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Abstract

The article presents University of Idaho – Physical Rehabilitation Movement Data (UI-PRMD) — 

a publically available data set of movements related to common exercises performed by patients in 

physical rehabilitation programs. For the data collection, 10 healthy subjects performed 10 

repetitions of different physical therapy movements, with a Vicon optical tracker and a Microsoft 

Kinect sensor used for the motion capturing. The data are in a format that includes positions and 

angles of full-body joints. The objective of the data set is to provide a basis for mathematical 

modeling of therapy movements, as well as for establishing performance metrics for evaluation of 

patient consistency in executing the prescribed rehabilitation exercises.
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1. Summary

Patient participation in physical therapy and rehabilitation programs is an important step in 

the recovery process of various musculoskeletal conditions. A home exercise program 

(HEP), where patients perform a set of recommended physical exercises in a home-based 

environment, is often a substantial component of a patient’s rehabilitation treatment. Despite 

the enormous expenses incurred by therapy programs on behalf of both healthcare providers 
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and patients [1], HEP treatment is not necessarily successful in aiding the patient reach full 

functional recovery [2]. Reports in the literature indicate that one of the main barriers to 

successful HEP implementation is patient noncompliance with the prescribed exercise plan 

[3]. The low adherence rates are attributed primarily to the lack of supervision and 

monitoring of patient performance in the outpatient setting by a rehabilitation professional. 

In addition, psychological issues associated with fear of painful movements, fear of re-

injury, and anxiety of increased pain have also been reported as important barriers to 

adherence in unsupervised exercise programs [4, 5]. Subsequently, a body of work has been 

concentrated on the development of tools in support of HEP, such as robotic assistive devices 

[6], exoskeletons, haptic devices, and virtual gaming environments [7].

The authors of this article are currently participating in a research project focused on the 

development of a novel therapy-supporting tool for automated monitoring and evaluation of 

HEP episodes based on implementation of machine learning algorithms. The goal of the 

project is to employ a Microsoft’s Kinect sensor [8] for capturing body movements during 

therapy sessions, and automatically evaluate patient performance and adherence to the 

recommended exercises. To achieve this goal, the project encompasses several specific 

objectives related to the development of a methodology for mathematical modeling of 

patient movements, definition of performance metrics, and creation of a set of therapy 

movements. The authors have developed a preliminary model of human motions using a 

machine learning method based on a neural network architecture consisting of auto-encoder 

and mixture density sub-nets [9], and they have proposed a taxonomy for performance 

metrics for evaluation of therapy movements [10]. The publications [9, 10] do not use the 

UI-PRMD set that is presented here. These articles use the data related to general human 

movements from the University of Dallas at Texas (UTD) - MHAD set [11], to prove the 

proposed concepts in a lack of a data set of therapy movements.

Machine learning methods employ observed or measured data of a system/process for 

establishing the relationship between the input and output parameters. These methods 

typically require vast amounts of data for learning the relationships among the system 

parameters. For many problems in the field of machine learning, the performance of the 

algorithms and their ability to extract relevant and useful information from data are directly 

proportional to the quantity and quality of the available data. In recent years, the research 

community in machine learning has become increasingly aware that the provision of 

appropriate data sets for a specific problem is essential for enhanced performance of the 

existing algorithms, and for developing and evaluating new algorithms. Moreover, at the 

present time companies that possess large data bases are often considered to have 

competitive advantage and capacity to achieve better results over other companies that work 

on a same problem. Consequently, a great deal of recent research efforts has concentrated on 

the creation of data sets for various problems in machine learning [12].

Our main motivation for creating the presented data set was the identified lack of publically 

available comprehensive data sets of physical therapy movements. Currently, there are a 

large number of publically available data sets related to general human movements [13] that 

are extensively used for tasks like action recognition, gesture recognition, pose estimation, 

or fall detection. Many of these data sets employ optical motion capturing systems for 
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recording the movements, e.g., CMU Multi-Modal Activity (CMU-MMAC) [14], and 

Berkley MHAD (Multi-Modal Human Action Dataset) [15]. Likewise, numerous data sets of 

general human movements have been created by using the Microsoft Kinect sensor, such as 

the MSR (Microsoft Research) Action3D data set [16] and the previously mentioned 

University of Dallas at Texas - MHAD set [11].

The existing data sets of therapy movements, however, are limited either in the scope of the 

movements or in the provided data format. One such example is the HPTE (Home-based 

Physical Therapy Exercises) data set of therapy movements, created by Ar and Akgul [17]. 

The set contains eight shoulder and knee exercise movements performed six times by five 

subjects, recorded with a Kinect camera. One major limitation of the HPTE data set is that 

only the video and depth streams from the Kinect sensor are provided. The data set does not 

provides the corresponding body joint positions or angles, and although it is possible to 

extract the joint information from the video and depth frames, it is not a straightforward 

task, and it would require implementation of an image processing method. The EmoPain 

data set [4] was designed with an emphasis on studying pain-related emotions in physical 

rehabilitation, and contains high-resolution face videos, audio files, full body joint motions, 

and electromyographic signals from back muscles. A group of 22 patients and 28 healthy 

control subjects performed 7 exercises typically undertaken by patients with chronic lower 

back pain. Another data set presented in the work of Nishiwaki et al. [18] is restricted to 

three exercises of lower limbs performed by nine subjects. The activity of four leg muscles 

was recorded with EMG (electromyography) electrodes. In addition, several related data sets 

focus on physical activity monitoring (e.g., by wearing heart rate monitors, inertial 

measurement units [19]), and are typically applied for recognition or classification of the 

type of activity based on collected data.

The UI-PRMD set presented in this work includes 10 movements that are commonly 

completed by patients in physical therapy programs. A sample of 10 healthy individuals 

repeated each movement 10 times in front of two sensory systems for motion capturing: a 

Vicon optical tracker, and a Kinect camera. The movement data were collected in the 

Integrated Sports Medicine Movement Analysis Laboratory (ISMMAL) with the 

Department of Movement Sciences at the University of Idaho. The movement data have 

been categorized, organized and posted on a dedicated web site for a free public access. 

Potential benefits of publically posting the UI-PRMD set include the potential to serve as a 

benchmark for comparison of future research in physical therapy, and to streamline the 

process of establishing consistent metrics for evaluation of patient progress in rehabilitation.

The presented data set does not consider the implication on the selected movements by a 

particular type of injuries of level of injuries. As stated earlier, the goal of the research at this 

stage is to employ the data for mathematical modeling of rehabilitation movements in 

general, and for assessment of the deviation of motion trajectories from the derived 

movement models.

The organization and format of the data, as well as the movement type and files 

nomenclature are presented in Section 2. Section 3 describes the methods for recording the 

data, and provides information related to the order of the joint positions and angular 

Vakanski et al. Page 3

Data (Basel). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



displacements for the used sensory systems. Section 4 presents concluding remarks related 

to the contribution and limitations of the data set.

2. Data Description

The UI-PRMD data set consists of measurements of joint angles and positions of 10 subjects 

while performing movements commonly performed during physical rehabilitation exercises. 

We selected 10 different movements, which are listed and described in Table 1. Examples of 

the 10 movements are displayed in Figure 1. During the data collection, each movement was 

initially demonstrated to a subject by one of the authors of the study, and afterwards the 

subject was asked to perform multiple repetitions of the movement. Each subject performed 

10 repetitions of each of the 10 movements. The subjects were not asked to maintain the 

body posture at the end of the repetitions for a period of time.

One motivation for selecting these movements is the body of work in the literature that, 

similarly to our research goal, dealt with modeling and evaluation of rehabilitation exercises. 

For instance, Lin and Kulic [20] employed a data set consisting of deep squats, sit to stand, 

knee flexion, hip flexion and straight leg raise movements for the development of a machine 

learning method for automated segmentation of the repetitions in each exercise. 

Komatireddy et al. [21] proposed an approach for evaluation of the consistency in 

completing the following physical therapy exercises: deep squats, inline lunge, sitting knee 

extension, and standing knee extension. Similar movements were employed in other related 

research within the published literature [17, 18]. Additional motivation for selecting the 

movements is because they are commonly used by clinicians as part of rehabilitation 

programs or as part of physical examinations for numerous situations, such as post-surgery 

recovery, upper body conditions (e.g., rotator cuff tendinopathy), lower body conditions 

(e.g., patellar tendinopathy) [22, 23]. On the other hand, the choice of the movements in the 

presented data set was not intended to address rehabilitation for specific types of medical or 

musculoskeletal conditions. Furthermore, the subject performance in the data set was not 

expected to correspond to a perfect movement, e.g., from a sport perspective. Rather, the 

goal was to collect motion trajectories that are performed in a consistent manner by the 

group of healthy subjects, and to utilize the data for mathematical modeling and analysis of 

the movements.

The nomenclature of the files in the data set includes the following information:

• Movement number _ subject number _ positions/angles

For example, the data instance ‘m04_s06_positions’ pertains to the 4th movement 

in Table 1 (i.e., side lunge) performed by the 6th subject, and it consists of the 

Cartesian position coordinates of the body joints, expressed in millimeters. 

Similarly, ‘m08_s02_angles’ corresponds to the recorded angular displacements 

for the 2nd subject while performing the standing shoulder extension movement, 

expressed in degrees. The joint order and further description of the position and 

angular measurements are provided in the next section, which is dedicated to the 

description of the data recording method.
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The data are presented in ASCII txt format, with comma delimiter used for separating the 

data values in the files.

The data are organized into two folders ‘Vicon’ and ‘Kinect,’ each containing the 

measurements acquired by either of the two respective sensory systems. Each folder contains 

two subfolders, ‘Positions’ and ‘Angles,’ which contain the files with the respective 

measurements.

Further, because each movement consists of 10 episodes, or repetitions of the same 

movement, the data are also provided in a segmented form, where each file comprises the 

measurements for one episode of one of the movements. The corresponding data are 

provided in the ‘Segmented Movements’ folder. The following file nomenclature is used for 

the segmented movements:

• Movement number _ subject number _ episode number _ positions/angles

In this case, the file ‘m04_s06_e10_angles’ consists of the angular joint 

measurements for the 10th episode of the 4th movement performed by the 6th 

subject.

In addition, the data set provides examples of the movements performed in an incorrect, or 

non-optimal, manner. In Table 1, the rightmost column provides explanations of non-optimal 

performance for each movement. For instance, incorrect ways to perform the deep squat 

movement can include: upper torso is not kept vertical during the squat, knees are not 

aligned and kept parallel, noticeable or excessive trunk flexion, or noted loss of balance, 

among. The rationale for the inclusion of non-optimal performance is that the correctly 

performed movements are associated with examples of movements that are demonstrated to 

a patient by a rehabilitation professional, and therefore they can be utilized to develop a 

mathematical model of the movement. In contrast, patients with musculoskeletal injury or 

constraints are assumed to be unable to, at least initially, perform the exercise movement in a 

correct or optimal manner that is generally accepted as necessary for efficient movement to 

reduce injury risk associated with physical activity [24]. Consequently, the consistency of 

the incorrectly performed movements can be evaluated in relation to the derived 

mathematical model of the correct movements, and a performance score can be 

communicated to the patient by an automated system for movement analysis. In other words, 

the non-optimal portion of the data can serve as a testing set, and it can be used for 

validation of the formulated mathematical models for the correct portion of the movements.

In creating the set of incorrect movements, the subjects performed 10 episodes of the 10 

movements arbitrarily in a suboptimal manner. One should note that the subjects were not 

asked to simulate a patient with a specific injury, nor to perform the incorrect exercises at a 

certain level of a specific injury. The goal was to execute a set of non-optimal movements 

that represent deviation from the correctly executed movements. This portion of the data is 

stored into a folder named Incorrect Movements. Analogously to the described taxonomy for 

the correct movements, the data are classified based on the sensory system used (Vicon or 

Kinect), and based on whether the movements are available in their entirety or segmented 

into 10 episodes. The file nomenclature for the incorrect movements follows the same order 

as for the correct movements, and in addition, all files have an extension _inc, which implies 
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‘incorrect.’ For instance, the file ‘m05_s04_e03_angles_inc’ corresponds to the incorrect 3rd 

episode performed by the 4th subject for the sit to stand movement. One of our next goals 

and a future work task is to manually label the incorrect movements, based on the extent of 

inconsistency in performing the exercises.

The files m03_s03_positions/angles for the Vicon system, related to the inline lunge 

movement performed by the 3rd subject, are missing in the data set, due to absent 

measurements for the markers during the data collection. The corresponding data for the 

same movements recorded with the Kinect sensor is available in the data set.

3. Methods

The data were collected using two types of sensory systems: a Vicon optical tracking 

system, and a Microsoft Kinect camera.

Vicon optical tracker [25] is a highly accurate system designed for human motion capturing 

and analysis. The system employs eight cameras with high speed and resolution 

characteristics for tracking a set of retroreflective markers. By attaching the set of markers 

on strategic locations of a human body, the system calculates the position of the markers 

based on the acquired data from the cameras, and it uses this information to retrieve the 

orientations of the individual body parts.

The Kinect sensor [8] consists of a color camera and an infrared camera, which are used to 

simultaneously acquire image and range data from the environment. The sensor was initially 

designed as a natural-user interface in gaming environments for Microsoft’s Xbox console; 

however due to its popularity among researchers, hobbyists, and the industry, Microsoft 

offered it as a stand-alone unit for Windows operating systems and released a software 

development kit (SDK). The SDK provides libraries for access to the raw RGB and depth 

streams, other miscellaneous data processing codes, and the most importantly for this study 

— a skeletal tracker with real-time motion capturing ability. In skeletal mode, the Kinect 

sensor can track the movements of up to six people and 25 skeletal joints per person.

The movements performed by the study participants were acquired simultaneously with the 

Vicon and Kinect systems. The software programs Nexus 2 and Brekel were employed for 

recording the movements with the Vicon and Kinect systems, respectively. The frame rate of 

the motion capture with Vicon was 100 Hz, whereas for the Kinect it was 30 Hz. The 

Cartesian positions values for the joints are expressed in millimeters, and the joint angles are 

expressed in degrees, for both the Vicon and Kinect measurements. The values in the data 

set are presented as recorded. The only preprocessing operation that was performed 

corrected large jumps in the angle measurements with Kinect, because the angles were 

limited to be in the (−180°, +180°) range. For the cases where these limits were exceeded, 

the values continued on the opposite side of the limits. No other data processing was 

performed.

The joints in the skeletal model recorded with the Kinect sensor are shown in Figure 2. The 

data include the motion measurement for 22 joints. The positions of the fingers are not 

included because they are not relevant for assessing correct performance of the movements 
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included in the study. The order of the joint measurements in the data set is displayed in the 

figure, where the first three measurements pertain to the waist joint, the next three values are 

for the spine, etc. The values for the waist joint are given in absolute coordinates with 

respect to the frame of the coordinate origin of the Kinect sensor, and the values for the 

other 21 joints are given in relative coordinates with respect to the parent joint in the skeletal 

model. For instance, the position and orientation of the left forearm is given relative to the 

position and orientation of the left upper arm.

For tracking and sensing of the demonstrated movements with the Vicon system, a total of 

39 reflective markers were attached on the subjects’ bodies. The locations for attaching the 

markers [26] are shown in Figure 3.

The order of measurements for the Vicon and Kinect systems are presented in Table 2. For 

both Vicon and Kinect, the joints for which the measurement are absolute are given with 

respect to the coordinate system of the sensory system, and are indicated in the parenthesis 

in the table. For the remaining joints, the measurements are relative, and are given with 

respect to the parent joint in the skeletal model. The angle outputs for all joints are 

represented with the YXZ triplet of Euler angles for both sensors.

A sample of the collected data with Vicon for the m06_s01_angles file, which is related to 

the standing active straight leg raise movement, is shown in Figure 4. All angular 

coordinates for the 39 joints are given in the figure in degrees. One can notice that only 

several joints have significant displacements and they correspond to the leg joints, whereas 

the other body joints have almost constant values.

The demographic information of the ten subjects who participated in the data collection is 

provided in Table 3. The average age of the subjects was 29.3 years, with the standard 

deviation of 5.85 years. As stated before all the subjects were in a good health condition. 

The subjects were either graduate students or faculty at the University of Idaho, as indicated 

in the table.

In spite of the provided information for the dominant side of the subjects in Table 3, some of 

the subjects were not consistent in performing the exercises with their dominant hand or leg. 

Table 4 lists the hand or leg with which each subject performed each of the movements, 

where understandably, R and L stand for right and left, respectively. The deep squat and sit 

to stand movements are not listed in the table because they don’t depend on the subjects’ 

dominant side.

Next, the variability across the movement sequences in the data set is briefly discussed. The 

skeletal angular data acquired with the Vicon sensory system for the deep squat exercise, 

i.e., m01 movement, is employed for this purpose. Mean-square deviation (also known as 

mean-square error, or MSE) is selected as a statistic for comparing the variability in 

performance within and between subjects. For calculation of the MSE, the movement 

episodes were first scaled via cubic interpolation to a common length equal to the average 

number of time steps for all 100 episodes of m01, which was equal to 240. Afterward, the 

MSE was calculated and it was normalized by dividing the total deviation with the number 

of time steps (i.e., 240) and the number of dimensions (117 for the Vicon system). The 
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results are shown with box diagrams in Figure 5. The subfigure (a) presents the deviation of 

the correct movements within-subjects. Most of the subjects were consistent in their 

performance, except for Subject 9 who completed the repetitions of the dep squat exercise in 

a less uniform manner. The subfigure (b) displays the deviation within-subjects of the 

incorrect sequences with respect to the correct movements performed by the same subject. 

Similarly, the last 3 subjects produced larger variability between their correct and incorrect 

movements. Analogously, subfigure (c) depicts the variation between-subjects, where the 

deviation of each correct movements is calculated with respect to all correct movements 

collected from all 10 subjects. Beside Subject 9, Subject 10 movements are also 

characterized with a greater disparity relative to the other subjects, although the subject 

performed the repetitions in a consistent manner based on the Subfigure (a). The subfigure 

(d) shows the deviation of each incorrect movement with respect to all correct movements.

Table 5 contains the means and standard deviations for the between-subjects MSE deviations 

of the angular Vicon measurements for all 10 movements. For each movement two rows are 

provided corresponding to the correct movements (denoted with a ‘-c’ suffix) and the 

incorrect movements (denoted with an ‘-i’ suffix). The values for the subjects who used a 

different hand or leg for a particular movement than the majority of the other subjects (as 

indicted in Table 4) were not included in the table (and are indicated with NA in the table), 

because their movement data deviates significantly from the other movements. Our intent is 

to provide a preliminary statistical information on the variability of the movement data, and 

as part of our future work we will investigate other metrics for explanation of the 

consistency of the subjects’ performance.

The research project related to the data collection was approved by the Institutional Review 

Boards at the University of Idaho on April 26, 2017 under the identification code IRB 16–

124. A written informed consent for participation in a research study was approved by the 

board, and was obtained from all participants in the study.

4. Conclusion

In summary, the contribution of the paper is the presented data set of movements related to 

physical therapy exercises. The set of 10 exercises performed by 10 healthy subjects and 

recorded with two motion capturing systems is described. Instances of the movements 

performed in an incorrect manner are also provided, and can potentially be utilized for 

evaluation of data modeling methods. The presented data set have several limitations. In 

particular, all the movements were performed by healthy subjects; it would have been 

preferred at least the incorrect movements to have been performed by patients. In addition, 

the selected movements are general, and are not associated with a particular condition, or 

groups of patients. A shortcoming of the data set for the purpose of mathematical modeling 

of the movement data with machine learning methods is its size, whereas a large data set 

including a large number of subjects and movement types is preferred.
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Figure 1. 
Examples of the 10 movements: (a) Deep squat (m01); (b) Hurdle step (m02); (c) Inline 

lunge (m03); (d) Side lunge (m04); (e) Sit to stand (m05); (f) Standing active straight leg 

raise (m06); (g) Standing shoulder abduction (m07); (h) Standing shoulder extension (m08); 

(i) Standing shoulder internal-external rotation (m09); (j) Standing shoulder scaption (m10).
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Figure 2. 
Joints in the skeletal model of Kinect recorded data.
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Figure 3. 
Locations on the body for attaching the Vicon markers. (a) Front view of the upper body; (b) 

Back view of the upper body; (c) Front view of the lower body; (d) Back view of the lower 

body. The pictures are taken from [26]. Copyright: © 2016 Vicon Motion Systems Limited.
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Figure 4. 
Recorded joint angles with the Vicon motion capture system for one subject showing the 10 

episodes of the standing active straight leg raise movement. The figure displays the angular 

displacements corresponding to the 117-dimensional data for approximately 1,900 time 

frames (i.e., 19 seconds).
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Figure 5. 
Mean-square deviation for the angular displacements of the deep squat movement across the 

10 subjects. (a) Within-subjects variance for the correct movements; (b) Within-subjects 

variance for the incorrect movements; (c) Between-subjects variance for the correct 

movements; (b) Between-subjects variance for the incorrect movements.
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Table 1

Movement order and a brief description.

Order Movement Description Non-Optimal Movement

m01 Deep squat Subject bends the knees to descends 
the body toward the floor with the 
heels on the floor, the knees aligned 
over the feet, the upper body 
remains aligned in the vertical 
plane

Subject does not maintain upright trunk posture, unable to 
squat past parallel, demonstrates knee valgus collapse or 
trunk flexion greater than 30°

m02 Hurdle step Subject steps over the hurdle, while 
the hips, knees and ankles of the 
standing leg remain vertical

Subject does not maintain upright trunk posture, has less 
than 89° hip flexion, does not maintain femur in neutral 
position

m03 Inline lunge Subject takes a step forward and 
lowers the body toward the floor to 
make contact with the knee behind 
the front foot

Subject unable to maintain upright trunk posture, has rear 
knee reach the floor, or has a lateral deviation in forward 
step

m04 Side lunge Subject takes a step to the side and 
lowers the body toward the floor

Subject displays moderate to significant knee valgus 
collapse, pelvis drops or rises more than 5°, trunk angle of 
less than 30°, thigh angle of more than 45°, center of knee is 
anterior to the toes

m05 Sit to stand Subject lifts the body from a chair 
to a standing position

Subject unable to maintain upright trunk posture, pelvis 
rises 5° or more, uses arms or compensatory motion to 
stand, unable to maintain balance or shifts weight to one 
leg, displays moderate to significant knee valgus collapse

m06 Standing active straight leg 
raise

Subject raises one leg in front of the 
body while keeping the leg straight 
and the body vertical

Subject unable to maintain upright trunk posture, pelvis 
deviates 5° or more, more than 6° of knee flexion and less 
than 59° of hip flexion

m07 Standing shoulder abduction Subject raises one arm to the side 
by a lateral rotation, keeping the 
elbow and wrist straight

Subject unable to maintain upright trunk posture or head in 
neutral position, lift arm does not remain in plane of motion, 
less than 160° of abduction

m08 Standing shoulder extension Subject extends one arm rearward, 
keeping the elbow and wrist straight

Subject unable to maintain upright trunk posture or head in 
neutral position, lift arm does not remain in sagittal plane, 
less than 45° of extension

m09 Standing shoulder internal-
external rotation

Subject bends one elbow to a 90 
degree angle, and rotates the 
forearm forward and backward

Subject unable to maintain upright trunk posture or head in 
neutral position, arm positioning less than 60° of motion in 
both directions

m10 Standing shoulder scaption Subject raises one arm in front of 
the chest until reaching the 
shoulders height, keeping the elbow 
and wrist straight

Subject unable to maintain upright trunk posture or head in 
neutral position, lift arm is not maintained in correct plane, 
less than 90° of motion
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Table 2

Order of positions and angles in the data set for the Vicon and Kinect systems.

Joint
order

Vicon Positions Vicon Angles Kinect Positions and Angles

1 LFHD - Left head front Head (absolute) Waist (absolute)

2 RFHD - Right head front Left head Spine

3 LBHD – Left back head Right head Chest

4 RBHD - Rright back head Left neck Neck

5 C7 - 7th cervical vertebra Right neck Head

6 T10 - 10th thoracic vertabra Left clavicle Head tip

7 CLAV - Clavicle Right clavicle Left Collar

8 STRN - Sternum Thorax (absolute) Left Upper arm

9 RBAK – Right back Left thorax Left for arm

10 LSHO - Left shoulder Right thorax Left hand

11 LUPA - Left upper arm Pelvis (absolute) Right collar

12 LELB - Left elbow Left pelvis Right upper arm

13 LFRM - Left forearm Right pelvis Right forearm

14 LWRA - Left wrist A Left hip Right hand

15 LWRB - Left wrist B Right hip Left upper leg

16 LFIN - Left finger Left femur Left lower leg

17 RSHO - Right shoulder Right femur Left foot

18 RUPA - Right upper arm Left knee Left leg toes

19 RELB - Right elbow Right knee Right upper leg

20 RFRM - Right forearm Left tibia Right lower leg

21 RWRA - Right wrist A Right tibia Right foot

22 RWRB - Right wrist B Left ankle Right leg toes

23 RFIN - Right finger Right ankle

24 LASI - Left ASIS Left foot

25 RASI - Right ASIS Right foot

26 LPSI - Left PSIS Left toe

27 RPSI - Right PSIS Right toe

28 LTHI - Left thigh Left shoulder

29 LKNE - Left knee Right shoulder

30 LTIB - Left tibia Left elbow

31 LANK - Left ankle Right elbow

32 LHEE - Left heel Left radius

33 LTOE - Left toe Right radius

34 RTHI - Right thigh Left wrist

35 RKNE - Right knee Right wrist

36 RTIB - Right tibia Left upperhand

37 RANK - Right ankle Right upperhand

38 RHEE - Right heel Left hand

39 RTOE - Right toe Right hand
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