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Abstract: The amino acid L-arginine serves as substrate for the nitric oxide synthase which is
crucial in vascular function and disease. Derivatives of arginine, such as asymmetric (ADMA) and
symmetric dimethylarginine (SDMA), are regarded as markers of endothelial dysfunction and have
been implicated in vascular disorders. While there is a variety of studies consolidating ADMA
as biomarker of cerebrovascular risk, morbidity and mortality, SDMA is currently emerging as an
interesting metabolite with distinct characteristics in ischemic stroke. In contrast to dimethylarginines,
homoarginine is inversely associated with adverse events and mortality in cerebrovascular diseases
and might constitute a modifiable protective risk factor. This review aims to provide an overview
of the current evidence for the pathophysiological role of arginine derivatives in cerebrovascular
ischemic diseases. We discuss the complex mechanisms of arginine metabolism in health and disease
and its potential clinical implications in diverse aspects of ischemic stroke.

Keywords: ADMA; atherosclerosis; arginine; atrial fibrillation; biomarker; endothelial dysfunction;
ESUS; homoarginine; SDMA; stroke

1. Precision Stroke Medicine: on Search for Novel Biomarkers

Stroke is globally the second leading cause of death and morbidity [1]. While stroke-associated
mortality decreased between 1990 and 2010, stroke prevalence, incidence as well as mortality rates again
raised between 2010 and 2017 [2], despite optimized treatment options and intervention programs.
Moreover, stroke burden is also increasing in young adults [3]. According to recent findings from the
Global Burden of Disease study, the life-time risk to suffer stroke is about 25% starting at the age of 25
years [3]. Facing the challenges of this global cerebrovascular disease epidemic the need of biomarkers
supporting individual stroke patient care in terms of precision medicine is becoming increasingly
evident [4,5]. This holds true for estimating the individual risk for cerebrovascular diseases for primary
preventive strategies but also for secondary prevention after the event. Stroke is a complex disease
of diverse underlying risk factors and etiologies and current evidence underscores that a thorough
individualized investigation of these conditions is needed for the purpose of an optimal treatment [4].
Thus, there are intense efforts in identifying appropriate imaging, genetic or blood biomarkers that are
able to reflect the underlying pathophysiology and are useful for clinical decision making. L-arginine
(Arg) derivatives may meet the conditions of such clinically interesting targets in cerebrovascular
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diseases. For this narrative review article, we conducted a comprehensive literature search through
PubMed and selected original articles, reviews and meta-analyses on Arg and its derivatives in ischemic
stroke, underlying risk factors and etiological diseases. We aim to provide an overview of the current
evidence on how the Arg metabolism is involved in cerebrovascular pathophysiology and how Arg
derivatives may constitute valuable biomarkers of risk, morbidity and mortality as well as etiology of
ischemic stroke.

2. Metabolism of Arginine and its Derivatives

The amino acid Arg is synthesized in the kidney via the urea cycle. Cells which are not synthesizing
Arg alone are able to take up Arg via cationic amino acid transporters (CAT). Arginine serves as
substrate of the nitric oxide (NO) synthase which exists in three isoforms: the inducible NOS (iNOS), the
neuronal NOS (nNOS) and the endothelial NOS (eNOS) [6]. Homoarginine (hArg), which is structurally
similar to Arg, primarily originates from the catalytic activity of arginine:glycine amidinotransferase
(AGAT) but probably urea cycle enzymes are also involved [6]. Homoarginine serves—although
with low affinity—as a substrate of NOS and, moreover, may lead to an increased bioavailability
of Arg by inhibiting the enzyme arginase. Further endogenous derivatives of Arg are symmetric
dimethylarginine (SDMA), asymmetric dimethylarginine (ADMA) and monomethylarginine (NMMA).
At first, proteins are methylated by protein arginine methyltransferases (PRMT) I or II. While PRMT I
catalyzes methyl groups asymmetrically, PRMT II leads to a symmetric arrangement [7]. Subsequently,
methylarginine residues are released during proteolysis of proteins with methylated arginine residues.
ADMA and NMMA are endogenous NOS inhibitors competing with Arg and hArg. In contrast,
SDMA was identified as inhibitor of cellular Arg uptake via CAT. As a result, methylarginines lead
to a deprivation of the bioavailability of NO which is a key endogenous regulator of vascular tone,
angiogenesis, inhibition of platelet activation as well as leukocyte adhesion [8,9]. Nitric oxide moreover
leads to a decreased endothelial expression of monocyte chemoattractant protein 1 (MCP-1) [10] and
further leukocyte adhesion molecules [11]—a mechanism which is therefore regarded as protective in
early stages of atherosclerosis [8]. Proliferation of vascular smooth muscle cells and thus formation of
fibrous plaque which is a hallmark of further established atherosclerotic lesions is also inhibited by
NO [8,12]. Abnormal neuronal NO signalling has been implicated in neurodegenerative disorders like
Alzheimer’s and Parkinson’s disease and also in neurodegeneration following stroke [13].

Furthermore, when the bioavailability of Arg is reduced, a shift of the enzymatic activity of NOS
may occur, resulting in the production of superoxide anions (radical oxygen species, ROS)—often
referred as “NOS uncoupling” [14]. Further NO inactivation may be caused by its reaction with the
superoxide anion resulting in formation of peroxynitrite which is a potent oxidant causing damage of
proteins, lipids and DNA [8]. Generation of vascular superoxide was correlated with ADMA in patients
with coronary heart disease [15]. Feliers et al. [16] reported that also SDMA may cause eNOS uncoupling
in glomerular endothelial cells. Thus, both dimethylarginines are not only associated with decreased
bioavailability of NO but may also contribute to increased ROS-production [15,16]. Reactive oxygen
species are crucial in the progression of atherosclerosis [17]. Vice versa, states of oxidative stress like
inflammation or cellular damage, as for example induced by stroke, themselves lead to augmentation
of dimethylarginine production via supporting PRMT activity and inhibiting the dimethylarginine
dimethylaminohydrolase (DDAH) [18] (see paragraph 4). DDAH is the enzyme degrading ADMA and
NMMA, existing in two isoforms, being expressed constitutively [19]. An alternative minor elimination
route is the mitochondrial alanine-glyoxylate aminotransferase 2 (AGXT2) which is primarily located
in the kidney and metabolizes not only ADMA but also to some extend SDMA [20]. Both, ADMA
and in particular SDMA, are excreted via the kidney unmetabolized, explaining high correlations
with renal function [21]. However, the pathological relevance of free ADMA and SDMA remains
controversial given the fact that the free forms of dimethylarginines comprise only weak inhibitory
potency towards NOS [22]; nevertheless, there is mounting evidence of Arg derivatives as promising
targets in cerebrovascular diseases which will be discussed below (Figure 1).
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Figure 1. Overview on metabolism of arginine (Arg), homoarginine (hArg), asymmetric
dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and monomethylarginine (NMMA)
as well as putative links to cerebrovascular risk and disease. Prohibition signs besides lines refer to an
inhibitory relation. For further explanation see Section 2. The figure was created using BioRender.

3. Arginine Derivatives as Markers of Cerebrovascular Risk and Mortality

3.1. The Relation of ADMA and SDMA to Atherosclerotic Disease

As discussed above, dimethylarginines are associated with reduced bioavailability of NO, either
via competing with Arg at the catalytic active side of NOS (ADMA) or via inhibition of the cellular Arg
uptake by SDMA. Dimethylarginines are therefore regarded as markers of endothelial dysfunction
which is an early step in the initiation of atherosclerosis [23]. The first evidence for ADMA as a risk
marker in stroke patients came from Korean researchers investigating plasma ADMA concentrations in
elderly patients [24]. Plasma ADMA was determined with high-performance liquid chromatography
and fluorescence detection (HPLC-FL) and found to be doubled in 52 stroke patients as compared
with 35 age and sex-matched controls. More importantly, the odds ratio (OR) for recurrent stroke for
the upper median ADMA level of total subjects was even seven-fold increased. A few years later,
increased concentrations of ADMA were reported for hemorrhagic and cardio-embolic stroke as well
as transient ischemic attack (TIA) patients in the Swedish population of Kalmar [25].
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The functional relevance of ADMA has been proven by Kielstein et al. showing that infusion
of ADMA in healthy adults does not only lead to higher arterial resistance and blood pressure [26]
but also to decreased cerebral perfusion [27] which underscores the role of ADMA as active mediator
rather than a mere biomarker of endothelial dysfunction. In accordance, Baum et al. [28] reported
significant associations between Arg derivatives with measure of vascular function in 5.000 individuals.
The pathophysiological impact of Arg derivatives in atherosclerosis is furthermore supported by
experimental work showing that ADMA is associated with foam cell formation [29] as well as with
migration [30] and apoptosis [31] of vascular smooth muscle cells [30]. Interestingly, ADMA suppresses
endothelial progenitor cells (EPC) in patients with coronary heart disease [32]. EPC play an important
role in the regeneration of injured endothelium [32].

Progression and vulnerability of atherosclerotic lesions is driven by inflammatory mechanisms [33].
ADMA may be increased by systemic inflammation and subsequently lead to endothelial dysfunction
in patients with coronary heart disease or rheumatoid arthritis (RA) [34]. The link of ADMA and
inflammation in RA patients is meanwhile confirmed by different studies and meta-analyses [35–37]
suggesting that ADMA may constitute as vascular risk marker in this vulnerable patient collective.
This is further supported by a study in RA patients demonstrating an association of ADMA with
homocysteine and with a methylenetetrahydrofolate reductase (MTHFR) polymorphism which are
implicated in atherosclerosis [38].

Carotid intima media thickness (CIMT) is a marker of subclinical atherosclerosis and regarded
as predictor of vascular diseases [39]. While one study described an inverse relation of ADMA with
CIMT [40], there are meanwhile numerous studies proving a positive correlation between circulating
ADMA and/or SDMA concentrations with CIMT in patients with diverse demographics and different
underlying diseases [41–56], however, with ethnical differences [57]. In a long-term follow-up study
over six years, Furuki et al. [47] showed that ADMA was an independent predictor of CIMT progression.
Interestingly, in an analysis of the Framingham offspring cohort, an independent association of ADMA
with CIMT in the internal carotid artery (ICA) was confirmed but not with that in the common carotid
artery (CCA), implying a site-specific role of ADMA in atherosclerotic disease [52]. Of note, CIMT at
the ICA might be the superior measure of cardiovascular risk compared with CIMT at the CCA [39]. In
a study including patients with recent ischemic stroke or TIA an association between hArg/ADMA
ratio and the aortic intima media thickness has been reported [58].

The relevance of dimethylarginines in stroke due to large artery atherosclerosis will be discussed
in paragraph 5.1.

3.2. ADMA and SDMA in Relation to Vascular Risk Factors

Hypertension is the most important stroke risk factor [59]. Nitric oxide deficiency as well as
oxidative stress play an important role in arterial hypertension. Likewise, numerous investigations
have shown a link between ADMA levels and the occurrence and development of hypertension [60–62].
Controversially, there are also studies in the general population which could not prove this
association [63]. Of note, chronic SDMA infusion in otherwise healthy mice did not lead to an
alteration of blood pressure, concluding that SDMA is unlikely to be a causal pathophysiological
factor [64].

ADMA was found to be highly elevated in young patients with hypercholesterolaemia [65].
A potential mechanistic link might be based on the upregulation of ADMA synthesis through
LDL cholesterol [66]. Vice versa, in a preclinical hypercholesterolemia model the reduction of
ADMA levels was related to less atherosclerotic lesions [67]. Interestingly, in a study including
3.310 patients undergoing coronary angiography, SDMA was identified as marker of high density
lipoprotein (HDL) dysfunction, markedly in patients with renal insufficiency which may implicate
another pathophysiologic link between renal disease, SDMA and premature vascular disorders [68].
In the original study by Yoo et al. [24] ADMA was moreover found to be positively correlated with
homocyst(e)ine.
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Importantly, in patients with embolic stroke of undetermined source (ESUS) who often reveal
only few vascular risk factors [69] a strong correlation between the CHA2DS2VASC and both
dimethylarginines, especially with SDMA, was found [46]. CHA2DS2VASC has been previously shown
to be a reliable instrument predicting recurrent cerebral ischemia and death in ESUS patients [70]. An
association between CHA2DS2VASC and both dimethylarginines as well as hArg/dimethylarginine
ratios has been recently proven in three independent cohorts of patients with cerebrovascular
diseases [71].

Nitric oxide released from endothelial cells strongly inhibits platelet activation and vascular
adhesion [72,73]. In patients undergoing percutaneous angioplasty ADMA was shown to be associated
with platelet activation. In accordance, in hypertensive patients higher ADMA levels may lead to
increased platelet aggregation via cGMP signalling [74,75]. Thus, Arg derivatives may potentially play
a role also in platelet activation during stroke.

3.3. Dimethylarginines Predict Morbidity and Mortality of Cerebrovascular Diseases

In a meta-analysis by Willeit et al. [76] including 19,842 individuals, those with ADMA levels
in the highest tertile compared with those in the lowest tertile showed significantly higher risk for
cardiovascular diseases (hazard ratio, HR 1.42 (1.29–1.56)), coronary heart disease (HR 1.39 (1.19–1.62))
and especially for stroke (HR 1.60 (1.33–1.91)). However, in the same data set, SDMA levels did not show
a significant association with these vascular outcome measures (HR for stroke: 1.31 (0.83–2.07)) [76].
As described above, the relevance of SDMA as risk factor for vascular endpoints might be higher in
patients who suffer from renal insufficiency [77,78]. In a sub-study of the ARISTOTLE trial, Horowitz
et al. [79] investigated ADMA and SDMA in anticoagulated patients with atrial fibrillation (AF). While
ADMA concentrations were weakly related to thromboembolic events, the authors found an association
of SDMA with bleeding events and of both dimethylarginines with increased mortality [79].

In total, there are far less studies focussing on SDMA compared with ADMA [18,80]. As described
above, SDMA is an excellent marker of renal function which itself is related with vascular diseases [81].
Though, there is evidence that SDMA reflects vascular risk and disease independent from the extent
of renal insufficiency [82]. Interestingly, Emrich et al. [77] demonstrated in a study of 528 patients
with chronic kidney disease (CKD) that SDMA was superior to other Arg derivatives in predicting
CKD progression as well as vascular events including stroke. Two independent prospective studies
showed that SDMA predicts short- and long-term outcome following ischemic stroke [83,84]: Lüneburg
and colleagues showed in 137 acute ischemic stroke patients who were admitted to the emergency
unit that plasma SDMA was associated with composite detrimental outcome as comprised as death,
recurrent stroke, myocardial infarction and re-hospitalization in the first 30 days after the event—an
association which was mediated by the link of SDMA and renal function [84]. In the other study,
survival was independently related to lower SDMA during a median time of follow-up of 7.4 years
in 394 patients with ischemic stroke while ADMA barely missed significance [83]. Thus, SDMA is
currently emerging as an interesting target in cerebrovascular diseases. Tables 1 and 2 provide an
overview on the discussed clinical studies investigating ADMA and SDMA in cerebrovascular diseases.
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Table 1. Overview on selected clinical studies and meta-analyses evaluating ADMA in cerebrovascular diseases.

Reference Sample Size
(Population) Biomarker Investigated Comparison/Outcome Adjusted HR/OR

Yoo et al. 2001 [24] 87 (IS patients and HC) ADMA cutoff: 1.43 µmol/l IS versus HC OR: 6.05
(95% CI: 2.77–13.3)

Wanby et al. 2006 [25]
119 (IS patients and HC) highest versus. lowest

Arg/ADMA quartile IS versus HC OR: 0.28
(95% CI 0.11–0.72)

89 (TIA patients and HC) highest versus lowest
ADMA quartile TIA versus HC OR: 13.1

(95% CI: 2.91–58.6)

Brouns et al. 2009 [85] 91 (IS patients and HC) CSF ADMA IS versus HC NR

45 (TIA patients and HC) CSF ADMA TIA versus HC NR

Schulze et al. 2010 [83] 394
(IS patients) ADMA all-cause mortality n.s.

Worthmann et al. 2011 [86] 67
(IS patients) ADMA clinical outcome

OR: 7.19
(95% CI:

1.73–29.82)

Rueda-Clausen et al. 2012 [87] 476 (IS patients and HC) ADMA IS versus HC n.s.

Lüneburg et al. 2012 [84] 137
(IS patients) ADMA AE n.s.

Molnar et al. 2014 [88] 55
(IS patients) ADMA all-cause mortality n.s.

Willeit et al. 2015 [76] 8016 (IS patients and HC;
meta-analysis)

highest vs. lower ADMA
tertiles IS versus HC RR: 1.60

(95% CI: 1.33–1.91)

Emrich et al. 2018 [77] 528
(CKD patients) ADMA MACE n.s.

Horowitz et al. 2018 [79]
4978 (anticoagulated AF

patients) ADMA

stroke/systemic embolism HR: 1.19
(95% CI: 1.02–1.39)

cardiovascular mortality HR: 1.31
(95% CI: 1.18–1.46)

4966 (anticoagulated AF
patients) ADMA major bleeding HR: 1.19

(95% CI: 1.07–1.34)

ADMA: asymmetric dimethylarginine; AE: adverse event; Arg: L-arginine; CES: cardioembolic stroke; CI: confidence
interval; CKD: chronic kidney disease; CSF: cerebrospinal fluid; hArg: homoarginine; HC: healthy control; HR:
hazard ratio; ICA: internal carotid artery; IS: ischemic stroke; LAA: large artery atherosclerosis; MACE: major
adverse cardiovascular event; NR: not reported; n.s.: not significant; OR: odds ratio; RR: relative risk; SVD: small
vessel disease; TIA: transient ischemic attack. HR and OR given derive from the appropriate multivariable analyses.

Table 2. Overview on selected clinical studies and meta-analyses evaluating SDMA in cerebrovascular diseases.

Reference. Sample Size
(Population) Biomarker Investigated Comparison/Outcome Adjusted HR/OR

Brouns et al. 2009 [85] 91 (IS patients and HC) CSF SDMA IS versus HC NR

45 (TIA patients and HC) CSF SDMA TIA versus. HC NR

Schulze et al. 2010 [83] 394
(IS patients)

highest versus lowest
SDMA quartile all-cause mortality HR: 2.99

(95% CI: 1.64, 5.44)

Worthmann et al. 2011 [86] 67
(IS patients) SDMA clinical outcome

OR: 7.16
(95% CI:

1.67–30.69)

Lüneburg et al. 2012 [84] 137
(IS patients) SDMA AE n.s.

Molnar et al. 2014 [88] 55
(IS patients) SDMA all-cause mortality n.s.

Willeit et al. 2015 [76] 3132 (IS patients and HC;
meta-analysis)

highest versus lower
SDMA tertiles IS versus HC n.s.

Emrich et al. 2018 [77] 528 (CKD patients) highest versus lowest
SDMA tertile MACE

HR: 2.678
(95% CI:

1.261–5.684)

Horowitz et al. 2018 [79]
4978 (anticoagulated AF

patients) SDMA

stroke/systemic embolism n.s.

cardiovascular death HR: 1.40
(95% CI: 1.25–1.56)

4966 (anticoagulated AF
patients) SDMA major bleeding HR: 1.41

(95% CI: 1.27–1.57)

ADMA: asymmetric dimethylarginine; AE: adverse event; Arg: L-arginine; CES: cardioembolic stroke; CI: confidence
interval; CKD: chronic kidney disease; CSF: cerebrospinal fluid; hArg: homoarginine; HC: healthy control; HR:
hazard ratio; ICA: internal carotid artery; IS: ischemic stroke; LAA: large artery atherosclerosis; MACE: major
adverse cardiovascular event; NR: not reported; n.s.: not significant; OR: odds ratio; RR: relative risk; SVD: small
vessel disease; TIA: transient ischemic attack. HR and OR given derive from the appropriate multivariable analyses.
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3.4. Homoarginine as Marker and Target in Cerebrovascular Diseases

A decade ago, hArg was studied in regard to cardiovascular and all-cause mortality [89]. In
contrast to dimethylarginine derivatives, hArg levels were inversely associated with adverse events
and mortality [90]. Most consistently, low hArg levels are associated with all-cause and cardiovascular
mortality, which was shown in subjects referred for coronary angiography, in hemodialysis
patients with diabetes mellitus, in stroke patients, but also population-based cohorts [89,91–94].
A recent meta-analysis confirmed the inverse association of hArg with all-cause mortality (HR 0.64
[0.57–0.73]) [95]. More specifically, low hArg levels were strongly associated with fatal strokes and
revealed a trend to increase stroke risk [96,97]. In prospective studies of stroke patients, low hArg levels
were independently associated with increased long-term all-cause mortality and short-term adverse
events, respectively (Table 3) [91]. In addition to cerebrovascular patients, increased hArg levels (i.e.,
1-SD log plasma hArg) were also associated with a risk reduction for major adverse cardiovascular
events including stroke [93]. See Table 3 for an overview on clinical studies evaluating hArg as
biomarker in cerebrovascular diseases.

Table 3. Overview on selected clinical studies evaluating hArg in cerebrovascular diseases.

Reference Sample Size
(Population) Biomarker Investigated Comparison/Outcome Adjusted HR/OR

Choe et al. 2013 [91]
389

(IS patients) 1-SD increase in log hArg all-cause mortality HR: 0.79
(95% CI: 0.64–0.96)

135
(IS patients) 1-SD increase in log hArg AE HR: 0.69

(95% CI: 0.50–0.94)

Pilz et al. 2014 [92] 606
(population based)

lowest versus higher hArg
quartiles cardiovascular mortality HR: 4.20

(95% CI: 2·03–8·69)

Cordts et al. 2019 [71]
803

(IS patients)

hArg/ADMA
hArg/SDMA

LAA/CES versus
SVD/other

OR: 1.52
(95% CI: 1.12–2.06)

OR: 2.01
(95% CI: 1.35–3.00

hArg/ADMA
hArg/SDMA

ICA stenosis versus
no ICA stenosis

OR: 0.73
(95% CI: 0.55–0.97)

OR: 0.69
(95% CI: 0.50–0.94)

Choe et al. 2020 [98]
394 (IS patients) hArg/ADMA

hArg/SDMA all-cause mortality

HR: 0.75
(95% CI: 0.62–0.92)

HR: 0.68
(95% CI: 0.54–0.85)

135 (IS patients) hArg/SDMA AE HR: 0.73
(95% CI 0.57–0.92)

ADMA: asymmetric dimethylarginine; AE: adverse event; Arg: L-arginine; CES: cardioembolic stroke; CI: confidence
interval; CKD: chronic kidney disease; hArg: homoarginine; HC: healthy control; HR: hazard ratio; ICA: internal
carotid artery; IS: ischemic stroke; LAA: large artery atherosclerosis; MACE: major adverse cardiovascular event;
NR: not reported; n.s.: not significant; OR: odds ratio; RR: relative risk; SVD: small vessel disease; TIA: transient
ischemic attack. HR and OR given derive from the appropriate multivariable analyses.

Homoarginine has been implicated to play a role in vascular function [90,99–101]. Correspondingly,
epidemiological studies revealed an inverse association of hArg with aortic wall thickness and aortic
plaque burden [93], an inverse correlation of hArg/ADMA ratio with aortic intima-media thickness [58]
and a link between hArg/SDMA ratio with internal carotid artery stenosis and unfavorable outcome
after stroke [71,98].

Most importantly, hArg supplementation confers indeed beneficial effects in vascular disease
models. First, AGAT-deficient mice are devoid of hArg and revealed increased infarct sizes and
an impaired cardiac contractibility, which were normalized upon hArg supplementation [91,102].
Furthermore, hArg supplementation attenuated detrimental effects of diabetic kidney damage,
preserved systolic function in a model of coronary artery disease, reduced neointimal hyperplasia in
balloon-injured rat carotids and attenuated post-myocardial infarction heart failure [91,103–106].

Although mouse studies revealed a causal link between hArg and vascular disease, the direct
protective effect in humans remains to be established [107]. In a recent clinical trial, pharmacokinetic
and -dynamic parameters were studied in healthy volunteers orally supplemented with 125mg hArg
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or placebo daily for 4 weeks using a cross-over design [108]. Supplementation was well tolerated and
increased hArg levels by 7 fold without any alteration of vascular or neurological parameters [108,109].
Currently, a randomized placebo-controlled trial studies the administration of oral hArg in acute
stroke patients with low hArg levels (https://www.clinicaltrials.gov; unique identifier: NCT03692234).
Future studies will answer the question, if hArg deficiency is a modifiable protective cerebrovascular
risk factor.

4. Acute Response of Arginine Derivatives after Ischemic Stroke

After the acute onset of stroke, the local reaction to the ischemic tissue based on cellular damage,
proteolysis and oxidative stress consecutively induces a secondary systemic reaction. In this setting,
an increase in expression of PRMTs and for ADMA a decreased activity of DDAH elevates systemic
levels of dimethylarginines. More extended acute brain damage in larger cerebral infarction accelerates
cellular damage and proteolysis resulting in further increase of dimethylarginines. In patients with
acute ischemic stroke several studies demonstrated the increase of dimethylarginines; while studies
including ADMA are numerous, those including SDMA are sparse.

Brouns and colleagues [85] reported dimethylarginine concentrations in 88 acute ischemic stroke
and TIA patients within 24 hours of onset. This study is remarkable in several aspects. Firstly, ADMA
as well as SDMA levels increased with increased severity as assessed by the National Institutes of
Health stroke scale (NIHSS). Secondly, significant correlations between outcome, evaluated by the
modified Rankin scale (mRS) at three months after stroke, and both dimethylarginine derivatives
existed and third, ADMA and SDMA were measured in cerebrospinal fluid (CSF) within 24 hours
of stroke onset. This indicates that elevated ADMA and SDMA in the hyperacute phase of stroke
originate from cerebral cellular damage and proteolysis.

The kinetics during the acute phase of stroke seem to be different between Arg, SDMA and ADMA.
ADMA seems to peak rather early within hours after admission to the hospital while SDMA increases
and L-arginine decreases during the first days after admission [86,88,110]. Both, the time courses of
ADMA and SDMA relate to the clinical outcome assessed by mRS, while SDMA and in particular
Arg, moreover, independently predict post-stroke infections [86,110]. The kinetics observed in stroke
patients are similar to those seen in septic patients, and also these Arg derivatives may help distinguish
between patients with favorable from unfavorable outcome [111,112].

Higher ADMA levels were also detected in 40 Chinese TIA patients compared to controls [113].
In contrast to this, in a Spanish study there was no difference in ADMA levels in 238 ischemic stroke
patients and controls [87]. However, stroke etiology or time of blood withdrawal was not indicated in
this study. The authors suggested genetic, socio-economic or nutritional factors explaining differences
to other stroke patient cohorts. In 52 Turkish patients with acute ischemic stroke ADMA levels were
higher than in controls, while NO levels measured in stroke patients were lower than in controls [114].
One might wonder if ADMA increase is directly linked to the extent of acute brain injury. This remains
unclear, since no correlation of ADMA and S100B concentrations has been found in 58 ischemic stroke
patients [115] but a weak correlation of ADMA, SDMA and S100B has been shown in another study in
55 ischemic stroke patients [88].

There is less data about SDMA after ischemic stroke, since initially greater importance for stroke
pathophysiology was attributed to ADMA due to its role as endogenous NOS inhibitor. Meanwhile
also SDMA levels have been repeatedly measured, showing that these are also elevated after the acute
event of stroke. In 55 acute ischemic stroke patients, SDMA levels at 6 hours were associated with
neurological worsening [110]. In another study, 67 acute ischemic stroke patients with unfavorable
outcome showed an elevation as early as 6 hours until 3 days after the event of stroke [86]. Brouns
et al. [85] demonstrated increased SDMA levels in CSF, while this increase was pronounced in more
severe stroke patients, possibly via PRMTs due to increased proteolysis. There was no association
of SDMA increase with stroke etiology in these two studies [85,86]. Controversially, in 363 ischemic
stroke patients there was an increase in SDMA levels in patients with cardioembolic strokes but not in

https://www.clinicaltrials.gov
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other stroke subtypes [25]. In concordance, in a cohort of 231 acute ischemic stroke patients SDMA
levels were also elevated, when AF was detected in these patients [83]. Thus, it is noticeable that
SDMA increase mostly occurs in the etiology of cardioembolic infarctions suggesting endothelial
preconditions that provide levels in a certain dimension or even potentiate these levels in the event
of stroke. However, cardioembolic strokes represent the most severe subtype, while the amount of
destruction might further elevate SDMA levels. Interestingly, in a patient cohort of 88 ischemic stroke
patients we found lower SDMA and higher ratios of Arg/ADMA, Arg/SDMA and ADMA/SDMA in
patients with ESUS compared to patients with diagnosed AF as cardioembolic stroke etiology. SDMA
and ADMA were determined at 7 days after stroke [46]. Most importantly, at follow-up of these
patients at least one year after index stroke, SDMA values were almost stable over time (p < 0.001; r =

0.788) and still remained significantly higher in AF compared with ESUS-patients [116]. These results
might indicate that indeed SDMA is rather related to the cardioembolic etiology than driven by the
acute ischemic response (also see Section 5).

Potential Mechanisms of Dimethylarginine Response after Ischemic Stroke

Obviously in ischemic stroke the acute and massive reduction of cerebral blood flow is to be made
accountable for the immediate damage of neurons. It needs to be discussed that in the early stages of
stroke pathology ADMA contributes to poor cerebral perfusion.

ADMA assumingly limits the cerebral perfusion in physiological conditions and in case of
cerebrovascular injury by affecting the vascular tone and compliance. Nitric oxide synthase and NO
represent the most important endogenous regulators of vasodilation in cerebral arterioles [117]. In an
animal model in rats, administration of its endogenous inhibitor ADMA reduced the diameter of
the basilar artery, while in rabbits the diameter of cerebral arterioles was reduced. Administration
of Arg reversed this effect [118]. In mice administration of ADMA reduced response of cerebral
arterioles to acetylcholine as vascular tone relaxation was restricted to 70%, whereas in transgenic
mice with DDAH-1 overexpression relaxation of cerebral vessels as response to acetylcholine was
not impaired [119]. In human middle cerebral arteries obtained from 26 autopsies administration
of ADMA and L-NMMA impaired acetylcholine induced endothelial relaxation [120]. Additional
administration of Arg revised this effect. Kielstein and colleagues administered ADMA in 20 healthy
individuals over 40 minutes. In these individuals cerebral blood flow was detected to be significantly
impaired, while systemic blood pressure was not altered [27]. These data suggest, that increased
ADMA levels after the acute event of stroke might further reduce cerebral perfusion and thereby causes
loss of penumbral tissue. One could even suggest that there is a link between increased ADMA levels
and successful recanalization therapy, which had been investigated in acute stroke patient cohorts.
Here, recanalization as reached by administration of recombinant tissue-type plasminogen activator
(rtPA) and mechanical recanalization as performed by endovascular catheter therapy were investigated
in separate clinical studies. In 41 acute ischemic stroke patients with large cerebral vessel occlusion
undergoing mechanical recanalization, pretreatment levels of ADMA in patients with non-successful
recanalization were higher than in successful therapy. However, in multivariate analysis there was no
significant association between ADMA levels and the grade of recanalization [121].

Further evidence for a role of ADMA in acute medical recanalization treatment comes from 90
ischemic stroke patients of the German Multicenter EPO Stroke Trial. Patients had different treatment
regimen, since they either received erythropoietin (EPO), placebo, rtPA + placebo or EPO + rtPA. Serum
ADMA levels were observed from day 1 (pretreatment) until day 7 [122]. While ADMA levels increased
in general, there was a significant reduction in the rtPA + placebo group compared with the placebo
group. ADMA levels were correlated with outcome, although it remains unclear whether lower ADMA
levels could contribute to favorable outcome. One might again suggest better reperfusion due to
increasing NO levels after lack of endogenous inhibition by ADMA. Remarkably, rtPA is administered
in a solution of rtPA and as carrier substance for stabilization of Arg. One could suggest, that early
supplement of Arg in ischemic stroke might improve cerebral blood flow, while late supplement might
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lead to massive NO production ending in neurotoxic effects as caused by uncoupling and reactive
oxygen species [123,124]. However, in 43 acute ischemic stroke patients with intravenous thrombolytic
treatment using recombinant tissue-type plasminogen activator, pretreatment levels of ADMA were not
associated with outcome [125]. In summary, so far, an independent influence of ADMA in recanalization
treatment has been confirmed neither in mechanical nor in medical recanalization approaches.

During the acute stages of stroke, ADMA levels are increased by oxidative stress resulting
in activation of PRMTs and inhibition of DDAH activity [126,127]. Here, ADMA might be a
further generator of oxidative stress via uncoupling of eNOS and iNOS, which leads to synthesis of
superoxides [126,128,129]. So far, studies are missing that show ADMA induced uncoupling of NOS in
the cerebral circulation. After ischemic stroke, NO as synthesized by iNOS and nNOS is significantly
increased. Extended NO levels possess neurotoxic properties since NO levels react with oxygen
radicals to form the toxic compound peroxynitrite [130–133]. After ischemic stroke, expression of
NOS isoforms differs in regard to temporal and spatial aspects. Mouse studies suggest that inhibition
of iNOS and nNOS overexpression is neuroprotective, while inhibition of eNOS impairs cerebral
blood flow and thereby could be detrimental for the penumbral tissue [134]. Herewith, effects of
ADMA as assumingly non-selective NOS inhibitor might be protective and detrimental all at once. We
suggest dose-dependent effects which might essentially be controlled by timing and the amount of
NO produced. In macrophages NO-synthesis can be regulated by ADMA derived from endothelial
cells [135]. However, it remains unclear if endothelial ADMA also regulates NO synthesis in neurons.

Analysis of isoform specific inhibition of DDAH might clarify the diverse NO–DDAH–ADMA
pathway after acute ischemic stroke, which would be urgently needed to identify any potential
treatment targets. Recently, the importance of ADMA for NO-synthesis in human circulation has
been challenged. While ADMA has been shown to effectively inhibit nNOS, the inhibitory potential
of ADMA in regard to eNOS seems to be by far weaker [22,136]. This might at least indicate a lack
of sufficient knowledge regarding the role of ADMA in patients. By influencing the inflammatory
cascade after the acute event of stroke, ADMA might well enhance secondary brain injury, leading to
worse patient outcome. A single therapeutic approach for lowering ADMA levels in an animal model
was negative. In this transient middle cerebral artery occlusion (MCAO) model in mice infarction size
did not differ in transgenic mice with DDAH-1 overexpression compared to wild-type animals [137].
However, neither ADMA levels nor DDAH-1 activity differed in these animals [137]. Recently, in a
DDAH-1 knock-out rat model of MCAO, ADMA levels were increased while NO was reduced [138].
Administration of Arg in the knock-out group reduced neurological damage and increased levels of
hypoxia inducible factor (HIF-1alpha) [138].

In different cell culture models, ADMA triggers production of pro-inflammatory cytokines [139,
140]. In monocytes ADMA elevates the synthesis of TNF-alpha in a ROS/NF-kappaB dependent
pathway [139]. In endothelial cells ADMA increases activation of NF-kappaB and phosphorylation of
mitogen-activated kinases as well as levels of TNF-alpha and ICAM-1 [140]. ADMA enhances adhesion
of polymorphonuclear neutrophils (PMN) on endothelial cells and triggers their degranulation [141].

In 58 ischemic stroke patients Chen and colleagues investigated the association of ADMA with
mediators of inflammation [115]. The distinct temporal dynamics of ADMA levels after the event with
peak values at time points when IL-6 levels already decreased may indicate that ADMA is unlikely to
induce the inflammatory response. However, ADMA levels were associated with levels of IL-6 and
CRP at several time points after stroke [115]. Molnar and colleagues detected an association of early
ADMA and MCP-1 levels in 55 ischemic stroke patients [110]. Interestingly, in other conditions of
acute inflammation, ADMA might rather be decreased in the acute setting, while levels elevate again
when other inflammation markers decline [142].

Compared to ADMA data about the role of SDMA after acute stroke again are sparse. Experimental
data point to a potential pathophysiological role of SDMA in acute stroke via modulation of NO
levels, ROS and inflammatory processes. In experimental conditions concentrations of 1–10 mmol/L
SDMA indirectly limits NO-synthesis by reduction of intracellular Arg uptake and renal tubular Arg
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absorption [143,144]. SDMA concentrations between 2-100µmol/L dose dependently enhanced ROS
production in endothelial cells [82]. SDMA has been shown to be a weak nNOS inhibitor, while any
data showing efficacy of SDMA for inhibition of other NOS isoforms are missing (for a review see
Reference [136]). In monocytes SDMA increased ROS production by modulation of store-operated
calcium channels [145]. Another study from the same group demonstrated that in monocytes SDMA
increases activation of NF-kappaB and expression of TNF-alpha and IL-6 [146]. Certainly, these
experimental conditions do not reflect those in stroke patients.

In ischemic stroke patients, SDMA was significantly correlated with serum concentrations of
the proinflammatory mediators MCP-1 and IL-6 [115]. Of note, SDMA and MCP-1 were correlated
already at the early stage only hours after the acute event, while there were further correlations days
after stroke between SDMA, MCP-1 and IL-6. Interestingly, Molnar and colleagues confirmed the
early correlation of SDMA and MCP-1 [110]. SDMA and CRP were only correlated at later time points
at 3 days after stroke [88]. In 43 ischemic stroke patients receiving IVT using rtPA, SDMA differed
at each time point during the first week after stroke including pretreatment levels depending on
clinical outcome [125]. However, multivariate analysis could not confirm an independent association
between SDMA pretreatment levels and outcome in IVT. In summary, further studies are warranted to
investigate if SDMA contributes in particular to secondary brain injury.

5. Arginine Derivatives as Markers of Stroke Etiology

5.1. Large Artery Atherosclerosis

The pathophysiologic link of Arg derivatives with atherosclerosis was discussed above. Cordts et
al. [71] recently reported that ratios of hArg/ADMA and hArg/SDMA are associated with strokes due
to AF or large artery atherosclerosis and are moreover predictive for prevalent stenosis of the internal
carotid artery in three independent cohorts. Scherbakov and colleagues reported elevated ADMA
levels in cardioembolic or large artery stroke [147]. In 262 ischemic stroke patients with intracranial
atherosclerotic stroke, ADMA levels were increased compared to controls without stroke [148].
Interestingly, hArg/SDMA ratio showed a stronger relation with atherosclerotic burden compared with
hArg/ADMA [71]. The degree of re-stenosis after carotid endarterectomy (CEA) has been found to be
related to ADMA levels [149]. These results are clearly in line with the described relevance of Arg
derivatives in the pathogenesis of atherosclerotic disease.

5.2. Small Vessel Disease

Tsuda et al. [150] reported an association of ADMA levels with occurrence of small vessel disease
which was independent from classical cardiovascular risk factors. Moreover, ADMA correlated with
the extent of cerebral leukoaraiosis. This finding was recently confirmed in a study investigating
persons with asymptomatic white matter hyperintensities in whom inflammatory or coagulation
disorders have been excluded [151]. Besides the association of ADMA to imaging measures of
small vessel disease, a relation of ADMA levels with progression of cognitive impairment has been
reported [152]. Furthermore, a role of ADMA has been implicated in rare microangiopathic diseases
like Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy
(CADASIL) [153]. Interestingly, dimethylarginines were shown to be positively correlated with
Hachinsky Ischemic Score (HIS) and might therefore indicate vascular cognitive impairment [154]. In
the study by Cordts et al. [71] hArg/ADMA and hArg/SDMA ratios enabled to discriminate lacunar
from territorial strokes—an effect that was predominantly explained by higher hArg values in patients
with small vessel disease compared with patients with other stroke etiologies.

5.3. Cardioembolic Stroke and Embolic Stroke of Undetermined Source

The identification of the distinct etiology of ischemic stroke is crucial for its secondary prevention.
Despite extensive diagnostic workup including cerebral, vascular und cardiac imaging as well as
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rhythm analyses a significant proportion of ischemic stroke remains unexplained. In 2015 Hart et
al. [155] introduced the concept of the so called „embolic stroke of undetermined source“ (ESUS)
which accounts for cryptogenic strokes with an embolic pattern in cranial imaging. ESUS accounts
for approximately 16% of all ischemic strokes [156]. It is presumed that a significant part of ESUS
will be due to subclinical paroxysmal atrial fibrillation (AF). As a result, two multicenter clinical trials
(RE-SPECT ESUS [157] and NAVIGATE ESUS [158]) have been performed to test the hypothesis that
ESUS patients might benefit from oral anticoagulation rather than platelet inhibition. However, both
studies failed to prove this approach [157,158], indicating that proper workup for investigation of
the individual stroke mechanism is still crucial for choosing the appropriate secondary preventive
therapy. The same applies for concurrent stroke etiologies, like e.g. AF and high-grade carotid
stenosis. In conclusion, novel biomarkers that support the diagnostics of stroke etiology would be
advantageous for determining the appropriate individual therapy and consequently reduce the burden
of recurrent strokes.

Current data indicate that a diseased left atrium—recently referred as so called “atrial
cardiopathy” [159]—might lead to enhanced thrombembolic risk independently of AF which is
regarded as a mere symptom of the disease process [160,161]. Endothelial dysfunction mechanisms
and subclinical atherosclerosis are closely related to the development of atrial cardiopathy in terms of a
systemic disorder [162–166]. Hypothetically, endothelial dysfunction and arterial stiffness contribute to
a higher cardiac afterload and consecutively to myocardial remodelling processes in the atrium [167,168].
Moreover, experimental and clinical studies implicate an important role of NOS signalling in AF [166].
As a result, Arg derivatives have been previously investigated as potential markers of AF.

Schulze et al. [83] demonstrated that SDMA levels as well as the ratios between Arg/ADMA,
Arg/SDMA and Arg/NMMA were significantly different in stroke patients with AF compared to
those with sinus rhythm in a univariate analysis. Stamboul et al. [169] reported higher ADMA
levels in patients who developed AF after myocardial infarction. A stepwise increase of ADMA
concentrations has been shown in controls, in patients with lone AF and in patients with AF and
other comorbidities [170]. This notion fostered further investigation relating ADMA and SDMA to
permanent rather than paroxysmal AF in acute ischemic stroke [171]. Of note, AF patients exhibit a high
proportion of cardiovascular risk factors. In an analysis of the Framingham cohort, Schnabel et al. [172]
reported that Arg derivatives were not independently altered in AF patients after accounting for
vascular risk factors. However, in another population-based study—the Gutenberg Health Study—we
found a probable association of Arg derivatives with occurrence of AF, and moreover, independent
correlations with electrocardiography and echocardiography-based measures of atrial disease [173].
Interestingly, SDMA, but not ADMA, was associated with left atrial dimension and P-wave duration in
this analysis [173]. Cordts et al. [71] demonstrated a relation of hArg/ADMA and hArg/SDMA-ratios
with cardioembolic stroke and stroke due to large artery disease.

In another study of patients with ischemic stroke SDMA and Arg/dimethylarginine ratios were
significantly different between ESUS and AF in total as well as newly diagnosed AF [46], indicating
a potential application in clinical practice. Furthermore, SDMA concentrations were shown to be
associated with subsequently diagnosed AF after ESUS and correlate with left atrial volume index in
ESUS patients and might therefore support identification of atrial cardiopathy in this stroke entity as
recently reported by Ziegler et al. [116].

Interestingly, successful occlusion of the left atrial appendage led to a significant reduction of
SDMA levels, while no changes concerning ADMA were observed [174]. Moreover, a polymorphism in
the gene coding for AGXT2 which metabolizes ADMA and SDMA is associated with AF [175]. AGXT2
variants have been previously associated with circulating SDMA [176,177], heart rate variability [177]
and stroke subtypes (lacunar vs. territorial infarctions) [176]. These data may indicate a pathogenic
causal role of Arg derivatives and especially of SDMA in the development of AF. Of note, SDMA blood
concentrations are largely dependent on renal function by which this marker is increasingly considered
as potential measure for this purpose [178]. Conversely, renal insufficiency is a long-acknowledged
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factor in vascular diseases and AF [179]. Keeping in mind that AGXT2 is highly expressed in kidney
cells [180], the SDMA metabolism is of high interest for future studies investigating the pathogenic
link between this metabolite and renal and vascular disease. Of note, ADMA and SDMA might also be
useful for risk prediction in anticoagulated AF-patients [79,181], as already discussed above.

Taken together, there are diverse and recent data underscoring the potential role of Arg derivatives
as markers for identifying the underlying mechanism of ischemic stroke. Larger and prospective
studies are needed to validate these findings.

6. Conclusions

Due to its physiological influence on vascular function, the Arg metabolism is of high interest in
cerebrovascular diseases. ADMA is meanwhile confirmed as a biomarker of vascular risk, morbidity
and mortality in a variety of large studies and meta-analyses. Although less studies are focussing
on SDMA, this Arg derivative is currently emerging as another target and indeed might constitute
characteristics divergent from ADMA, such as an association with cardioembolic stroke etiology.
Besides the relation of Arg derivatives for risk and occurrence of ischemic stroke there is also a response
of these metabolites after cerebral ischemia which further might contribute to secondary brain injury.
In contrast, hArg is inversely associated with adverse events and mortality in cerebrovascular diseases
and might constitute a modifiable protective risk factor. Taken together, Arg derivatives are promising
diagnostic and therapeutic targets in diverse settings of cerebrovascular diseases. Future clinical studies
are needed to validate the findings discussed in order to enable a translation into clinical practice.
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Abbreviations

AE adverse event
AGAT arginine:glycine amidinotransferase
ADMA asymmetric dimethylarginine
AF atrial fibrillation
Arg Arginine

CADASIL
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and
Leukoencephalopathy

CAT cationic amino acid transporters
CES cardioembolic stroke
cGMP cyclic guanosine monophosphate
CIMT carotid intima media thickness
CKD chronic kidney disease
CRP C-reactive protein
CVD cardiovascular disease
DDAH dimethylarginine dimethylaminohydrolase
eNOS endothelial nitric oxide synthase
EPC endothelial progenitor cells
ESUS embolic stroke of undetermined source
hArg Homoarginine
HC healthy controls
HIF hypoxia inducible factor
HIS Hachinsky Ischemic Score
HPLC-FL high performance liquid chromatography and fluorescence detection
HR hazard ratio
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ICA internal carotid artery
IL interleukin
IS ischemic stroke
iNOS inducible nitric oxide synthase
LAA large artery atherosclerosis
MACE major cardiovascular outcome event
MCAO middle cerebral artery occlusion
MCP-1 monocyte chemoattractant protein 1
MTHFR methylenetetrahydrofolate reductase
mRS modified Rankin scale
NIHSS National Institutes of Health stroke scale
NMMA monomethylarginine
nNOS neuronal nitric oxide synthase
NO nitric oxide
NOS nitric oxide synthase
NR not reported
n.s. not significant
OR odds ratio
PRMT protein arginine methyltransferases
ROS radical oxygen species
RA rheumatoid arthritis
rtPA recombinant tissue-type plasminogen activator
SD standard deviation
SDMA symmetric dimethylarginine
SVD small vessel disease
TIA transient ischemic attack
TNFα tumor necrosis factor alpha
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