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Abstract. Senescence is a result of cellular stress and is a 
potential mechanism for regulating cancer. As a member of the 
mitogen-activated protein kinase family, ERK1/2 (extracellular 
signal-regulated protein kinase) has an important role in 
delivering extracellular signals to the nucleus, and these signals 
regulate the cell cycle, cell proliferation and cell development. 
Previous studies demonstrated that ERK1/2 is closely associated 
with cell aging; however other previous studies suggested that 
ERK1/2 exerts an opposite effect on aging models and target 
proteins, even within the same cell model. Recent studies 
demonstrated that the effect of ERK1/2 on aging is likely 
associated with its target proteins and regulators, negative 
feedback loops, phosphorylated ERK1/2 factors and ERK1/2 
translocation from the cytoplasm to the nucleus. The present 
review aims to examine the mechanism of ERK1/2 and discuss 
its role in cellular outcomes and novel drug development.
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1. Introduction

The Hayflick limit is a response to cellular lesions, which are 
triggered by multiple mechanisms, including replicative senes-
cence, oncogene activation, telomerase dysfunction and DNA 
lesions (1-3). Senescent cells arrested at the G1 phase demon-
strated more properties associated with dysfunctional cells 
compared with normal cells (4). Although senescence is an 
undesirable stress for normal cells, it is beneficial for the body 
as it restrains excessive proliferation of tumor cells. Therefore, 
senescence is used as a means of suppressing cancer and is an 
important cancer treatment method (5-8).

Extracellular signal-regulated protein kinase (ERK)1/2 is 
a mitogen-activated protein kinase (MAPK) family protein 
with typical cascade signaling characteristics and serves an 
important role in signal transduction pathways and the func-
tion of transcription factors, including activator protein-1, 
proto-oncogene c-Fos (c-Fos) and ETS domain-containing 
protein Elk-1 (Elk1) (9). The majority of research has focused on 
its regulatory effect on cell growth and differentiation (10-14); 
however, a number of previous studies demonstrated that 
ERK1/2 promotes cell senescence (15-17). Based on these 
characteristics, numerous small molecule MAPK/ERK kinase 
(MEK) inhibitors were examined in early-phase clinical 
trials, including PD098059, U0126, CI-1040, PD0325901 and 
AZD6244 (18); however, none of them were approved by The 
Food and Drug Administration due to adverse side effects or 
other toxic reactions (18). Many of these inhibitors negatively 
affected normal and abnormal cells. Notably, these effects 
may have been the result of the dual roles of ERK1/2 in senes-
cence, as demonstrated by other previous studies (19,20). The 
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present review examines the mechanisms regulating the role 
of ERK1/2 in cell senescence and suggests that ERK1/2 is a 
potentially useful target in treating cancer.

2. Senescence, ERK1/2 and cell fate

ERK1/2 signaling pathway. The mammalian MAPKs consist 
of cytoplasmic serine/threonine kinases that are involved in the 
transduction of signals from the surface to the interior of the 
cell. This family includes the ERK family (ERK1-8), the p38 
kinase family (p38 α/β/γ/δ) and the c-Jun N-terminal kinase 
family (JNK1-3, additionally termed stress-activated protein 
kinase) (9). With a number of substrate docking and enzyme 
recruitment sites (21), ERK1/2 (MAPK1/3) is a multifunctional 
serine/threonine kinase that is able to phosphorylate numerous 
substrates, including protein kinases, signal effectors, recep-
tors, cellular scaffold proteins and nuclear transcriptional 
regulators (21). At present, five types of ERK isoforms are 
known. ERK1 and ERK2 are thought to be the most important 
isoforms with 84% homology for the primary sequences and 
similar functions (21).

The Ras/Raf/MEK/ERK1/2 signaling pathway is a 
small GTPase ligation of activated tyrosine receptors and 
cytoplasmic kinase signal transduction cascades. The key 
point of activation is to transmit a signal from tyrosine recep-
tors, including epidermal growth factor receptor (EGFR), 
which subsequently recruit Son of sevenless (SOS) through 
intracellular Shc and Grb2 domains, ultimately catalyzing 
the conversion of inactive Ras/guanosine diphosphate to the 
active Ras/guanosine triphosphate complex (22). As an acti-
vator of ERK1/2, MEK1/2 catalyzes the phosphorylation of 
ERK1/2 at Tyr204/187 and Thr202/185 by casein kinase 2 
(CK2) (23). This enzyme subsequently binds to importin7 and 
translocates ERK1/2 from the cytoplasm to the nucleus (24), 
where it functions as an upstream regulator of substrate genes 
that encode for transcription factors, including Elk1, c-Myc, 
signal transducers and activators of transcription (STATs), 
c-Jun and c-Fos (21). These transcription factors regulate their 
counterpart target genes to alter the expression or activity 
of various proteins and are involved in the regulation of a 
large variety of processes, including adhesion, cell cycle 
progression, migration, survival, differentiation, metabolism, 
proliferation and transcription (21). The Ras/Raf/MEK/ERK 
cascade is a highly efficient signaling pathway, aided by 
scaffold proteins, including kinase suppressor of Ras, MEK 
partner 1/p14 complex, β‑arrestins, fibroblast growth factor 
receptor substrate 2, MAPK organizer 1 and flotillin‑1 (25). 
The function of scaffold proteins is characterized by combina-
torial inhibition, which is the stoichiometry of a scaffold and 
its signaling partners; the expression levels of scaffold proteins 
should not be too high (the kinase and its substrate may each 
bind to an individual scaffold protein) or too low (the phos-
phorylation of the cascade is sub-optimal) (26). With these 
different scaffold proteins, the phosphorylation of different 
isoforms is accurately regulated; the scaffold protein MEK 
protein 1 specifically binds ERK1, not ERK2 (27).

Role of ERK1/2 in cellular senescence. Cellular senescence was 
first observed in cultured fibrocytes, when the Hayflick limit 
demonstrated that as the cells divided, their cell cycle became 

arrested (replicative senescence) (28). Senescent cells have 
abnormal metabolic activity (3), accompanied by morpholog-
ical, biological and genetic alterations. When β-galactosidase 
expression (an important senescence marker) increases (29), 
the cell cycle is arrested at the G1/S phase (30). Cell cycle 
dependent kinase (CDK) and cyclin A activity additionally 
decrease with increased activity of cyclin-dependent kinase 
inhibitors (p16INK4a and p21) (31). Without the protection of 
histones, mitochondrial reactive oxygen species (ROS) may 
damage mitochondrial DNA, which induces a series of oxida-
tive stress reactions (32). Telomere shortening, which causes 
DNA to lose protection from the telomeres, is another feature 
of senescence and leads to DNA integration and degradation. 
Oxidative stress reactions and mitochondrial dysfunction (33) 
accelerate the shortening of telomeres. Cellular senescence is 
triggered by a number of signaling pathways and mechanisms, 
including DNA injury, telomerase dysfunction, oncogenes, 
oxidative stress reactions and mitochondrial dysfunction (34).

ERK1/2 is an important messenger for extracellular and 
intracellular signals, which serve a vital role in processes, 
including proliferation, differentiation, cytoskeleton construc-
tion and cellular senescence (35). In the majority of cases, 
ERK1/2 is a regulator of cellular proliferation; however, it has 
been identified that ERK1/2 may additionally promote senes-
cence. Strong, constitutively active expression of MEK1 (an 
upstream activator of ERK1/2) in non-immortalized intestinal 
epithelial cells (HIEC cells) promotes cellular senescence, 
whereas, in immortalized intestinal cells (IEC-6 cells), it 
does not, suggesting that cell type may serve a role (36). This 
phenomenon requires further investigation to improve the 
clinical use of ERK1/2-associated reagents, including ERK1/2 
inhibitors.

3. ERK1/2 promotes cellular proliferation

ERK1/2 is associated with cell survival, proliferation and 
development. To investigate the role of ERK1/2 in different 
cell types and animal models, a number of previous studies 
investigating this were reviewed. ERK1/2 functions more 
frequently as a cellular proliferation marker than as a dual 
role kinase (Table I) (37-54). Based on these previous studies, 
cellular proliferation is primarily regulated by the effects of 
ERK1/2 on cell cycle entry and protein synthesis.

DNA and protein synthesis. As a transcription factor regu-
lator, ERK1/2 transduces signals from the cell membrane to 
the nucleus. ERK1/2 may additionally regulate carbamoyl 
phosphate synthetase II (55), which catalyzes the initial 
rate-limiting step in the de novo synthesis of pyrimidine 
nucleotides. Furthermore, it was identified that ERK1/2 phos-
phorylates high motility group boxes of nucleolar transcription 
factor 1, an RNA polymerase I factor transcriptional enhancer 
that enhances ribosomal RNA genes (56).

Mendoza et al (57) demonstrated that the MEK1/2-ERK1/2 
pathway cross-talks with the phosphoinositide 3 kinase 
(PI3K)/protein kinase B (AKT)/mammalian target of 
rapamycin (mTOR) pathway via cross-inhibition, cross-activa-
tion and pathway convergence on substrates. In mouse uterine 
epithelial cells, activation of protein kinase C by estradiol-17β 
promotes protein synthesis by activating the ERK-mTOR-40s 
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ribosomal protein S6 cascade (58). ERK1 and ERK2 enhance 
protein translation by increasing the ability of eukaryotic trans-
lation factor-4E (59) to recruit protein-synthesizing ribosomes 
and other protein synthesis initiation factors to the mRNA. 
This recruitment includes nuclear substrates (ternary complex 
factor, Elk1, and c-Fos), cytoplasmic substrates [40s ribosomal 
protein S6 kinase (RSK) family], cytoskeletal proteins and 
proteins of the nuclear pore complex, many of which serve 
a direct role in cellular proliferation and development (21). 
A previous study additionally demonstrated that ERK1/2 
may functionally dephosphorylate the tuberous sclerosis 1 
and 2 proteins (TSC1/2) complex via its downstream RSK in 
HEK293 cells (60).

Cell cycle entry. ERK1/2 is involved in G1/S and G2/M tran-
sitions (61). During G1/S, ERK1/2 regulates cyclin D1 
transcription through the Fos family of proteins (62) and 
Myc (63,64). In G2/M, ERK1/2 is involved in the nuclear 
translocation of cyclin B1 by phosphorylating two of four sites 
within the cytoplasmic retention sequence of cyclin B1 (65) 
and inhibiting the negative phosphorylation of cell division 
control protein 2 homolog by myelin transcription factor 1 via 
RSK2 (66).

In addition to the substrates involved in cell proliferation, 
ERK1/2 additionally regulates cellular tumor antigen p53 (p53) 
phosphorylation. p53 is a tumor suppressor protein and func-
tions as a transcription factor by binding to a number of genes, 
including cyclin-dependent kinase inhibitor 1A, which encodes 
p21. p21 binds and inactivates CDKs, which are crucial for 
cell entry into the G1/S phase (67,68). The association between 
ERK1/2 and p53 remains unclear. A previous study suggested 
that p53 functions upstream of ERK1/2 (69); however, the most 
widely accepted hypothesis is that ERK1/2 regulates p53 by 
activating STAT3 (70) and other transcription factors. ERK1/2 
and p53 have hundreds of substrates, thus, it is easy for them 
to engage in crosstalk, as is the case with dual-specificity 
phosphatases (DUSPs) (71). The effect of ERK1/2 on its down-
stream substrates may accelerate the degradation of p53 (72). 
ERK1/2 regulates p53 phosphorylation [a form that protects 
p53 from E3 ubiquitin-protein ligase Mdm2 (73)] through the 
forkhead box M1/c-myc/polycomb complex protein BMI-1 
pathway, which inhibits p19 phosphorylation, attenuating 
cellular senescence (74).

ERK1/2 regulates mitochondria. Mitochondria not only 
provide energy to cells; however, additionally serve a decisive 
role in cell fate. Mitochondria within the respiratory chain 
are responsible for maintaining the proton gradient and 
providing various respiratory enzymes; it was demonstrated 
that the proton gradient is not just associated with adenosine 
triphosphate synthesis. Rasola et al (75) identified that ERK1/2 
phosphorylates glycogen synthase kinase-3β, inhibiting perme-
ability transition pore opening by regulating cyclophilin D 
and preventing the release of apoptotic substances, including 
mitochondrial cytochrome C, ROS, Ca2+ and free radicals. The 
number of mitochondria is additionally an important hallmark 
of cellular proliferation. A previous study demonstrated that 
ERK2 may phosphorylate dynamin-1-like protein (an impor-
tant regulator of mitochondrial fission) on serine 616 in several 
tumor models (76), resulting in tumor growth.

4. ERK1/2 promotes cellular senescence through several 
mechanisms

Based on extensive investigations in a variety of cell types, 
previous studies identified that ERK1/2 may additionally 
facilitate cellular senescence under certain circumstances. In 
the present review, a number of previous studies are discussed 
to gain a better understanding of the role of ERK1/2 during 
cellular senescence and the underlying mechanisms behind its 
control. In contrast, the role of ERK1/2 in cellular proliferation 
was only studied in numerous cell types, primarily fibro-
blasts, providing limited information. The previous studies 
investigating ERK1/2 involvement in cellular senescence 
(Table II) (77-90) identified a number of possible mechanisms 
for the role of ERK1/2 that are associated with abnormal 
signaling of negative feedback loops, caused by constitutive 
and overexpressed ERK1/2 (20,77,78), and ERK1/2 cellular 
localization (79).

Crosstalk and negative feedback loops associated with 
ERK1/2‑induced cellular senescence
Regulation of the MAPK signaling pathway. A number of 
previous studies demonstrated that negative regulation of 
ERK1/2 within MAPK signaling cascades regulate ERK1/2 
signaling. ERK1/2 phosphorylates proteins within this cascade 
at alternate sites, which interrupts the normal binding behavior 
of their respective downstream substrates (91). ERK1/2 phos-
phorylates EGFR at T669 (92) and decreases constitutive 
tyrosine phosphorylation activity, decreasing the ability of 
the phosphorylated loop to cross-activate other adaptors (93). 
ERK1/2 may additionally phosphorylate dual specificity 
Cdc25C at T48, which dephosphorylates EGFR at Y1068 (94). 
Furthermore, ERK1/2 was identified to phosphorylate MAPK 
signaling components, including fibroblast growth factor 
receptor (FGFR) at S777 (95); SOS1 at S1132, S1167, S1178 
and S1193 (96); fibroblast growth factor receptor substrate 2 
(FRS2)α at T132, T135, T138, T376, T452, T455, T458 and 
T463 (97,98); RAF proto-oncogene serine/threonine-protein 
kinase (Raf-1) at S29, S289, S296, S301 and S642 (99-103); 
serine/threonine-protein kinase B-raf (B-Raf) at S151, 
T401, S750, T753 and S642 (104,105); MEK1 at T292 and 
T386 (106,107); and kinesin suppressor or Ras 1 at T260, T274, 
S320, S443 and S463 (108,109) (Fig. 1). The phosphorylation 
of all these components results in a disruption of binding to 
downstream substrates.

In other previous study, Fey et al (110) developed a 
dynamic model of the multiple MAPK cascade interactions 
and feedback systems of specific proteins of the MAPK 
pathway using mathematical analysis. Based on their model, 
p38 inhibits ERK through Ser/Thr protein phosphatase-2A, 
and JNK restrains p38 and ERK through induction of DUSPs 
(JNK upregulates transcription of DUSP1; Fig. 1).

Dephosphorylation of ERK1/2. ERK1/2 requires dual phos-
phorylation of threonine and tyrosine residues to acquire its 
biological kinase function. Dual-specificity Thr/Tyr phos-
phatases [DUSPs; additionally termed MAPK phosphatases 
(MKP)] represent a large family that regulates the activity of 
MAPKs by dephosphorylating threonine and tyrosine residues 
within the activation loop of MAPKs, which in turn regulates 
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the biologically active form of ERK1/2 in the cytoplasm and 
the nucleus (111). DUSP1, DUSP2, DUSP4 and DUSP5 are 
located in the nucleus, whereas DUSP6, DUSP7 and DUSP9 
are located in the cytoplasm (112). Their binding to ERK1/2 
is regulated by a conserved motif within the amino-terminal 
non-catalytic domain (kinase-interacting motif) of the 
protein (113,114) and results in a significant increase in cata-
lytic activity, which deprives ERK1/2 of the phosphate group. 
The interaction between MAPKs and DUSPs is a two-way 
regulation; MAPKs are able to upregulate transcription of 
DUSPs (113), primarily those in the cytoplasm (115), in a 
delayed manner following MAPK activation, whereas, DUSPs 
strictly regulate MAPK signaling.

Sprouty [protein sprout homolog (Spry) 1-4] is another 
ERK1/2 regulator family that is not well-studied. A previous 
Japanese study demonstrated that Spry1 and Spry2 are phos-
phorylated at Y53 and Y55, which creates a docking site for 
growth factor receptor-bound protein 2 at the Src homology 2 
domain and consequently disrupts association with the FGFR 

adaptor FRS2 in C2C12 cells (116). Other previous studies 
suggested that the spry protein inhibits receptor tyrosine kinase 
signaling, which suppresses the activation of Ras in BRAFV600E 
melanomas (117,118). Another previous study demonstrated 
that in 293T cells, Spry1 and Spry2 regulate Raf-1 by directly 
binding to it (119). Lake et al (91) suggested that Sprouty serves 
its functions at multiple nodes in a context‑specific manner.

Crosstalk between Ras/ERK1/2 and PI3K/AKT signaling. 
In contrast to signaling that regulates cell proliferation, 
AKT/mTOR and ERK1/2 engage in crosstalk that sustains 
cell proliferation and survival, which in turn helps cells escape 
from either PI3K/AKT or ERK1/2 suppression (120). Crystal 
structure analysis demonstrated that astrocytic phosphoprotein 
PEA‑15 (PEA‑15) may efficiently bind to the ERK2 activation 
loop at the Thr-X-Tyr region (121), activating transportation 
of ERK1/2 from the nucleus. Sinha et al (122) observed that 
ERK1/2 decreases phosphorylated (p)-AKT expression levels 
in mouse renal proximal tubular cells via Ras/PI3K through a 

Figure 1. Regulatory system of ERK1/2 signaling. ERK1/2 has a number of substrates, including the MAPK cascade kinases. ERK1/2 may phosphorylate these 
proteins at numerous sites, which disrupts their normal binding to downstream substrates. Furthermore, ERK1/2 engages in crosstalk with the AKT signaling 
pathway, p53, DUSPs and Sprys, all of which form a massive regulatory network to tightly regulate ERK1/2 signaling. ERK, extracellular signal-regulated 
protein kinase; MAPK, mitogen‑activated protein kinase; AKT, protein kinase B; DUSPs, dual‑specificity phosphatases; Sprys, Sprouty proteins.
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negative feedback pathway, whereas AKT phosphorylates and 
stabilizes PEA-15, which subsequently decreases the nuclear 
localization of ERK1/2 (123) and induces cellular senes-
cence. Although the regulatory nodes shared by Ras/MAPK 
and PI3K/AKT signaling are complicated, the two signaling 
pathways are influenced by co‑effectors, including TSC1/2, 
mTOR, ER and S6, and regulate each other in concentration- 
and context-dependent manners (124).

Crosstalk between ERK1/2 and p53. As a messenger of 
extracellular and intracellular proteins, ERK1/2 has many 
substrates. MEK1/2 functions upstream of ERK1/2 and serves 
a vital regulatory role in ERK1/2 activation. MEK1/ERK 
signaling promotes cell proliferation, whereas MEK2/ERK 
signaling promotes G1/S cell cycle arrest (125). In different 
tissues and cell types, including mouse embryos and fibro-
blasts, cellular senescence induced by the Ras/Raf/MEK/ERK 
signaling pathway is dependent on the integrity of p16/INK4A, 
p21 and p53; in human primary fibroblasts, inhibition of either 
p16 or p53 is not able to reverse ERK1/2-induced senes-
cence (17,20,78). However, a previous study demonstrated that 

the matrix cell protein G1/S‑specific cyclin CCN1 induces 
senescence through the p53/p21 pathway and inhibits lung 
cancer growth (36). p53 and ERK1/2 have two-way regula-
tion, which means there is a negative feedback loop between 
ERK1/2 and p53. Lee et al (126) suggested that a novel p53 
target protein, Raf kinase inhibitor protein, inhibits ERK1/2 
by affecting Raf proteins and promoting senescence. Notably, 
p53 may regulate the transcription of all nuclear DUSPs 
(DUSP1/2/4/5) (127-129).

Chemicals or gene mutations lead to ERK1/2‑associated 
senescence. Exposure of cells to certain bioactive chemicals, 
including the natural ethanolic Rhus coriaria extract may 
lead to activation of ERK1/2 and p21 upregulation (130). The 
microtubule stabilizing agent discodermolide was identified 
to induce cellular senescence due to overexpressed ERK1/2 in 
A549 cells (66). Administration of epigallocatechin-3-gallate 
leads to cellular senescence during PC-3 prostate cancer cell 
proliferation via MEK-independent ERK1/2 activation (85). 
In addition, a Ras or B-Raf mutation is common in tumors, 
particularly in malignant tumors, which may lead to sustained 

Figure 2. Schema of dynamic translocation of ERK1/2. ERK1/2 translocation from the cytoplasm to the nucleus requires dual activation of the TEY and SPS motifs, 
followed by binding to Imp7. Subsequently, with the help of Tm5NM1‑containing actin filaments, the pSPS‑pERK/Imp7/Tm5NM1‑containing actin filament 
complex translocates into the nucleus. Although the cellular localization of ERK1/2 is dynamically regulated, ERK1/2 is exported directly by PEA-15. ERK, extra-
cellular signal-regulated protein kinase; TEY, Thr-Glu-Tyr; SPS, Ser-244/Pro-245/Ser-246; Imp7, importin7; p, phosphorylated; PEA-15, astrocytic phosphoprotein 
PEA-15.
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activation of ERK1/2 signaling. In specific cases, downstream 
proteins are activated by ERK1/2 aberrantly, resulting in 
different physiological effects (103). Expression of proteins 
downstream of ERK1/2, including BRAF-induced insulin-like 
growth factor-binding protein 7 (IGFBP7) in normal mela-
noma cells, is low and primarily controlled by autocrine or 
paracrine functions that influence cell proliferation (103). 
Examples of such phenomenon include BRAFV600E-positive 
nevi, which contain high BRAF expression; the continuously 
activated RAF/MEK/ERK pathway, which increases IGFBP7 
expression; and high expression levels of IGFBP7, which 
inhibit the RAF/MEK/ERK pathway within cells. However, 
in melanoma cells, IGFBP7 expression is lost, which results in 
uncontrolled proliferation (131).

Relationship between ERK1/2 and micro (mi)RNAs. miRNAs 
are important for regulating cell biology. Previous studies 
demonstrated that miRNA-34a induces persistent activation 
of ERK1/2, leading to cellular senescence via inhibition of 
p53 signaling (89) and MEK1/2 (132). miR-21 increases the 
expression level of p-ERK1/2 by inhibiting Spry1 (116) and 
Spry2 (133).

Cellular localization and duration influence ERK1/2‑associated 
cell fate
Negative feedback occurs when ERK1/2 is overexpressed. A 
number of previous studies suggest that ERK1/2-induced cellular 
senescence may be associated with the strength of ERK1/2 
signals and the duration of its activation (20,77,78,86,90,134). 
As ERK1/2 has many substrates, different biological effects 
may occur when the signal proteins compete for the same target 
protein. As discussed above, many negative feedback loops and 
regulatory nodes shape ERK1/2 signaling, and when ERK1/2 
is overexpressed, it may activate those negative loops. However, 
this regulatory system is dependent on the cellular context.

Translocation from the cytoplasm to the nucleus determines 
the role of ERK1/2. Scaffold proteins facilitate protein 
translocation, and translocation of ERK1/2 from the cyto-
plasm to the nucleus is essential for regulation of the cell 
cycle and cellular proliferation (135). This process requires 
dual‑phosphorylation of specific residues within the activation 
loop. ERK is initially phosphorylated by MAPK/ERK kinase 
(MEK) on the Thr-Glu-Tyr motif, with subsequent phos-
phorylation on the Ser-244/Pro-245/Ser-246 (SPS) nuclear 
translocation sequence (NTS) (108,109). This is achieved 
primarily by CK2 to generate pSPS-pERK, which binds to 
the shuttling protein importin7 (Imp7) (136,137). A previous 
study investigating mouse embryo fibroblasts demonstrated 
that Tm5NM1‑containing actin filaments facilitate the binding 
of pSPS-pERK (Ser-244/Pro-245/Ser-246) and Imp7, possibly 
by functioning as a scaffold and/or recruiting myosin motors 
to assist in the physical transportation of pSPS-pERK from 
the cytoplasm to the nucleus (136). Inhibiting the binding 
of pSPS-pERK and Imp7 appears to be an effective way of 
blocking the translocation of dual-phosphorylated ERK. 
Plotnikov et al (135) developed a myristoylated, NTS-derived 
phosphomimetic peptide (EPE peptide) that competes with the 
binding of Imp7 and blocks this process in a number of cell 
lines.

ETS translocation variant 4 (E1A) is additionally a nega-
tive regulator of activated ERK1/2 translocation from the 
cytoplasm to the nucleus (79,138). A previous study examining 
normal human diploid fibroblast IMR90 cells demonstrated 
that E1A decreases expression levels of PEA-15 (139), an 
ERK1/2 nuclear export factor, and increases expression levels 
of MKP1/DUSP1 and DUSP5 (138). The translocation regula-
tion model is presented in Fig. 2.

5. Conclusion

ERK1/2 serves a vital role in cellular outcomes, which involve 
numerous substrates, regulators and scaffolding proteins. 
If a small dose of a MEK1/2 inhibitor, including U0126 or 
PD098059, is applied to a cell, the cell will recover by utilizing 
a compensatory pathway to regain its proliferation capacity. 
Even in the same type of cell or animal model, ERK1/2 serves a 
dual role in cellular senescence under different circumstances, 
which are dose- and duration-dependent. Cells subjected to 
drugs against ERK1/2 may additionally contain mutations in 
upstream (AKT, MEK and Ras/Raf) or downstream (p21 and 
p53) proteins. Analyzing cells for Ras/Raf/MAPK mutations 
and testing cell sensitivity may help to determine the proper 
dosage and duration of drug administration. In terms of drug 
development, altering the translocation of ERK1/2 from the 
cytoplasm to the nucleus (135), which is primarily required 
for induction of cell proliferation, may help to decrease the 
proliferation of cancer cells. However, as cells may shift their 
proliferation signals between a number of different proteins, 
a combination of numerous anti-proliferation tactics require 
consideration.
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