.
pumilus R190, which was in the low-efficacy group in terms
of plant growth promotion, exhibited five out of the 10 traits,
a higher number than all of the high-efficacy strains except B.
megaterium R181 (Table 7). Conversely, P. graminis R200,
which was in the high-efficacy group, exhibited only the
ability to promote growth in a growth pouch. In summary,
while the specific physiological traits might contribute to
growth promotion activity, the relationship between phys-
iological traits in general and growth promotion efficacy
remains unclear.

*ere are three main conclusions from this study. First,
a high percentage of strains tested in this study, repre-
senting diverse species, were found to be effective on corn,
and some were effective on multiple crop plants. *is
suggests that that highly diverse populations of beneficial
plant growth-promoting bacilli are indigenous to the U.S.
Great Plains region and could be explored as biological tool
for sustainable crop production. Second, while variability
in effectiveness occurs in all PGPR strains, growth stim-
ulation frequency and frequency in the top two or three
strains in repeated trials are useful parameters in selecting
effective strains that have reduced variability in effective-
ness. *ird, the effectiveness of a PGPR strain in promoting
plant growth in a soil environment cannot be reliably
predicted by any one or a group of physiological traits.
Although indole acetic acid production and phosphate
solubilization might contribute to growth promotion in
certain strains, other mechanisms might be important in

other strains. Given that no individual physiological traits
are predictive of effectiveness in growth promotion, we do
not recommend testing of physiological traits as the first
criterion for selecting effective plant growth promoters.
Greenhouse pot tests are a more effective and more direct
screening method to identify effective strains. Effective
growth promoter strains from pot tests can then be tested
for their physiological traits to determine their modes of
action. Knowledge of mode of action then could be used to
better match strains with their intended use, for example,
using direct growth promotion strains in nutrient deficient
soils and indirect growth promotion strains in soils with
high populations of deleterious microbes.
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Table 7: Effects of Bacillus test strains on corn growth in three growth pouch experiments (shoot height and shoot weight data not available
for trial 3).

Strain

% increase compared to controlx

Lateral root number Root length (cm) Shoot height
(cm)

Shoot fresh
weight (g)

T1y T2 T3 T1 T2 T3 T1 T2 T1 T2
Bacillus acidiceler R228 17 20 0 27 15∗ 10 44∗ 18∗ 40∗ 20
B. megaterium R181 50∗ 20 −10 41∗ −17 8 0 13 0 20
B. megaterium R232 17 40∗ −10 23 2 4 39∗ 9 40∗ 20
B. pumilus R174 33∗ 20∗ −10 37∗ 2 10 28∗ 23∗ 20 20
B. pumilus R183 17 −40 −20 46∗ −17 −4 −6 −9 −20 0
B. pumilus R190 −17 −20 −10 10 −4 −2 17 −5 20 0
B. safensis R173 −17 0 0 23 −18 8 −11 27∗ −20 20
B. safensis R176 −50 40∗ −10 −10 −17 10 22∗ 18 20 20
B. simplex R180 17 0 −10 46∗ −7 14 22∗ 13 20 20
Lysinibacillus fusiformis R198 33∗ −20 −10 18 −10 20∗ 28∗ 32∗ 20 40∗
Paenibacillus cineris R177 33∗ −20 −10 37∗ −13 2 11 13 0 20
P. graminis R200 33∗ 0 0 41∗ −15 14 22∗ 18 40∗ 20
xPercentage increase of a growth variable by bacterial treatment compared to the control. yT� trial. ∗Significant difference between treatment and control
(P≤ 0.05) according to Dunnett’s test.
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