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Abstract. Senescence is a result of cellular stress and is a
potential mechanism for regulating cancer. As a member of the
mitogen-activated protein kinase family, ERK1/2 (extracellular
signal-regulated protein kinase) has an important role in
delivering extracellular signals to the nucleus, and these signals
regulate the cell cycle, cell proliferation and cell development.
Previous studies demonstrated that ERK1/2 is closely associated
with cell aging; however other previous studies suggested that
ERK1/2 exerts an opposite effect on aging models and target
proteins, even within the same cell model. Recent studies
demonstrated that the effect of ERK1/2 on aging is likely
associated with its target proteins and regulators, negative
feedback loops, phosphorylated ERK1/2 factors and ERK1/2
translocation from the cytoplasm to the nucleus. The present
review aims to examine the mechanism of ERK1/2 and discuss
its role in cellular outcomes and novel drug development.
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1. Introduction

The Hayflick limit is a response to cellular lesions, which are
triggered by multiple mechanisms, including replicative senes-
cence, oncogene activation, telomerase dysfunction and DNA
lesions (1-3). Senescent cells arrested at the G, phase demon-
strated more properties associated with dysfunctional cells
compared with normal cells (4). Although senescence is an
undesirable stress for normal cells, it is beneficial for the body
as it restrains excessive proliferation of tumor cells. Therefore,
senescence is used as a means of suppressing cancer and is an
important cancer treatment method (5-8).

Extracellular signal-regulated protein kinase (ERK)1/2 is
a mitogen-activated protein kinase (MAPK) family protein
with typical cascade signaling characteristics and serves an
important role in signal transduction pathways and the func-
tion of transcription factors, including activator protein-1,
proto-oncogene c-Fos (c-Fos) and ETS domain-containing
protein Elk-1 (Elk1) (9). The majority of research has focused on
its regulatory effect on cell growth and differentiation (10-14);
however, a number of previous studies demonstrated that
ERK1/2 promotes cell senescence (15-17). Based on these
characteristics, numerous small molecule MAPK/ERK kinase
(MEK) inhibitors were examined in early-phase clinical
trials, including PD098059, U0126, CI-1040, PD0325901 and
AZD6244 (18); however, none of them were approved by The
Food and Drug Administration due to adverse side effects or
other toxic reactions (18). Many of these inhibitors negatively
affected normal and abnormal cells. Notably, these effects
may have been the result of the dual roles of ERK1/2 in senes-
cence, as demonstrated by other previous studies (19,20). The
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present review examines the mechanisms regulating the role
of ERK1/2 in cell senescence and suggests that ERK1/2 is a
potentially useful target in treating cancer.

2. Senescence, ERK1/2 and cell fate

ERK1/2 signaling pathway. The mammalian MAPKSs consist
of cytoplasmic serine/threonine kinases that are involved in the
transduction of signals from the surface to the interior of the
cell. This family includes the ERK family (ERK1-8), the p38
kinase family (p38 o/p/y/d) and the c-Jun N-terminal kinase
family (JNK1-3, additionally termed stress-activated protein
kinase) (9). With a number of substrate docking and enzyme
recruitment sites (21), ERK1/2 (MAPK1/3) is a multifunctional
serine/threonine kinase that is able to phosphorylate numerous
substrates, including protein kinases, signal effectors, recep-
tors, cellular scaffold proteins and nuclear transcriptional
regulators (21). At present, five types of ERK isoforms are
known. ERK1 and ERK?2 are thought to be the most important
isoforms with 84% homology for the primary sequences and
similar functions (21).

The Ras/Raf/MEK/ERK1/2 signaling pathway is a
small GTPase ligation of activated tyrosine receptors and
cytoplasmic kinase signal transduction cascades. The key
point of activation is to transmit a signal from tyrosine recep-
tors, including epidermal growth factor receptor (EGFR),
which subsequently recruit Son of sevenless (SOS) through
intracellular Shc and Grb2 domains, ultimately catalyzing
the conversion of inactive Ras/guanosine diphosphate to the
active Ras/guanosine triphosphate complex (22). As an acti-
vator of ERK1/2, MEK1/2 catalyzes the phosphorylation of
ERK1/2 at Tyr204/187 and Thr202/185 by casein kinase 2
(CK2) (23). This enzyme subsequently binds to importin7 and
translocates ERK1/2 from the cytoplasm to the nucleus (24),
where it functions as an upstream regulator of substrate genes
that encode for transcription factors, including Elk1, c-Myc,
signal transducers and activators of transcription (STATS),
c-Jun and c-Fos (21). These transcription factors regulate their
counterpart target genes to alter the expression or activity
of various proteins and are involved in the regulation of a
large variety of processes, including adhesion, cell cycle
progression, migration, survival, differentiation, metabolism,
proliferation and transcription (21). The Ras/Raf/MEK/ERK
cascade is a highly efficient signaling pathway, aided by
scaffold proteins, including kinase suppressor of Ras, MEK
partner 1/pl4 complex, (-arrestins, fibroblast growth factor
receptor substrate 2, MAPK organizer 1 and flotillin-1 (25).
The function of scaffold proteins is characterized by combina-
torial inhibition, which is the stoichiometry of a scaffold and
its signaling partners; the expression levels of scaffold proteins
should not be too high (the kinase and its substrate may each
bind to an individual scaffold protein) or too low (the phos-
phorylation of the cascade is sub-optimal) (26). With these
different scaffold proteins, the phosphorylation of different
isoforms is accurately regulated; the scaffold protein MEK
protein 1 specifically binds ERK1, not ERK?2 (27).

Role of ERK1/2 in cellular senescence. Cellular senescence was
first observed in cultured fibrocytes, when the Hayflick limit
demonstrated that as the cells divided, their cell cycle became
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arrested (replicative senescence) (28). Senescent cells have
abnormal metabolic activity (3), accompanied by morpholog-
ical, biological and genetic alterations. When [-galactosidase
expression (an important senescence marker) increases (29),
the cell cycle is arrested at the G,/S phase (30). Cell cycle
dependent kinase (CDK) and cyclin A activity additionally
decrease with increased activity of cyclin-dependent kinase
inhibitors (pl6INK4a and p21) (31). Without the protection of
histones, mitochondrial reactive oxygen species (ROS) may
damage mitochondrial DNA, which induces a series of oxida-
tive stress reactions (32). Telomere shortening, which causes
DNA to lose protection from the telomeres, is another feature
of senescence and leads to DNA integration and degradation.
Oxidative stress reactions and mitochondrial dysfunction (33)
accelerate the shortening of telomeres. Cellular senescence is
triggered by a number of signaling pathways and mechanisms,
including DNA injury, telomerase dysfunction, oncogenes,
oxidative stress reactions and mitochondrial dysfunction (34).

ERK1/2 is an important messenger for extracellular and
intracellular signals, which serve a vital role in processes,
including proliferation, differentiation, cytoskeleton construc-
tion and cellular senescence (35). In the majority of cases,
ERK1/2 is a regulator of cellular proliferation; however, it has
been identified that ERK1/2 may additionally promote senes-
cence. Strong, constitutively active expression of MEK1 (an
upstream activator of ERK1/2) in non-immortalized intestinal
epithelial cells (HIEC cells) promotes cellular senescence,
whereas, in immortalized intestinal cells (IEC-6 cells), it
does not, suggesting that cell type may serve a role (36). This
phenomenon requires further investigation to improve the
clinical use of ERK1/2-associated reagents, including ERK1/2
inhibitors.

3. ERK1/2 promotes cellular proliferation

ERK1/2 is associated with cell survival, proliferation and
development. To investigate the role of ERK1/2 in different
cell types and animal models, a number of previous studies
investigating this were reviewed. ERK1/2 functions more
frequently as a cellular proliferation marker than as a dual
role kinase (Table I) (37-54). Based on these previous studies,
cellular proliferation is primarily regulated by the effects of
ERK1/2 on cell cycle entry and protein synthesis.

DNA and protein synthesis. As a transcription factor regu-
lator, ERK1/2 transduces signals from the cell membrane to
the nucleus. ERK1/2 may additionally regulate carbamoyl
phosphate synthetase II (55), which catalyzes the initial
rate-limiting step in the de novo synthesis of pyrimidine
nucleotides. Furthermore, it was identified that ERK1/2 phos-
phorylates high motility group boxes of nucleolar transcription
factor 1, an RNA polymerase I factor transcriptional enhancer
that enhances ribosomal RNA genes (56).

Mendoza et al (57) demonstrated that the MEK1/2-ERK1/2
pathway cross-talks with the phosphoinositide 3 kinase
(PI3K)/protein kinase B (AKT)/mammalian target of
rapamycin (mTOR) pathway via cross-inhibition, cross-activa-
tion and pathway convergence on substrates. In mouse uterine
epithelial cells, activation of protein kinase C by estradiol-173
promotes protein synthesis by activating the ERK-mTOR-40s
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ribosomal protein S6 cascade (58). ERK1 and ERK?2 enhance
protein translation by increasing the ability of eukaryotic trans-
lation factor-4E (59) to recruit protein-synthesizing ribosomes
and other protein synthesis initiation factors to the mRNA.
This recruitment includes nuclear substrates (ternary complex
factor, Elk1, and c-Fos), cytoplasmic substrates [40s ribosomal
protein S6 kinase (RSK) family], cytoskeletal proteins and
proteins of the nuclear pore complex, many of which serve
a direct role in cellular proliferation and development (21).
A previous study additionally demonstrated that ERK1/2
may functionally dephosphorylate the tuberous sclerosis 1
and 2 proteins (TSC1/2) complex via its downstream RSK in
HEK?293 cells (60).

Cell cycle entry. ERK1/2 is involved in G,/S and G,/M tran-
sitions (61). During G,/S, ERK1/2 regulates cyclin D1
transcription through the Fos family of proteins (62) and
Myc (63,64). In G,/M, ERK1/2 is involved in the nuclear
translocation of cyclin Bl by phosphorylating two of four sites
within the cytoplasmic retention sequence of cyclin Bl (65)
and inhibiting the negative phosphorylation of cell division
control protein 2 homolog by myelin transcription factor 1 via
RSK2 (66).

In addition to the substrates involved in cell proliferation,
ERK1/2 additionally regulates cellular tumor antigen p53 (p53)
phosphorylation. p53 is a tumor suppressor protein and func-
tions as a transcription factor by binding to a number of genes,
including cyclin-dependent kinase inhibitor 1A, which encodes
p21. p21 binds and inactivates CDKs, which are crucial for
cell entry into the G,/S phase (67,68). The association between
ERK1/2 and p53 remains unclear. A previous study suggested
that p53 functions upstream of ERK1/2 (69); however, the most
widely accepted hypothesis is that ERK1/2 regulates p53 by
activating STAT3 (70) and other transcription factors. ERK1/2
and p53 have hundreds of substrates, thus, it is easy for them
to engage in crosstalk, as is the case with dual-specificity
phosphatases (DUSPs) (71). The effect of ERK1/2 on its down-
stream substrates may accelerate the degradation of p53 (72).
ERK1/2 regulates p53 phosphorylation [a form that protects
p53 from E3 ubiquitin-protein ligase Mdm2 (73)] through the
forkhead box M1/c-myc/polycomb complex protein BMI-1
pathway, which inhibits p19 phosphorylation, attenuating
cellular senescence (74).

ERKI1/2 regulates mitochondria. Mitochondria not only
provide energy to cells; however, additionally serve a decisive
role in cell fate. Mitochondria within the respiratory chain
are responsible for maintaining the proton gradient and
providing various respiratory enzymes; it was demonstrated
that the proton gradient is not just associated with adenosine
triphosphate synthesis. Rasola et al (75) identified that ERK1/2
phosphorylates glycogen synthase kinase-3[3, inhibiting perme-
ability transition pore opening by regulating cyclophilin D
and preventing the release of apoptotic substances, including
mitochondrial cytochrome C, ROS, Ca** and free radicals. The
number of mitochondria is additionally an important hallmark
of cellular proliferation. A previous study demonstrated that
ERK?2 may phosphorylate dynamin-1-like protein (an impor-
tant regulator of mitochondrial fission) on serine 616 in several
tumor models (76), resulting in tumor growth.

ZOU et al: MECHANISMS IN SHAPING THE ROLE OF ERK1/2 IN CELLULAR SENESCENCE

4. ERK1/2 promotes cellular senescence through several
mechanisms

Based on extensive investigations in a variety of cell types,
previous studies identified that ERK1/2 may additionally
facilitate cellular senescence under certain circumstances. In
the present review, a number of previous studies are discussed
to gain a better understanding of the role of ERK1/2 during
cellular senescence and the underlying mechanisms behind its
control. In contrast, the role of ERK1/2 in cellular proliferation
was only studied in numerous cell types, primarily fibro-
blasts, providing limited information. The previous studies
investigating ERK1/2 involvement in cellular senescence
(Table II) (77-90) identified a number of possible mechanisms
for the role of ERK1/2 that are associated with abnormal
signaling of negative feedback loops, caused by constitutive
and overexpressed ERK1/2 (20,77,78), and ERK1/2 cellular
localization (79).

Crosstalk and negative feedback loops associated with
ERK1/2-induced cellular senescence

Regulation of the MAPK signaling pathway. A number of
previous studies demonstrated that negative regulation of
ERK1/2 within MAPK signaling cascades regulate ERK1/2
signaling. ERK1/2 phosphorylates proteins within this cascade
at alternate sites, which interrupts the normal binding behavior
of their respective downstream substrates (91). ERK1/2 phos-
phorylates EGFR at T669 (92) and decreases constitutive
tyrosine phosphorylation activity, decreasing the ability of
the phosphorylated loop to cross-activate other adaptors (93).
ERK1/2 may additionally phosphorylate dual specificity
Cdc25C at T48, which dephosphorylates EGFR at Y1068 (94).
Furthermore, ERK1/2 was identified to phosphorylate MAPK
signaling components, including fibroblast growth factor
receptor (FGFR) at S777 (95); SOSI at S1132, S1167, S1178
and S1193 (96); fibroblast growth factor receptor substrate 2
(FRS2)a at T132, T135, T138, T376, T452, T455, T458 and
T463 (97,98); RAF proto-oncogene serine/threonine-protein
kinase (Raf-1) at S29, S289, S296, S301 and S642 (99-103);
serine/threonine-protein kinase B-raf (B-Raf) at S151,
T401, S750, T753 and S642 (104,105); MEK1 at T292 and
T386 (106,107); and kinesin suppressor or Ras 1 at T260, T274,
S320, S443 and S463 (108,109) (Fig. 1). The phosphorylation
of all these components results in a disruption of binding to
downstream substrates.

In other previous study, Fey er al (110) developed a
dynamic model of the multiple MAPK cascade interactions
and feedback systems of specific proteins of the MAPK
pathway using mathematical analysis. Based on their model,
p38 inhibits ERK through Ser/Thr protein phosphatase-2A,
and JNK restrains p38 and ERK through induction of DUSPs
(JNK upregulates transcription of DUSPI; Fig. 1).

Dephosphorylation of ERK1/2. ERK1/2 requires dual phos-
phorylation of threonine and tyrosine residues to acquire its
biological kinase function. Dual-specificity Thr/Tyr phos-
phatases [DUSPs; additionally termed MAPK phosphatases
(MKP)] represent a large family that regulates the activity of
MAPKSs by dephosphorylating threonine and tyrosine residues
within the activation loop of MAPKs, which in turn regulates
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the biologically active form of ERK1/2 in the cytoplasm and
the nucleus (111). DUSP1, DUSP2, DUSP4 and DUSP5 are
located in the nucleus, whereas DUSP6, DUSP7 and DUSP9
are located in the cytoplasm (112). Their binding to ERK1/2
is regulated by a conserved motif within the amino-terminal
non-catalytic domain (kinase-interacting motif) of the
protein (113,114) and results in a significant increase in cata-
Iytic activity, which deprives ERK1/2 of the phosphate group.
The interaction between MAPKs and DUSPs is a two-way
regulation; MAPKs are able to upregulate transcription of
DUSPs (113), primarily those in the cytoplasm (115), in a
delayed manner following MAPK activation, whereas, DUSPs
strictly regulate MAPK signaling.

Sprouty [protein sprout homolog (Spry) 1-4] is another
ERK1/2 regulator family that is not well-studied. A previous
Japanese study demonstrated that Spryl and Spry2 are phos-
phorylated at Y53 and Y55, which creates a docking site for
growth factor receptor-bound protein 2 at the Src homology 2
domain and consequently disrupts association with the FGFR

adaptor FRS2 in C2C12 cells (116). Other previous studies
suggested that the spry protein inhibits receptor tyrosine kinase
signaling, which suppresses the activation of Ras in BR AFV600E
melanomas (117,118). Another previous study demonstrated
that in 293T cells, Spryl and Spry?2 regulate Raf-1 by directly
binding to it (119). Lake et al (91) suggested that Sprouty serves
its functions at multiple nodes in a context-specific manner.

Crosstalk between Ras/ERKI1/2 and PISK/AKT signaling.
In contrast to signaling that regulates cell proliferation,
AKT/mTOR and ERK1/2 engage in crosstalk that sustains
cell proliferation and survival, which in turn helps cells escape
from either PI3K/AKT or ERK1/2 suppression (120). Crystal
structure analysis demonstrated that astrocytic phosphoprotein
PEA-15 (PEA-15) may efficiently bind to the ERK2 activation
loop at the Thr-X-Tyr region (121), activating transportation
of ERK1/2 from the nucleus. Sinha et al (122) observed that
ERK1/2 decreases phosphorylated (p)-AKT expression levels
in mouse renal proximal tubular cells via Ras/PI3K through a
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PEA-15.

negative feedback pathway, whereas AKT phosphorylates and
stabilizes PEA-15, which subsequently decreases the nuclear
localization of ERK1/2 (123) and induces cellular senes-
cence. Although the regulatory nodes shared by Ras/MAPK
and PI3K/AKT signaling are complicated, the two signaling
pathways are influenced by co-effectors, including TSC1/2,
mTOR, ER and S6, and regulate each other in concentration-
and context-dependent manners (124).

Crosstalk between ERKI/2 and p53. As a messenger of
extracellular and intracellular proteins, ERK1/2 has many
substrates. MEK1/2 functions upstream of ERK1/2 and serves
a vital regulatory role in ERK1/2 activation. MEK1/ERK
signaling promotes cell proliferation, whereas MEK2/ERK
signaling promotes G,/S cell cycle arrest (125). In different
tissues and cell types, including mouse embryos and fibro-
blasts, cellular senescence induced by the Ras/Raf/MEK/ERK
signaling pathway is dependent on the integrity of pl6/INK4A,
p21 and p53; in human primary fibroblasts, inhibition of either
pl6 or p53 is not able to reverse ERK1/2-induced senes-
cence (17,20,78). However, a previous study demonstrated that

the matrix cell protein G1/S-specific cyclin CCNI1 induces
senescence through the p53/p21 pathway and inhibits lung
cancer growth (36). p53 and ERK1/2 have two-way regula-
tion, which means there is a negative feedback loop between
ERK1/2 and p53. Lee et al (126) suggested that a novel p53
target protein, Raf kinase inhibitor protein, inhibits ERK1/2
by affecting Raf proteins and promoting senescence. Notably,
p53 may regulate the transcription of all nuclear DUSPs
(DUSP1/2/4/5) (127-129).

Chemicals or gene mutations lead to ERKI/2-associated
senescence. Exposure of cells to certain bioactive chemicals,
including the natural ethanolic Rhus coriaria extract may
lead to activation of ERK1/2 and p21 upregulation (130). The
microtubule stabilizing agent discodermolide was identified
to induce cellular senescence due to overexpressed ERK1/2 in
A549 cells (66). Administration of epigallocatechin-3-gallate
leads to cellular senescence during PC-3 prostate cancer cell
proliferation via MEK-independent ERK1/2 activation (85).
In addition, a Ras or B-Raf mutation is common in tumors,
particularly in malignant tumors, which may lead to sustained
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activation of ERK1/2 signaling. In specific cases, downstream
proteins are activated by ERK1/2 aberrantly, resulting in
different physiological effects (103). Expression of proteins
downstream of ERK1/2, including BRAF-induced insulin-like
growth factor-binding protein 7 (IGFBP7) in normal mela-
noma cells, is low and primarily controlled by autocrine or
paracrine functions that influence cell proliferation (103).
Examples of such phenomenon include BRAFV600E-positive
nevi, which contain high BRAF expression; the continuously
activated RAF/MEK/ERK pathway, which increases IGFBP7
expression; and high expression levels of IGFBP7, which
inhibit the RAF/MEK/ERK pathway within cells. However,
in melanoma cells, IGFBP7 expression is lost, which results in
uncontrolled proliferation (131).

Relationship between ERKI1/2 and micro (mi)RNAs. miRNAs
are important for regulating cell biology. Previous studies
demonstrated that miRNA-34a induces persistent activation
of ERK1/2, leading to cellular senescence via inhibition of
p53 signaling (89) and MEK1/2 (132). miR-21 increases the
expression level of p-ERK1/2 by inhibiting Spryl (116) and
Spry2 (133).

Cellularlocalizationanddurationinfluence ERK1/2-associated
cell fate

Negative feedback occurs when ERKI1/2 is overexpressed. A
number of previous studies suggest that ERK1/2-induced cellular
senescence may be associated with the strength of ERK1/2
signals and the duration of its activation (20,77,78,86,90,134).
As ERK1/2 has many substrates, different biological effects
may occur when the signal proteins compete for the same target
protein. As discussed above, many negative feedback loops and
regulatory nodes shape ERK1/2 signaling, and when ERK1/2
is overexpressed, it may activate those negative loops. However,
this regulatory system is dependent on the cellular context.

Translocation from the cytoplasm to the nucleus determines
the role of ERKI1/2. Scaffold proteins facilitate protein
translocation, and translocation of ERK1/2 from the cyto-
plasm to the nucleus is essential for regulation of the cell
cycle and cellular proliferation (135). This process requires
dual-phosphorylation of specific residues within the activation
loop. ERK is initially phosphorylated by MAPK/ERK kinase
(MEK) on the Thr-Glu-Tyr motif, with subsequent phos-
phorylation on the Ser-244/Pro-245/Ser-246 (SPS) nuclear
translocation sequence (NTS) (108,109). This is achieved
primarily by CK2 to generate pSPS-pERK, which binds to
the shuttling protein importin7 (Imp7) (136,137). A previous
study investigating mouse embryo fibroblasts demonstrated
that Tm5NMI-containing actin filaments facilitate the binding
of pSPS-pERK (Ser-244/Pro-245/Ser-246) and Imp7, possibly
by functioning as a scaffold and/or recruiting myosin motors
to assist in the physical transportation of pSPS-pERK from
the cytoplasm to the nucleus (136). Inhibiting the binding
of pSPS-pERK and Imp7 appears to be an effective way of
blocking the translocation of dual-phosphorylated ERK.
Plotnikov et al (135) developed a myristoylated, NTS-derived
phosphomimetic peptide (EPE peptide) that competes with the
binding of Imp7 and blocks this process in a number of cell
lines.
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ETS translocation variant 4 (E1A) is additionally a nega-
tive regulator of activated ERK1/2 translocation from the
cytoplasm to the nucleus (79,138). A previous study examining
normal human diploid fibroblast IMR90 cells demonstrated
that E1A decreases expression levels of PEA-15 (139), an
ERK1/2 nuclear export factor, and increases expression levels
of MKP1/DUSP1 and DUSPS5 (138). The translocation regula-
tion model is presented in Fig. 2.

5. Conclusion

ERK1/2 serves a vital role in cellular outcomes, which involve
numerous substrates, regulators and scaffolding proteins.
If a small dose of a MEK1/2 inhibitor, including U0126 or
PD098059, is applied to a cell, the cell will recover by utilizing
a compensatory pathway to regain its proliferation capacity.
Even in the same type of cell or animal model, ERK1/2 serves a
dual role in cellular senescence under different circumstances,
which are dose- and duration-dependent. Cells subjected to
drugs against ERK1/2 may additionally contain mutations in
upstream (AKT, MEK and Ras/Raf) or downstream (p21 and
p53) proteins. Analyzing cells for Ras/Raf/MAPK mutations
and testing cell sensitivity may help to determine the proper
dosage and duration of drug administration. In terms of drug
development, altering the translocation of ERK1/2 from the
cytoplasm to the nucleus (135), which is primarily required
for induction of cell proliferation, may help to decrease the
proliferation of cancer cells. However, as cells may shift their
proliferation signals between a number of different proteins,
a combination of numerous anti-proliferation tactics require
consideration.
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