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Abstract

In this study, we developed a method for modeling the progression and detection of lung cancer based on the smoking
behavior at an individual level. The model allows obtaining the characteristics of lung cancer in a population at the time of
diagnosis. Lung cancer data from Surveillance, Epidemiology and End Results (SEER) database collected between 2004 and
2008 were used to fit the lung cancer progression and detection model. The fitted model combined with a smoking based
carcinogenesis model was used to predict the distribution of age, gender, tumor size, disease stage and smoking status at
diagnosis and the results were validated against independent data from the SEER database collected from 1988 to 1999. The
model accurately predicted the gender distribution and median age of LC patients of diagnosis, and reasonably predicted
the joint tumor size and disease stage distribution.
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Introduction

Lung cancer is one of the most deadly diseases worldwide,

largely because most patients present with advanced-stage disease

at the time of diagnosis [1,2]. Most patients have clinical stage III

or IV disease when they first notice symptoms and seek medical

attention, which results in a poor prognosis. Age, gender, smoking

status, tumor size, and disease stage at the time of diagnosis are

highly related to the prognosis of patients with lung cancer [3,4,5].

In this article, we use mathematical methods to disentangle the

tumorigenesis and detection processes. The goal of this model is to

trace the timeline of an individual from his/her birth to the time of

lung cancer initiation, progression, detection, and death. Thus, we

combined models of carcinogenesis (cancer development until the

first malignant cell), tumor progression (growth and metastasis),

and detection, to construct a framework for modeling lung cancer

at an individual level. Using this framework, we could infer

characteristics that cannot be observed in clinical practice,

including age of the patient when the primary tumor and nodal

and distant metastases are formed. We were also able to evaluate

characteristics that can only be partially observed, such as the

tumor growth rate, and closely reconstruct characteristics that can

be observed clinically, notably, tumor size and disease stage at the

time of diagnosis. This procedure may be useful for better

understanding the formation of the current lung cancer patient

population and characterization of the future lung cancer trends

with changes in smoking behavior and detection methods.

Materials and Methods

1. Lung cancer patients identified in the Surveillance,
Epidemiology and End Results (SEER) database

Age, sex, disease stage, and tumor size for lung cancer patients

who were diagnosed between 1973 and 2008 are available in the

SEER database [6]. For patients diagnosed from 1988 to 1999, we

used information on tumor size, with staging determined

according to SEER extent of disease codes, which categorize

tumors as localized, regional, and distant. For patients diagnosed

from 2004 to 2008, the staging system developed by the American

Joint Committee on Cancer was used to obtain tumor size and

tumor node metastasis (TNM) disease stage information. Tumor

size was measured as the maximum diameter, and we calculated

the volume according to an assumption that a tumor grows as a

sphere. We re-categorized the tumors into groups from 0 to 20 cm

(with 1-cm increments) according to their maximum diameter.

2. Carcinogenesis modeling
For the carcinogenesis model, we used the two-stage clonal

expansion (TSCE) model developed by Moolgavkar and Venzon

[7] to calculate the age of the patient at tumor initiation. This

model leads to an explicit formula for the distribution of the total
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duration, T, of the first two stages in the carcinogenesis process

(the transitions from normal to initiated cell and initiated to

malignant cell), which encompasses the time from the birth of an

individual to the onset of malignancy [8]. A smoking-based

modification of the TSCE model relating smoking intensity

measured in packs per day (ppd) to the parameters of the TSCE

model through response functions (with the parameters n0, a0, c0,

a1, and a2, as listed in File S1) was chosen. Smoking duration was

incorporated to produce a more specific Survival function of the

age at tumor initiation for individual never, current and former

smokers.[9,10,11].

The smoking history generator (SHG, version 5.2.1) [12]from

the Cancer Intervention and Surveillance Modeling Network

(CISNET), which produced smoking duration and intensity data

for individuals, was incorporated into the smoking-based TSCE

model by using the parameters listed in Table S1. Parameters for

males and females were estimated using the data from Cancer

Prevention Study I (CPS-I) and from Nurses’ Health Study (NHS),

respectively. The SHG was also used to generate an age of death

due to causes other than lung cancer.

3. Tumor growth and metastasis modeling
For the tumor growth and metastasis models, we assumed that

the hazard of tumor progression is based on the activity of the

tumor cells, and tumor cells detach from the primary tumor and

transfer to another part of the body, leading to metastases [13]

3.1. Assumptions. The following assumptions were made in

modeling tumor growth and metastasis:

1) The primary tumor grows from a single cell, with an assumed

volume of 161029 cm3 [14]. The growth rate l, which is

related to the tumor doubling time by the expression

DT~Ln2=l, is determined at the time of tumor initiation

and is assumed to remain the same over time.

2) The growth rate follows a gamma distribution, with shape and

scale parameters h and K.

3) All metastases are derived from the primary tumor, which

means cells detach from the primary tumor at the rate j and

are transferred and deposited at the rate m at a new metastasis

site [13]. We don’t consider secondary metastasis from

existing metastasis.

4) The activity of the tumor cell is related to how fast the tumor

grows and how easily the cells detach. Specifically, the faster

the primary tumor grows, the easier it is for the cells to detach.

We define the tumor cell’s activity a, to which the growth rate

l is proportional, l= e16a (where e1 is a constant). The cell-

detachment rate, b, is also proportional to a, b= e26a (where

e2 is another constant). Thus, b~
e2

e1
l, where

e2

e1
~j is a

parameter representing the relationship between b and l. If

the tumor with volume S grows exponentially, S~elt , the

total number of detached cells before time t0 is ejlt0~Sj
0 ; we

assume 0vjv1, the interpretation of which is that cells

always detach from the primary tumor but not all tumor cells

will detach.

5) The detached cells will be transferred and deposited at new

locations. The aggregate rate of transfer and deposition is m. m
could be a constant parameter or a functional parameter

determined by a biological process, such as the rate of

synthesis of proteins that help transfer the tumor cells across

the blood vessel wall [13].

6) Metastases are defined as either nodal or distant. We assume a

different rate m (mn and mm) for each type of metastasis, mn for

nodal and mm for distant metastasis. We also assume that the

detached cells can move to nodal sites at least as easily as to

distant sites (mn$mm).

7) The hazard function for metastasis (nodal or distant) is related

to the number of tumor cells that have detached from the

primary tumor and have been successfully transferred and

deposited at nodal or distant locations. Assuming exponential

growth, the hazard functions for nodal and distant metastases

are hn~mn|Sj and hm~mm|Sj, respectively. The cumu-

lative distribution functions (c.d.f.) are defined below:

Fn sð Þ~1{e
{
ÐS
0

hn sð Þds

~1{e
{

mn
jz1
�S jz1ð Þ

Fm sð Þ~1{e
{
ÐS
0

hm sð Þds

~1{e
{

mm
jz1
�S jz1ð Þ

with the tail functions (or survival functions) �FFn, �FFm. If j~0, we

assume no cells detach from the primary tumor, mn~0 and mm~0.

1) Assumption mn$mm implies that Fn sð Þ§Fm sð Þ, where Fn(s)

and Fm(s) are corresponding cumulative distribution functions

defined above. Primary tumor sizes at the time of initiation for

nodal and distant metastases, respectively, are denoted sni and

smi.

2) We assume that the cell’s activity changes after detachment

from the tumor, transfer and deposition at the metastatic site.

Cell at the nodal and distant metastatic sites grow three (3l) or

four (4l) times faster than the primary tumor [13,15,16],

correspondingly.

The primary tumor size is calculated using the tumor growth

model by giving the growing time t, with a constant growth rate l.

Thus, we rewrite Fn sð Þ,Fm sð Þ to Fn t,lð Þ~
Ðt
0

fn t,lð Þdt and

Fm t,lð Þ~
Ðt
0

fm t,lð Þdt, where fn t,lð Þ and fm t,lð Þ are the proba-

bility density functions (p.d.f.) of time that nodal and distant

metastases happened in a group of patients with the same tumor

growth rate l. Then,

fn tð Þ~
ð

fn t,lð Þ � c ljk,hð Þdl ; fm tð Þ

~

ð
fm t,lð Þ � c ljk,hð Þdl

where fn and fm are the p.d.f. of time that nodal and distant

metastases occurred in patients with tumor growth rate having a

Gamma distribution, and c is the Gamma distribution function

with parameters k and h. Then,

fn1m0
tð Þ~

ð
fn t,lð Þ{fm t,lð Þð Þ � c ljk,hð Þdl

where fn1m0
tð Þ is the p.d.f. of time for patients who had only nodal

metastases (without distant metastases) in the whole time period.

Modeling LC Natural History & Detection
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4. Cancer detection modeling
To model cancer detection, we introduced a competing process

of detecting the disease through the primary tumor or nodal or

distant metastases, adapting the framework developed by Kimmel

and Flehinger. [17]

4.1. Assumptions. The following assumptions were made in

modeling cancer detection:

1) The detection of cancer is based on the detection method

used. The hazard of detection has a linear relationship with

tumor size. It also depends on the reasons (e.g., symptoms or

results of a screening test) that prompted the patient to seek

medical attention. For details, see equations (*) for hDp, hDn,

and hDm further on.

2) The detection of cancer is considered a competing process of

detecting the primary tumor or nodal or distant metastases.

The specific, mode-dependent hazard functions for the

detection through the primary tumor and nodal and distant

metastases are denoted as hDp, hDn, and hDm respectively (*).

Then the c.d.f. of the detection of primary tumors and nodal

and distant metastases are denoted as Dp(s), Dn(s), and Dm(s),

(**) with tail functions �DDp sð Þ, �DDn sð Þ, �DDm sð Þ, respectively (for

details see equations (**)).

3) We also define primary tumor-size dependent hazard

functions for detection (irrespective of the mode of detection,

whether through the primary tumor, nodal metastases, or

distant metastases), z00(s), z10(s), z01(s), and z11(s), where z00(s)

is the hazard function for detecting, at size s, a cancer with no

detectable metastases; z10(s) is the hazard of detecting, through

whatever means, a cancer with the primary tumor of size s

and with detectable nodal but not distant metastases; likewise,

z01(s) is the hazard function for detecting, at size s, a cancer

with detectable distant but not nodal metastases; and z11(s) is

the hazard function for detecting, at size s, a cancer with

detectable nodal and distant metastases. Associated with these

hazard functions are the c.d.f. Znm(s) before they reach size S,

with tails �ZZnm sð Þ, where n, m = 0,1.

4) The observable variables in the study of size-dependent

metastases are sizes S of the primary tumor at detection and

the indicators N and M, where N, M = 1/0 if nodal or distant

metastases are present/absent.

The relationship between assumptions (2) and (3) for the

detection model is shown in the following functions.

Z00~Dp

Z10~(Dp|Dn)\(Dp\Dn)~Dp7Dn

Z01~(Dp|Dm)\ Dp\Dm

� �
~Dp7Dm

Z11~ Dp|Dn|Dm\Dp\Dn\Dp\Dm\Dm\Dn

� �
|

(Dp\Dn\Dm)

To give the explicit expressions for Znm, the detailed expressions of

Dp,Dn and Dmare required. According to the assumptions of

metastases model, we know that:

Prfs0[SjN~0,M~0g~1{Fn sð Þ{Fm sð ÞzFn sð Þ\Fm sð Þ

¼D 1{Fn sð Þ

Prfs0[SjN~1,M~0g~Fn sð Þ{Fn sð Þ\Fm sð Þ ¼D Fn sð Þ{Fm sð Þ

Prfs0[SjN~0,M~1g~Fm sð Þ{Fn sð Þ\Fm sð Þ ¼D 0

Prfs0[SjN~1,M~1g~Fn sð Þ\Fm sð Þ ¼D Fm sð Þ

Where 0,S0#S, is the size of the primary tumor that was not

observed and D is considered the assumption that Fn sð Þ§Fm sð Þ.
Prfs0[SjN,Mg represented the probability of a primary tumor

with (1) or without (0) nodal (N) or distant (M) metastasis.

The joint density/ probability functions p s,n,mð Þ of random

variable S, N and M are presented below.

p s,0,0ð Þ~Z000 1{Fnð Þ

p s,1,0ð Þ~Z010 Fn{Fmð Þ

p s,0,1ð Þ~Z001|0~0

p s,1,1ð Þ~Z011Fm

Where Z0nm are probability density functions for detection.

The tumor-size dependent probability that nodal and distant

metastases are present at diagnosis, Wn sð Þ~PrfN~1js~Sg and

Wm sð Þ~PrfM~1js~Sg, respectively, where

Modeling LC Natural History & Detection
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Wn sð Þ~ p s,1,0ð Þzp s,1,1ð Þ
p s,0,0ð Þzp s,1,0ð Þzp s,0,1ð Þzp s,1,1ð Þ

Wm sð Þ~ p s,0,1ð Þzp s,1,1ð Þ
p s,0,0ð Þzp s,1,0ð Þzp s,0,1ð Þzp s,1,1ð Þ

Substitute p s,n,mð Þ with Z0nm, Fn, and Fm we obtain:

Fn sð Þ~ WmZ000Z010z(Wn{Wm)Z
0
00Z011

Z011Z010zWn(Z
0
00{Z010)Z011zWm(Z

0
10{Z011)Z000

Fm sð Þ~ WmZ000Z010

Z011Z010zWn(Z
0
00{Z010)Z011zWm(Z

0
10{Z011)Z000

5. Estimation
Methods provided by Kimmel and Flehinger [17] could be used

to estimate Wn, Wm, and Znm non-parametrically. We can also

estimate Dp,Dn,Dm,Fn, and Fm parametrically once the paramet-

ric tumor-growth and detection models are determined. Below we

provide an example.

Assuming that a tumor grows exponentially with a growth rate

l, and the metastases model described above, we have

Fn sð Þ~1{e
{
Ðs
0

hn uð Þdu

~1{e
{

mn
jz1

�S jz1ð Þ

Fm sð Þ~1{e
{
Ðs
0

hm uð Þdu

~1{e
{

mm
jz1

�S jz1ð Þ

Assuming that the hazard of tumor detection depends linearly on

the size of the tumor, denoting the efficiency of the detection by

tumor size as a and stage-dependent offset parameters as w0, w1

and w2, we obtain

hDp~aspzw0; �ð Þ hDn~asnzw1; �ð Þ hDm~asmzw2; �ð Þ

Correspondingly

Dp sp

� �
~1{e

{
Ðsp

0

hDp sð Þds

~1{e
{a

2
s2
p{w0sp ð��Þ

Dn snð Þ~1{e
{
Ðsn

0

hDn sð Þds

~1{e
{a

2
s2
n{w1sn ð��Þ

Dm smð Þ~1{e
{
Ðsm

0

hDm sð Þds

~1{e
{a

2
s2
m{w2sm ð��Þ

are c.d.f. of detection by size sp or sn or smof the primary tumor

and nodal and distant metastases. The primary tumor size when

the nodal and distant metastases arise is denoted as sni,smi. We can

then rewrite Dn sð Þ, Dm sð Þ as

Dn sð Þ~1{e
{a

2
(s{sni)

2{w1(s{sni), s§sni; Dn sð Þ~0,svsni

Dm sð Þ~1{e
{a

2
(s{smi)

2{w2(s{smi), s§smi ; Dm sð Þ~0,svsmi

where sni,smi are distributed with c.d.f. Fn .ð Þ,Fm .ð Þ, respectively,

and sniƒsmi.
5.1. Simulation-based estimation. The tumor growth and

metastasis model includes nine parameters (j, mn, mm, l K ,hð Þ, a,

W0, W1, W2). The joint likelihood function is difficult to maximize

directly. However, the tumor-growth, metastasis, and detection

models can be estimated separately, once multiple data points

for tumor size and disease stage are available. Another

method is to derive the least-squares function:

F G(xjj,mn,mm,k,h,a,W0,W1,W2ð Þ{ŶY xð ÞÞ, where g is the simu-

lated joint distribution of tumor size and stage and ŶY is the

observed joint distribution, based on these parameters, and apply

Figure 1. Probability density functions of nodal and distant
metastases from the time of tumor onset, using the estimated
parameters j = 0.01, mn = 8.0561029, mm = 2.7861029, K = 3.80
and h = 1.15.
doi:10.1371/journal.pone.0093430.g001
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the Nelder-Mead method [18,19,20] to achieve the best fitted

parameters in the model. We used the second approach because

we did not have the multiple tumor-size measurements for

individuals to estimate the models separately.

F~
X2

i~0

X20

j~0

gij j,mn,mm,k,h,a,W0,W1,W2ð Þ{ŷyij

� �2

is the least square function where i is the stage status defined as

local (i = 0, no nodal or distant metastasis N0M0), nodal (i = 1,

nodal metastases but no distant metastases, N1M0), or distant

(i = 2, M1), j is the number of tumor size group; gij() is the

simulated percentage of lung cancer with tumor in the size range

of j group and i stage among all detected lung cancer; ŷyij is the

observed percentage of lung cancer with tumor in the size range of

j group and i stage among all detected lung cancer. Detailed

simulation procedure was in File S1.

We estimated the nine parameters (j, mn, mm, l K ,hð Þ, g, W0,

W1, W2) using the TNM staging data in the SEER database from

2004 to 2008 for model fitting. Since SHG is using year 2000 as a

cut-off point for the vital status observation, the joint distributions

of tumor size and disease stage from 1995 to 1999 were chosen as

the output of the simulation. The results were validated against

independent data from the SEER database collected from 1988 to

1999. These years were chosen as closest possible to 2004–2008

periods.

To simulate the LC population, we firstly used the smoking

history generator (SHG) to generate the underlying population.

We assumed that the number of persons before year 1890 was zero

and at the year of 1890 there were 2877000 new born babies (the

number of live births in each year was shown in the Figure S1). We

provided the year of birth (say 1890) and gender (half and half) to

SHG as inputs and repeated the SHG for 287700 times. Then we

got these persons’ basic information, including the year of death

(converted from the age of death, Ad, generated by SHG) and their

smoking history information. We then applied our simulation

strategy (described in the File S1 at section 2.1 simulation process)

to get LC candidates and the information of their tumor

progression. For the next year (say 1891), we added new born

babies to the underlying population and removed the persons that

were dead in the previous year (say 1890) from the population,

whenever she or he was LCs or ‘‘normal’’ persons. Thus, we had

underlying population, which would be approaching the real U.S.

population (figure S2), and the LC candidate population, which

were considered as an unperturbed (existing before detection) LC

population. Assuming that no LC-related death occurred before

detection, the yearly LC population would be achieved by

applying the detection model to the unperturbed LC population.

Results

Figure 1 shows the probabilities of nodal metastases and distant

metastases by the time from the tumor onset. The estimated

parameters j, mn, mm, k and h in Table 1, which gives the estimates

of the model parameters, were used to draw fn tð Þ, fm tð Þ and

fn1m0
tð Þ. These probability density functions showed that the

probability of nodal and distant metastasis began to fast increase at

2.5 years (about 900 days) and 3 years (about 1100 days) from the

time of tumor onset, respectively. It reached the highest at 6.4

years (about 2350 days) and 6.8 years (about 2500 days) from the

time of tumor onset.

1. Model Fitting
Figure 2 compares the characteristics of the population for the

years 1995–1999 generated by the fitted model to the SEER data

(2004–2008). For tumors smaller than 10 cm in diameter, the

proportion of N0M0-stage disease (no nodal or distant metastases)

more closely reproduces the SEER data (2004–2008). The

proportions of NxM0- and M1-stage disease are not reproduced

as accurately as the proportions of N0M0-stage disease, especially

when the tumors are larger than 5 cm in diameter. For tumors

smaller than 1 cm, the model predicted that about 50% and 35%

would be staged as N0M0 and M1, respectively, whereas the

actual percentages were 42% and 42% respectively.

2. Predicting Clinically Observable Characteristics
The fitted model was also validated by predicting the

characteristics of lung cancer patient population in United States

between 1988 and 1999. The model predicts both the gender

distribution among LC patients and median age that are quite

close to the 1988–1999 SEER data (Table 2).

Comparing the model prediction and the data, a smaller

proportion of patients was diagnosed with localized disease than it

was predicted (Figure 2c). One of the reasons may be the different

staging definitions used. The predicted tumor size distributions

were closer to the 2004–2008 SEER than to the 1988–1999 SEER

data (Figure 3 (a–c)).

Table 1. The estimates of model parameters, with asymptotic confidence intervals.

Parameter Description Estimate 95% CI

j Detachment rate 0.01 [0.008, 0.011]

mn Transfer and deposition rate of cells to nodal metastases 8.0561029 [7.8061029, 8.2161029]

mm Transfer and deposition rate of cells to distant metastases 2.7861029 [2.1561029, 3.3461029]

*K Shape parameter of gamma distribution of tumor growth rate 3.80 [3.77, 3.82]

*h Scale parameter of gamma distribution of tumor growth rate 1.15 [1.12, 1.19]

g Efficiency of the detection by tumor size 1.061024 [1.061025, 1.061023]

W0 Offset parameter for detection by N0M0 stage symptoms 0.065 [0.056, 0.075]

W1 Offset parameter for detection by N1M0 stage symptoms 1.506103 [1.306103, 1.806103]

W2 Offset parameter for detection by M1 Stage symptoms 7.006104 [6.506103, 8.006105]

*Assuming exponential tumor growth and the estimates of K and h, the average tumor growth rate E(l) corresponds to a doubling time of 55 to 60 days.
doi:10.1371/journal.pone.0093430.t001
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3. Predicting Clinically Unobservable Characteristics
Table 3 summarizes the predicted but not directly clinically

observable characteristics of the detected tumors. The mean time

from the tumor onset (when the first malignant cell appears) to

nodal and distant metastases (when they are just formed and not

yet observed) and diagnosis is about 4.77, 5.05, and 6.27 years,

respectively. The average size of the primary tumors when nodal

and distant metastases form was 0.09 cm3 and 0.24 cm3,

respectively. The median age at the time of tumor onset is 63

and the average growth rate corresponds to the tumor-volume

doubling time of about 60 days.

Table S2 shows the distribution of doubling time by tumor size

and stage. In clinical practice, a primary tumor with distant

metastases is more likely to be found with a smaller size than a

primary with no or only nodal metastases. This leads to an

observation that a primary tumor with distant metastases grows

slower and remains smaller. This Table also demonstrates that

faster growing tumors tend to be detected at larger sizes.

Discussion

The parameters estimated from the joint distribution of tumor

size and stage in the SEER database from 2004 to 2008 (Table 1)

were applied to generate a lung cancer patient population from

1988 to 1999 and validated by comparison of the results to the

data from the SEER database from 1988 to 1999. The model

accurately predicts the gender distribution and the median age of

lung cancer patients, and approximates the joint tumor size and

disease stage distribution. The accurate prediction of gender

distribution and age at diagnosis for 1988–1999 is largely owing to

the accuracy of the smoking-based TSCE model and SHG.

Because smoking behavior has changed significantly over the

recent decades, the output is sensitive to the year at detection,

which is why we are not able to reconstruct gender and age at

diagnosis in the SEER data from 2004 to 2008 as accurately. This

model overestimates the proportion of patients with tumors larger

than 10 cm in diameter and underestimates the proportion of

patients with tumors between 4 and 9 cm. These discrepancies are

more obvious for the distributions of the primary tumor size at

stages NxM0 and M1 than at N0M0. The reason might be that

the detection interval is fixed to 1 year in our model, whereas

patients may visit a doctor more frequently when symptoms

appear. For tumors smaller than 1 cm, the model underestimated

the proportion of patients with distant metastases.

We also used the fitted model to predict disease characteristics

that are difficult or impossible to observe in clinical practice.

According to the estimates of k and h in Table 1, the average

tumor growth rate, l, is about 4.4, which corresponds to a tumor-

volume doubling time of approximately 55 to 65 days given the

Figure 2. Comparison of the model fit in the period of 1995–1999 to the data of SEER 2004–2008. (a) the stage distribution conditional
on tumor size and (b) the tumor size distribution; (c) Comparison of the predictive model 1988–1999 and SEER 1988–1999, where the data is
summarized as stage distribution conditional on tumor size.
doi:10.1371/journal.pone.0093430.g002

Table 2. Comparison of the lung cancer patient population predicted by our model (1988 to 1999) with data from the SEER
database (from 1988 to 1999 and from 2004 to 2008).

Characteristics Prediction 1988 to 1999 (N = 1,434,024) SEER 1988 to 1999 (N = 184,952) SEER 2004 to 2008 (N = 84,422)

Sex, n (%)

Male 833,754 (58.1) 108,205 (58.5) 44,228 (52.4)

Female 600,270 (41.9) 76,747 (41.5) 40,194 (47.6)

Age

Mean(SD) 67.31(14.26) 68.06(10.98) 69.75 (11.57)

Median 69 69 71

*Stage, n (%)

N0,M0 380,017 (26.5) 31,432 (17.0)(19.3)£ 20,863 (24.7)(28.1)£

Nx,M0 321,221 (22.4) 46,934 (25.4)(28.8)£ 17,889 (21.2)(24.1)£

M1 732,786 (51.1) 84,519 (45.7)(51.9)£ 35,357 (41.9)(47.7)£

Missing stage 0 (0) 22,067 (11.9) 10,313 (12.2)

Tumor Size, cm (Diameter)

Mean 4.57 4.30 4.21

Median 3.69 3.80 3.50

Std. deviation 3.21 3.03 3.11

Variance 10.33 9.20 9.65

Smoking Status, n (%)

Never 185,885 (13.0) ** -

Former 461,321 (32.2) - -

Current 786,818 (54.9) - -

*TNM staging being unavailable in SEER before 2004, we categorized tumors as localized, regional, and distant, for patients between 1988 and 1999.
**Smoking status is not reported in SEER.
£Excluding missing stage.
doi:10.1371/journal.pone.0093430.t002
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Figure 3. Tumor size distribution in predictive models, (a) Stage N0,M0 in SEER (2004–2008) and model (1988–1999), stage
Localized by SEER standard in SEER (1988–1999), (b) Stage Nx,M0 (x$1) in SEER (2004–2008) and model (1988–1999), stage
Regional by SEER standard in SEER (1988–1999), (c) Stage M1 in SEER (2004–2008) and model (1988–1999), stage Distant by SEER
standard in SEER (1988–1999).
doi:10.1371/journal.pone.0093430.g003
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exponential tumor growth model. This growth rate is higher than

what has been reported from screening studies [21,22,23], and

thus the difference is not entirely unexpected [24]. Besides,

introducing a time-dependent or size-dependent growth rate to the

tumor growth model may improve the fit of the model to the data.

The hazards for detection once nodal or distant metastases are

present are much larger than the hazards for detection when only

the primary tumor is present (W1, W2..W0), which reflects the

reality of disease detection in clinical practice. The mean duration

from tumor onset to detection was about 6 years in our model,

which is consistent with other disease progression models [25].

Among the detected tumors, the average primary tumor size at the

time of metastasis (nodal or distant) was less than 1 cm in

diameter, which is considerably smaller than that implied by other

predictions originating from screening data [17,26,27,28]. As-

sumptions regarding detection used in the models led to this

difference. In our model, the chances of detecting lung cancer

increase after nodal and distant metastases occur, and the

competitive detection model allows for the detection of the

metastasized tumor. This detection model does not require either

of the two extreme assumptions used in the previous studies

[8,9,17]: (1) that the probability to detect cancer is unchanged

when metastases are present, or (2) cancers are detected

immediately when metastatic spread occurs. To reduce the

complexity of the disease stage progression model, we did not

consider the possibility of a secondary spread of the disease from

nodal metastases. This may be the reason that the model did not as

accurately reproduce the proportion of nodal and distant

metastases as it did the proportion of localized tumors for tumor

sizes larger than 5 cm.

Our framework combines a carcinogenesis model with a model of

the natural history of tumor growth and progression, and a

detection model, to predict features of a lung cancer patient

population. This modular structure allows testing of different

detection strategies. One limitation of this model is that we were not

able to construct the overall likelihood function for the model in the

analytical form, and the Nelder-Mead estimation procedure used to

optimize the least square fit is time consuming. Another limitation is

that this framework largely depends on the smoking information

generated by the SHG, which has to be updated before it can be

used to accurately predict properties of future lung cancer patient

populations. We did not perform simulation by histology, which is

another limitation. Moreover, the model did not consider the

difference between the lung cancer risks in CPSI/NHS and SEER,

while the previously estimation of parameters in carcinogenesis

model was directly used. We cannot recalibrate carcinogenesis

model since no smoking information was recorded in SEER.

Conclusion

We proposed a model for predicting the natural disease

progression and detection of lung cancer that relies on the

following biologically and clinically reasonable assumptions: the

hazard function of tumor progression is based on the activity of the

tumor cells, which detach from the primary tumor and transfer to

another part of the body, leading to metastases [13]. Thus, the

metastasis process is related to the size of the primary tumor and

the tumor growth rate (which is also related to the activity of the

tumor cells). The detection of lung cancer in patients occurs as a

result of competing detection of the primary tumor or nodal or

distant metastasis. We used a TSCE model combined with the

smoking history generator to reproduce the population with

incipient tumors according to the yearly live birth number in the

United States (Figure S1). We then applied our models of the

tumor natural progression and its detection to re-create the lung

cancer patient population at the time of diagnosis. Lung cancer

data from SEER database collected between 2004 and 2008 were

used to fit the lung cancer progression and detection model. The

fitted model combined with a carcinogenesis model was used to

reconstruct the distribution of age, gender, tumor size, and disease

stage at diagnosis, and the results showed that the model

accurately predicted gender and median age, and reasonably

predicted the tumor size and disease stage distribution against

independent data from the SEER database collected from 1988 to

1999. This model framework provides a platform for estimating

the outcome of a strategy for the secondary prevention of lung

cancer before it is applied in clinic.

Supporting Information

Figure S1 Yearly live birth number in US used in the
simulation. For years in which the number of live births was

missing (between 1890 and 1908) we used the average number of

live births between 1909 and 1928 (2,877,000).

(TIF)

Figure S2 Comparison of U.S. population between
simulated data and Census Bureau data; the simulated
population deviates from the reality population after
year 1984, since SHG could not generate new babies
after 1984. However, we expect only minor if any effect of that

on the LC population, as lung cancer is very rare in young

individuals.

(TIF)

Table S1 Parameters of the response functions used in
the TSCE model [10].
(DOCX)

Table 3. Variables not directly observable for the detected
tumors in the predicted lung cancer population (1988–1999).

Variables not directly observable Mean (SD) Median (IQR)

Time from the tumor onset, (years)

To nodal metastasis 4.77 (2.70) 4.00 (3.00–6.00)

To distant metastasis 5.05 (2.86) 4.00 (3.00–6.00)

To diagnosis 6.27 (3.22) 5.00 (4.00–7.00)

Tumor volume (cm3) at metastasis

Sn 0.09 (8.4E-5) 0. 06 (0.03–0.13)

Sm 0.24(2.8E-4) 0.16 (0.07–0.33)

The linear tumor dimension (cm) at
metastasis

Dn 0.50 (1.7E-4) 0.49 (0.36–0.62)

Dm 0.68 (2.8E-4) 0.67 (0.50–0.85)

*Yearly Growth Rate l by stage

N0M0 6.17 (2.91) 6.30 (3.70–8.15)

N1M0 5.61 (1.68) 5.43 (4.45–6.71)

M1 3.79 (1.55) 3.54 (2.64–4.81)

*Doubling time by stage, (days)

N0M0 57.15 (43.83) 40.15 (31.02–68.41)

N1M0 49.40 (16.77) 46.52 (37.73–56.88)

M1 80.01 (38.66) 71.48 (52.65–95.69)

IQR, interquartile range; SD, standard deviation;* Here is the yearly growth rate
and doubling time of primary tumor.
doi:10.1371/journal.pone.0093430.t003
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Table S2 Doubling time by stages and tumor size for
the simulated LC population.
(DOCX)

File S1 Supporting text.
(DOCX)
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