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Abstract

Polydnaviruses are mutualists of their parasitoid wasps and express genes in immune cells of their Lepidopteran hosts.
Polydnaviral genomes carry multiple copies of viral ankyrins or vankyrins. Vankyrin proteins are homologous to IkB proteins,
but lack sequences for regulated degradation. We tested if Ichnoviral Vankyrins differentially impede Toll-NF-kB-dependent
hematopoietic and immune signaling in a heterologous in vivo Drosophila, system. We first show that hematopoiesis and
the cellular encapsulation response against parasitoid wasps are tightly-linked via NF-kB signaling. The niche, which
neighbors the larval hematopoietic progenitors, responds to parasite infection. Drosophila NF-kB proteins are expressed in
the niche, and non cell-autonomously influence fate choice in basal and parasite-activated hematopoiesis. These effects are
blocked by the Vankyrin I2-vank-3, but not by P-vank-1, as is the expression of a NF-kB target transgene. I2-vank-3 and P-
vank-1 differentially obstruct cellular and humoral inflammation. Additionally, their maternal expression weakens ventral
embryonic patterning. We propose that selective perturbation of NF-kB-IkB interactions in natural hosts of parasitic wasps
negatively impacts the outcome of hematopoietic and immune signaling and this immune deficit contributes to parasite
survival and species success in nature.
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Introduction

Parasitic wasps develop within their insect hosts as they devour

host bodies. Wasp oviposition in Drosophila larvae simultaneously

activates humoral and cellular immune reactions. In a systemic

acute inflammatory reaction, humoral antimicrobial secretions

and cytokines from the fat body synergize with hematopoietic

proliferation and differentiation, to encapsulate the wasp egg and

protect host larvae [1,2,3]. Immune response against wasp eggs

alters hematopoietic development in the larval lymph gland and in

the hemolymph [4,5,6]. Genetic and molecular analysis of wasp-

infected Drosophila hosts has revealed the fundamental role for the

Toll-NF-kB pathway in both humoral and cellular immunity

[2,3,7]. Toll signaling is also essential for basal hematopoiesis in

the lymph gland [8], although the precise functions of the Toll

effector proteins, the NF-kB family transcription factors Dorsal (dl)

and Dorsal-related immunity factor (Dif), in either basal or

activated hematopoiesis are not understood.

The nuclear translocation and functions of Dorsal and Dif are

inhibited by their interactions with Cactus, the cognate IkB inhibitor

[9,10]. The direct physical interaction with NF-kB proteins depends

on several ankyrin repeats in the IkB protein sequences [11,12]. A

Toll-dependent degradation signal is interpreted by the N-terminal

regulatory domain of Cactus [13]. Indeed, chronic inflammatory

defects wrought by excessive Toll activation are ameliorated by a

mutant Cactus without the N-terminal domain responsible for

signal-dependent degradation [14]. Interestingly, ankyrin repeat

sequence motifs, homologous to Cactus, are found in the genomes of

all sequenced polydnaviruses [15,16,17]. However, whether closely-

related members of this large family of insect viral proteins support

parasite development by redundantly or differentially blocking NF-

kB signaling in host hematopoiesis and immunity, and mechanisms

underlying such differences, is not known.

Double-stranded DNA-carrying mutualistic and pathogenic

polydnaviruses (PDVs) fall into the evolutionarily distinct bracov-

irus (BV) and ichnovirus (IV) genera that are associated with an

estimated 20,000 species of parasitic wasp families Braconidae and

Ichneumonidae, respectively [18]. Each wasp species has co-

evolved with a unique, vertically-transmitted PDV [19,20] that

they introduce into their Lepidopteran larval hosts upon

oviposition. The polydnaviral particles express their gene products

in infected tissues to ensure wasp success [18].

The viral ankyrin (vankyrin) gene family is common to both BV

and IV genomes; each genome carries several members [21]. The

Campoletis sonorensis IV (CsIV) genome contains seven copies of

vankyrin genes, with 47% to 83% amino acid sequence identity.
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Because Vankyrins lack the N- and C-terminal regulatory domains

of cellular IkBs, it was suggested that these proteins effectively

inhibit NF-kB signaling in parasitized insects [16,22].

In this study, we first defined new functions of Dif and Dorsal in

basal and activated hematopoiesis. We then tested the inhibitory

functions of two of the seven vankyrin genes of the Campoletis

sonorensis Ichnovirus, CsIV-P-vank-1 (P1) and CsIV-I2-vank-3 (I3).

These Vankyrins (1) are the most similar to each other, with 83%

amino acid sequence identity; (2) are derived from different DNA

segments (P and I) of the multipartite CsIV genome; (3) share only

four of the six 33-amino acid ankyrin repeats of Cactus; (4) possess

a putative functional zinc-binding motif in their N-termini not

present in other PDV ankyrins; (5) and are also among the most

expressed in Lepidoptera immune tissues after parasitization. We

reasoned that a Vankyrin-based immune-suppressive strategy

between BVs and IVs reflects the broad functional conservation

of NF-kB-dependent immune responses in insects and an intrinsic

ability of Vankyrins to dominantly interfere with Toll-NF-kB

signaling in a context-independent manner.

In a novel application of Drosophila to examine insect-insect and

insect-virus interactions, we tested if P1 and I3 might differentially

block hematopoietic and immune signaling in Drosophila models of

acute (Leptopilina spp. wasp egg encapsulation) and chronic (ectopic

NF-kB signaling) inflammation [2]. We also examined their ability

to temper the maternal NF-kB pathway essential for embryonic

dorsal/ventral (d/v) axis formation. We report specific and dose-

dependent inhibition of NF-kB signaling in hematopoiesis, innate

immunity, and embryonic patterning by P1 and I3. These results

suggest that NF-kB signaling is pervasive across taxa and offer

rational means for its selective inhibition by viral-ankyrin proteins.

Results

The lymph gland niche is sensitive to wasp infection and
activates NF-kB signaling

Sumoylation-deficient animals exhibit ectopic NF-kB signaling

which correlates with persistent high levels of an active ligand for

the Toll receptor (Spatzle), and low levels of Cactus protein in

immune cells. These changes contribute to continuous hemato-

poietic overproliferation and chronic inflammation [2,23]. Loss of

the Dif and dl loci (or of dl alone) suppresses chronic inflammation

and aberrant hematopoiesis of Ubc9 mutants [14]. Wasp infection

of Drosophila larvae activates NF-kB functions [2,3] and also alters

hematopoietic development in the lymph gland [5,7,24]. These

results suggested that Dorsal and Dif likely control normal

hematopoiesis in the lymph gland and their activity may be

subject to immune suppression by parasitic wasps. The lymph

gland is a lobed organ. Anterior lobes of the third instar larva are

most developed and harbor a quiescent medullary zone (MZ) with

relatively undifferentiated cells, maintained by the niche or

posterior signaling center, while the peripheral cortical zone

(CZ) contains cells at various developmental stages, including

mature immune cells [25]. The niche is specified by the homeobox

transcription factor Antennapedia (Antp) [26]. The phagocytic

plasmatocytes make up the majority of mature cells, while crystal

cells carry pro-phenol-oxidase crystals for melanization. Special-

ized large adhesive cells, lamellocytes, differentiate when Toll-NF-

kB signaling is hyperactive or upon wasp infection [1]. In antibody

staining experiments, we found Dorsal expression throughout the

lymph gland lobes with somewhat higher signal in the CZ (Fig. 1A–

B9). In contrast, Dif expression is high in the Antennapedia (Antp)-

expressing niche cells. Dif signal is lower and variable in the MZ/

CZ regions (Fig. 1C–D0).

We utilized a D4-lacZ reporter, which contains four Dorsal/Dif

binding sites [27]. In uninfected larvae, D4-lacZ expression

(Fig. 2A–A9) co-localizes with Antp.GFP expression. This basal

D4-lacZ expression suggests high Dorsal/Dif transcriptional

activity in the niche even in uninfected animals. Upon L. boulardi

infection, D4-lacZ expression is four times higher in infected

compared to uninfected larvae (compare Fig. 2B9 to Fig. 2A9).

Additionally, numerous cells of the anterior lobes are also positive

for anti-b-galactosidase staining (Fig. 2B–B9). The basal D4-lacZ

expression in the niche is not observed in glands from dl8/Df119

animals (compare Fig. 2C to Fig. 2D), although, surprisingly, these

mutant glands express the D4-lacZ reporter in many cortical cells

(Fig. 2C–D9). Thus, it appears that (a) consistent with NF-kB

function in anti-wasp response, the D4-lacZ reporter is sensitive to

and is differentially activated (in distinct cell populations) by

parasitization; (b) transcriptional activity of Dorsal in the niche is

essential for D4-lacZ expression; and (c) Dorsal possibly represses

transcription of gene targets in the lobe cortex.

Dif and Dorsal regulate basal hematopoiesis in the niche
To test their individual effects on the niche and on hematopoi-

esis, we modulated NF-kB levels in the niche. (1) RNAi

knockdown with either Antp.GFP, DifRNAi or Antp.GFP, dlRNAi

did not yield a significant difference in the number of GFP-positive

cells (Fig. 3A–C, F), although, unexpectedly, the intensity of the

Antp.GFP signal in cells with RNAi was significantly reduced

(Fig. 3A–C, G). Conversely, ectopic expression of Dif or Dorsal in

the niche increased Antp.GFP expression (Fig. 3D–E, G). (2)

Overexpression of either wild type protein (Antp.dl or Antp.Dif)

also showed supernumerary lamellocytes in the lymph gland lobes

(Fig. S1G, J–K). (3) We found no significant difference in the

number of crystal cells in Antp.GFP, DifRNAi or Antp.GFP, dlRNAi

glands, slight increase in Antp.GFP, Dif but no change in

Antp.GFP, dl (Fig. S1A–F). However, Df(2L)119/Df(2L)J4

mutants lacking both NF-kB proteins show significantly more

crystal cells in the lymph gland and in the sessile compartment,

compared to heterozygous controls (Fig. 3H–L), indicating

inhibitory and redundant NF-kB roles in crystal cell development.

Anti-Antp staining of lobes from Df(2L)119/Df(2L)J4 glands

Author Summary

Parasitoid wasps are insects whose development takes
place within the body of other insects. To survive, wasp
larvae must overcome the immune defenses of their hosts.
How parasitic wasps overcome host immunity is not fully
understood even though we know that different strategies
using venoms, virus-like particles, or viruses are involved. A
unique class of viruses, called polydnaviruses is found in
two families of wasps that comprise more than 20,000
wasp species. The genomes of polydnaviruses encode
proteins with ankyrin repeats. Ankyrin repeats are also
found in Cactus, the inhibitor protein of NF-kB signaling in
Drosophila. Viral ankyrin proteins, or Vankyrins, however,
lack the amino acid sequences necessary for turnover
found in Cactus and mammalian IkB family members. We
show that Vankyrins produced by polydnaviruses of a
parasitic wasp that attacks caterpillars of many common
agricultural pests can block NF-kB signaling in fruit fly
larvae. This inhibition supports parasite success. Our work
highlights the crucial role of NF-kB signaling across insect
taxa in insect-insect and insect-virus interactions. Studies
of polydnaviral ankyrin proteins in Drosophila reveal that
immune-suppressive viruses may block both cellular and
humoral immunity in insects to win the biological ‘arms
race’.

Anti-Inflammatory/Anti-Tumors Effects of Viral Ankyrins
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revealed that the niche is specified in the absence of Dif and Dorsal

and the Antp protein expression levels appears comparable to

those in heterozygous controls (data not shown). Together, these

results suggest that Dorsal and Dif can modulate Antp-Gal4

transgene expression in the niche and are required non cell-

autonomously for the proportional development of crystal cell and

lamellocytic lineages.

We next made flp-out clones marked with GFP alone (control) or

additionally expressing the fusion protein GFP-Dorsal to test for

non cell-autonomous requirement. Consistent with observations

above, glands with GFP-Dorsal clones showed a reduction in crystal

cells (Fig. S2A–C) and an increase in lamellocytes (Fig. S2D–F),

relative to glands with control clones. In both cases, mature cells

appeared GFP-negative and outside the clone boundary (Fig. S2B,

E). This observation supports a non cell-autonomous requirement

for Dorsal/NF-kB in the development of these lineages.

Expression and effects of P1 and I3 on niche and basal/
activated hematopoiesis

Viral protein, P1 or I3, was co-expressed with GFP using the

Antp-Gal4 driver. Both P1 and I3 are not only cytoplasmic

(Fig. 4A, B, C; yellow), but also nuclear in cells of the niche

(Fig. 4B, C; purple). While P1 is more uniformly distributed

(Fig. 4B9), I3 distribution is speckled (Fig. 4C9).

Antp.P1 expression had no detectable effect on crystal cell

numbers (Fig. 4E–E1, I), on the number of cells in the lymph gland

niche (Fig. 4H), or on the intensity of Antp.GFP signal (Fig. 4G).

However, like Antp.DifRNAi or Antp.dlRNAi, Antp.I3 reduces the

intensity of Antp.GFP (Fig. 4G), and similar to Dif2 dl2 mutants,

Antp.I3 increases the number of circulating/sessile crystal cells in

the posterior larval segments (Fig. 4F1, I). Additionally, its

expression reduces the niche cell count (Fig. 4H).

Consistent with the interpretation that I3 may be able to block

Dorsal/Dif function, we found, using the D4-lacZ reporter, that

Antp.GFP, I3 (but not P1) reduces basal levels of b-galactosidase

expression in the niche (Fig. 5A–C0). Moreover, wasp infection-

induced boost in D4-lacZ expression in the lobes is also signifi-

cantly inhibited by I3 with reduced b-galactosidase signal intensity

(Fig. 5D–F).

Localization of Vankyrins in circulating blood cells in
relation to GFP-Dorsal

To determine if Vankyrins might co-localize with Dorsal and

whether their subcellular localization in relation to Dorsal changes

upon wasp-infection, we examined their presence in GFP-Dorsal-

expressing blood cells. The GFP-Dorsal fusion protein, when

expressed alone (Cg.GFP-Dorsal) is punctuate in the cytoplasm

of uninfected larval blood cells and some fusion protein

translocates to the nucleus upon wasp infection (Fig. 6A–B0) [2].

I3 distribution in uninfected cells (Srp.GFP-Dorsal; Srp.I3) is also

cytoplasmic and punctuate (Fig. 6C–C0 - arrowhead). P1

distribution (Srp.GFP-Dorsal; Srp.P1) in these blood cells is also

largely cytoplasmic and punctuate even though more evenly

distributed than I3 (Fig. 6E–E0 - arrowhead). In control cells, both

I3 and P1 signals show little to no overlap with the GFP-Dorsal

signal (Fig. 6C0, E0). Upon wasp infection, both GFP-Dorsal and

Vankyrin signals in blood cells are higher compared to cells from

uninfected animals and their distribution is variable. While the I3

signal is intensely nuclear (Fig. 6D - arrow), there is strong and

clear co-localization of some I3 with GFP-Dorsal in vesicular

pattern in the cytoplasm (Fig. 6D0 - yellow). Interestingly, GFP-

Dorsal levels remain relatively low in the nuclei of most blood cells

from wasp-challenged I3-expressing animals (Fig. 6D9). In

contrast, some of the P1 signal co-localizes with nuclear GFP-

Dorsal (Fig. 6F0 - white). These results suggest that, unlike their

behavior in cultured Lepidopteran cells (where lipopolysaccharide

or laminarin exposure alters localization from nucleus to cyto-

plasm [28]), in Drosophila larval blood cells, both I3 and P1 proteins

Figure 1. Dif and Dorsal localization in third instar lymph gland. A–B9. Dorsal is found throughout the anterior lobes of a third instar control
(Ubc92/CyO y+) lymph gland. C–D0. Dif signal is high in Antp-positive niche cells of the control (Ubc92/CyO y+) lymph gland. Staining signal was not
detected in mutants lacking either gene (not shown). Bars indicate 10 mm.
doi:10.1371/journal.ppat.1003580.g001

Anti-Inflammatory/Anti-Tumors Effects of Viral Ankyrins
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respond to wasp infection by relocalizing from the cytoplasm to

the nucleus. These results suggest that Vankyrins may block signa-

ling by interaction with NF-kB proteins in different subcellular

compartments.

Vankyrins inhibit wasp-induced encapsulation and
Toll10b-induced tumorogenesis

The circulating blood cells constitute a separate hematopoietic

compartment and are derived from embryonic hemocytes [29].

These cells contribute to the cellular immune encapsulation

response [30]. To examine if either P1 or I3 affect larval

circulating blood cell count (also referred to as circulating

hemocyte concentration, or CHC [7]) or Cg.GFP expression,

we monitored the CHC and GFP expression in Cg.GFP,

Cg.GFP, P1, and Cg.GFP, I3 larvae and found no significant

difference (Fig. S3A). In addition, there was no detectable effect of

P1 or I3 on zygotic development or viability (data not shown).

We next examined if Vankyrins block immune signaling in

models of acute and chronic inflammation. Exposure of fly larvae

to L. victoriae elicits strong encapsulation [2]. Wasp infection

induces limited blood cell division and differentiation and cells of

the lymph gland and circulation are mobilized to encapsulate the

wasp egg [6] [30]. This systemic immune reaction is resolved

within hours after infection and is akin to acute inflammation in its

requirement for NF-kB pathway components [2]. Cg.GFP larvae,

with 0, 1 or 2 copies of P1 or I3 were infected with L. victoriae and

levels of encapsulation were compared (Fig. 7). All four Vankyrin-

expressing lines showed a significant decrease in their ability to

encapsulate wasp embryos compared to the controls (Fig. 7A–B9).

Lines expressing two copies of either P1 or I3 were completely

immune-compromised and unable to encapsulate L. victoriae eggs

(Fig. 7A9, B9).

Continuous expression of Toll10b protein leads to the growth of

chronic inflammatory hematopoietic tumors; this overgrowth is

supported by extra rounds of mitosis triggered by Toll10b

expression (Fig. 7C–F, Fig. S3B). Co-expression of either P1 or

I3 inhibited mitosis down to wild type levels (Fig. S3B), shrinking

growth and abundance of these inflammatory hematopoietic

tumors: both the size and number of microtumors per animal

induced by Cg.GFP, Toll10b showed significant reduction (Fig. 7C–

F, Fig. S3C–E9). Furthermore, melanization of some of the largest

microtumors induced in Cg.GFP, Toll10b animals was reduced by

Vankyrin expression (Fig. S3C–E9). These results suggest that

Vankyrins block tumor growth by interfering with Toll10b-

dependent pro-mitotic signals.

Effects of Vankyrins on humoral gene expression
Two BV ankyrins (Ank-H4 and Ank-N5) from the wasp

Microplitis demolitor reduce the ability of Dif to bind to kB consensus

sequence in the Drosomycin promoter [17]. Biochemical studies

show strong binding of Ank-H4 and Ank-N5 to homodimers of Dif

and Dorsal [31]. We therefore investigated the in vivo effects of

Vankyrins on the expression of Drosomycin, a direct target of Dif

and Dorsal, and three ProPO genes, involved in melanization.

Drosomycin is highly induced in larvae poked manually with a

glass needle, compared to unchallenged controls (t = 34, df = 5,

p,0.001). In the presence of either Vankyrin, Drosomycin

expression is reduced compared to challenged larvae without

Vankyrins (Fig. 8A). A similar trend is observed after wasp

infection, although the induction was significantly more variable

(data not shown).

We also examined the effect of Toll10b on the transcription of

pro-phenol oxidase-encoding genes ProPO59, ProPO54 and

ProPO45 [32,33]. ProPO59 and ProPO54 were upregulated in

Cg.GFP, Toll10b animals compared to Cg.GFP (Fig. 8A), while

ProPO45 was not (data not shown). Either P1 (Cg.GFP, Toll10b, P1)

or I3 (Cg.GFP, Toll10b, I3) reduced ProPO59 expression

compared to the control Cg.GFP levels (Fig. 8B). I3 expression

(Cg.GFP, Toll10b, I3) reduced the expression of ProPO54 relative to

Cg.GFP, Toll10b larvae, P1 expression (Cg.GFP, Toll10b, P1) did

not have this effect (Fig. 8B9).

P1 and I3 enhance the haploinsufficiency of dl
The Toll pathway specifies dorsal-ventral fates during early

embryogenesis. Embryos lacking maternal dl become dorsalized.

To examine the effects of vankyrins on d/v patterning, we took

advantage of the temperature-dependent haploinsufficiency of dl

[34]. At 29uC, only 47% of the embryos derived from

heterozygous dl1/+ females hatch, while the remaining, unable

to develop normally, show slight dorsalization (Fig. 9A). We

introduced 1 or 2 copies of each Vankyrin using the maternal

driver Mat-Gal4. With only one copy of either P1 or I3 in dl1/+
females, the percent hatch did not differ significantly from the

control (Fig. 9A). But with two copies of P1, only 8% of the

embryos hatched, and, with two copies of I3, 18% of the embryos

hatched. In both cases, the degree of dorsalization of unhatched

embryos is more severe such that the ventral denticle belts,

markers of ventral fate, are visibly reduced (Fig. 9A, B). Although,

Figure 2. Effect of wasp infection on D4-lacZ expression. A–A9.
Uninfected Antp.GFP animals. D4-lacZ is expressed mostly in the niche
(A9, arrowhead) where it colocalizes with Antp.GFP (A, yellow). B–B9. L.
boulardi infection triggers four-fold increase in the expression of D4-
lacZ (23.0664.22 versus 89.65641.4; t = 26.37, df = 14.7, p,0.001; N = 4
glands for uninfected and 8 for infected). D4-lacZ is also activated in
cells of the anterior lobes. C–D9. Niche expression of D4-lacZ is
abolished in glands lacking a functional dl gene (D, D9), but is observed
in controls (C–C9). The reporter is expressed ectopically in the mutant
but not control lobe cortex.
doi:10.1371/journal.ppat.1003580.g002
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Mat-Gal4.P1 or Mat-Gal4.I3 in wild type background do not

have strong effects; P1 expression has a mild and general effect on

embryonic development. These results suggest that immune-

suppressive Vankyrins can also block Toll signaling in the embryo

and that multiple copies of vankyrin genes in PDV genomes ensure

physiological and specific inhibition.

Discussion

Despite common features, mutualistic polydnaviruses of Braconid

and Ichneumonid wasps derive from different ancestral viruses

[19,20]. Yet, genomes from both families encode several copies of

vankyrin genes. While high sequence similarity and multiple gene

copies in the PDV genome may suggest similar localization or

redundant biological effects, we observed surprising differences in

localization of I3 and P1, and qualitative and quantitative diffe-

rences of their effects on NF-kB signaling in hematopoiesis, immu-

nity, and development.

Parasite infection is sensed by the niche and it
reprograms hematopoietic development to support
parasite egg encapsulation

The role of NF-kB proteins in larval hematopoiesis has been an

open question for over a decade. Here we have uncovered a novel

role for NF-kB signaling in the niche, where it controls the proper

proportion of mature hematopoietic lineages. This discovery is

validated by inhibitory effects of I2-vank-3. Dif and Dorsal are

expressed in the niche. Excessive Dorsal or Dif in the niche is

sufficient to trigger constitutive differentiation and release of

lamellocytes. While single RNAi knockdowns have weak effects,

genetic removal of both Dif and dl encourages supernumerary

crystal cells and also reduces wasp-induced lamellocytes (our

unpublished results). Thus, it seems that moderate levels of NF-kB

activity (not essential either for Antp expression or for the specifi-

cation of a particular lineage) are required for gene expression in

the niche to guarantee the correct ratio of specific lineages.

Elevated or diminished NF-kB activity perturb this balance: high

levels parallel conditions of wasp infection (more lamellocytes;

fewer crystal cells; this study [4]) whereas low levels have the

opposite effect (this study). These data synthesize our view of how

wasp infection shifts the balance of NF-kB functions, favoring

lineage development for egg encapsulation. The identities of NF-

kB target genes and their effects on lineage commitment remain to

be discovered.

This interpretation that basal versus activated hematopoieses

support distinct lineage programs suggests that cells of the niche,

very likely, sense the systemic environment of the larval hemocoel,

and respond to the host’s immune status by switching states. It is

therefore reasonable to conclude that the mechanism governing

this switch includes NF-kB signaling itself, whose activation state

Figure 3. Effects of Dif and Dorsal on Antp.GFP expression and on crystal cell number. (A–E) Antp.GFP expression in third instar lymph
glands. A. Control. B. Knockdown of Dif (DifRNAi), or C. Dorsal (dlRNAi). Overexpression of D. Dif (Dif), or E. Dorsal (dl). F. Manipulation of Dif or Dorsal
levels does not affect the number of Antp.GFP-positive cells (t = 21.45, df = 6.5, p = 0.19 for Antp.DifRNAi, t = 1.45, df = 4.7, p = 0.21 for Antp.dlRNAi,
t = 20.62, df = 6.2, p = 0.55 for Antp.Dif and t = 21.29, df = 6.3, p = 0.24 for Antp.dl). G. Quantification of Antp.GFP expression. The intensity of the
GFP signal is reduced in Antp.DifRNAi (t = 3.4, df = 7.8, p = 0.01) and Antp.dlRNAi (t = 7.8, df = 5.6, p,0.001) and increased in Antp.Dif (t = 22.4, df = 8,
p = 0.04) and Antp.dl (134.6 versus 216.2 - t = 28.2, df = 5.4, p,0.001), compared to controls, N = 5 animals for each genotype. H–I. Anterior lobes of
animals H. heterozygous for the deficiency lacking Dif and dl (Df(2L)TW119/+ or Df(2L)J4/+), and I. Dif/dl mutants (Df(2L)TW119/Df(2L)J4) stained for
ProPO2 (magenta, crystal cells). (J–K) Crystal cells (black spots) of third instar, J. heterozygous control, and K. Df(2L)TW119/Df(2L)J4 mutant, visualized
by incubation at 70uC. L. The average number of sessile crystal cells in the three posterior segments is significantly increased in Dif2 dl2 mutants
(t = 23.4, df = 25.9, p = 0.002. N = 20 for heterozygotes; N = 21 for Dif2 dl2 mutants). Bars indicate standard deviation. Stars indicate statistical
significance relative to controls (* for 0.05,p,0.01, ** for 0.01,p,0.001 and *** for p,0.001).
doi:10.1371/journal.ppat.1003580.g003
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Figure 4. Vankyrin localization and their effects on niche properties and on crystal cell development. A–A9. Niche without any Vankyrin
expression stained with anti-FLAG antibody. B–B9. Antp-Gal4 simultaneously drives the expression of GFP and P1 from their respective UAS
sequences. P1 localizes to nuclei and in the cytoplasm (yellow) where it is relatively uniformly distributed. C–C9. Antp-Gal4 simultaneously drives the
expression of GFP and I3 from their respective UAS sequences. I3 is expressed mostly in the cytoplasm; it colocalizes with Antp.GFP expression in
some cells (yellow), and its distribution is speckled. D–F1. Effect of Vankyrins on crystal cells development. D–F. Crystal cells in the anterior lobes of
the lymph gland. Crystal cell number is not significantly different from the control when either Vankyrin is expressed. D1–F1. However, their number
is increased in the three posterior larval segments when I3 is expressed (for quantification, see Panel I.) G. Expression of I3 reduces the number of
Antp.GFP-positive cells in the niche compared to controls (W = 438, p = 0.03 while P1 does not (W = 229, p = 0.09). N = 16 animals for control; N = 10
animals for I3 and P1-expressing glands. Cell counts represent an average per niche. H. Expression of I3 decreases the intensity (measurement done
on more than 15 cells – see Methods) of Antp.GFP signal. Pixel intensity is reduced in Antp.GFP, I3 (t = 3.3, df = 30.9, p = 0.002) but not in Antp.GFP,
P1 (t = 1.9, df = 47.6, p = 0.07) compared to controls (N = 15 animals for Antp.GFP controls, N = 9 animals for I3 expressing animals and N = 10 for P1
expressing animals). I. Quantification of crystal cell changes in panels E1 and F1, relative to D1. Crystal cell number in the three posterior larval
segments is increased by Antp.I3 (t = 23.7, df = 65, p,0.001; control, N = 33; I3 expressing animals, N = 34) but not with Antp.P1 (t = 21.7,
df = 59.197, p = 0.09 - P1 expressing animals, N = 29). Scale bars represent 20 mm. Bars indicate standard deviation. Stars indicate conditions that are
different from controls (* for 0.05,p,0.01, ** for 0.01,p,0.001 and *** for p,0.001).
doi:10.1371/journal.ppat.1003580.g004

Anti-Inflammatory/Anti-Tumors Effects of Viral Ankyrins

PLOS Pathogens | www.plospathogens.org 6 August 2013 | Volume 9 | Issue 8 | e1003580



depends directly on the infection status (this study; [3,7]). How is

infection sensed by the niche? Recent work suggests that the Toll

ligand, Spätzle (spz) and Spätzle-processing enzyme (SPE cleaves

and activates inactive Spz) are involved. (1) Spz protein and SPE

transcripts are expressed at high levels in circulating blood cells

and uniformly in cells of the lymph gland lobes [2,35,36]. (2) Spz

and SPE expression is activated by wasp infection in both

compartments [2]. (3) Mis-expression of either transgene in blood

cells, or even just in the fat body, induces lamellocyte differenti-

ation and systemic inflammation [2]. (4) The niche also senses the

animal’s nutritional status [37]. Thus, it appears that the niche is

functionally flexible and responds to hemolymph factors by

reprogramming hematopoiesis.

The observation that niche-specific expression of I3 alone

reduces niche cell count, reduces Antp.GFP expression, and

modulates both basal and activated hematopoiesis suggests that

NF-kB signaling has complex and specific transcriptional effects

that directly and indirectly control multiple parameters of niche

function in response to organismal physiology. A lack of inhibition

by P1 suggests that I3 may be a better inhibitor of Dif, which is

Figure 5. Effect of Vankyrins on D4-lacZ expression. A–A0. In uninfected Antp.GFP animals, D4-lacZ reporter is expressed strongly in the niche
where it overlaps with Antp.GFP (A9–A0 – same image as in Fig. 2A–A0) and is sometimes found in a few cells in the anterior lobes. Expression of the
D4-lacZ reporter is not changed in the niche when P1 is expressed (B–B0) but is clearly reduced by the expression of I3 (C–C0) compared to controls.
D–D9. Same image as in Fig. 2B–B0. Infection strongly induces D4-lacZ expression in the niche and cells of the anterior lobes (compare D with A). E–
E9. Expression of I3 in infected animals limits the induction of D4-lacZ in cells of the anterior lobes (compare intensity of b-Gal staining in cells of the
anterior lobes in E9 versus D9 - t = 5.4, df = 27.1, p,0.001; N = 8 for Antp.GFP animals and N = 12 for Antp.GFP, I3 animals). F. Schematic linking NF-kB
activity in the niche to choice of cell fate. Wild type control lymph glands (middle) with moderate NF-kB activity develop the correct proportion of
crystal cells (CC), possess few if any constitutive lamellocytes (C, Lam), and abundant wasp-induced lamellocytes (WI Lam). Lack of NF-kB activity (left)
shifts hematopoiesis in favor of crystal cells, while constitutive lamellocytes are absent and only a few wasp-induced lamellocytes are specified. High
NF-kB (right; achieved either by infection or by genetic activation) shifts hematopoiesis in favor of lamellocytes and discourages crystal cell
production.
doi:10.1371/journal.ppat.1003580.g005
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expressed more strongly in the niche relative to other parts of the

lobe. It is not surprising, then, that immune-suppressive viruses

aiding parasite survival are poised to paralyze NF-kB signaling in

hematopoiesis regardless of its activation status.

Selective inhibition of NF-kB signaling by viral ankyrins
It is of interest that P1 and I3 share 83% amino acid identity

and yet have strikingly different biological effects: (1) In basal and

activated lymph gland hematopoiesis, I3 promotes crystal cell

development, P1 does not; (2) their expression in circulating cells

(via Cg.Gal driver) does not alter blood cell counts, but Antp.I3

encourages crystal cell development in sessile and circulating cell

compartments; (3) both I3 and P1 reduce wasp egg encapsulation;

(4) both Vankyrins block Cg.Toll10b-induced mitosis and resul-

ting tumorogenesis, antifungal peptide gene expression and proPO

gene expression (although I3’s inhibitory effect on ProPO54 expres-

sion is stronger than that of P1’s); and (5) in embryogenesis, P1’s

effects on dorsalization are stronger than those of I3’s. We explain

these differences on NF-kB signaling by postulating pre-existing

differences in concentration and localization of a particular

Vankyrin and NF-kB protein(s) (fly embryos do not express Dif)

and their complexes in different cell types.

Differences in sub-cellular localization between P1 and I3 offer

additional clues. Both P1 and I3 are cytoplasmic and punctate in

blood cells from uninfected larvae, but on infection, both proteins

assume a nuclear bias, co-localizing with GFP-Dorsal. While I3

and GFP-Dorsal appear vesicular and perinuclear, P1 and GFP-

Dorsal co-localize within the nucleus. Recent experiments in the

fly embryo [38] show that endocytosis is central to Toll signaling.

It is, thus, possible that I3 interaction in blood cells with Dorsal

blocks its endocytosis and/or nuclear uptake. P1 additionally may

inhibit transcriptional activation of GFP-Dorsal. We noted, in

these staining experiments, significant changes not only in their

sub-cellular localization in resting versus immune-active cells, but

also in their amounts. We interpret that Vankyrins themselves are

subject to translational and/or post-translational regulation, a

conclusion that is supported by measurements in transgenic cell

culture studies [28]. Specificities in translational and/or post-

translational regulation in different cell types may result in

different biological outcomes.

Finally, like Bracovirus ankyrins H4 and N5, that bind to Dorsal

and Dif, with different affinities [31], Ichnoviral Vankyrins appear

to have differential affinities for NF-kB proteins. Our data suggest

that I3 may have a preference for Dif, whereas P1 may bind more

strongly to Dorsal in the absence of Dif.

Conclusions
Parasitoid wasps make up thousands of species. Using Drosophila

and its natural parasitic wasps we have shown that hematopoiesis

and the cellular egg encapsulation response are tightly-linked via

NF-kB signaling. NF-kB signaling is active in the niche in the

absence of wasp infection, but wasp infection activates NF-kB

signaling further and reprograms hematopoiesis for wasp egg

encapsulation. Our data suggest that even highly identical

Ichnoviral ankyrins, I2-vank-3 and P-vank-1, perturb cellular

and humoral immunity with remarkable specificity to contribute to

Figure 6. Vankyrins and GFP-Dorsal localization in blood cells. A–A0. Uninfected Cg.GFP-Dorsal shows speckled distribution (arrowhead).
B–B0. Infected Cg.GFP-Dorsal. Infection relocalizes some GFP-Dorsal to nucleus (arrow). C–C0. Uninfected Srp.GFP, I3. Both I3 (C, arrowhead) and
GFP-Dorsal (C9) are mostly cytoplasmic in blood cells of uninfected animals and do not show much co-localization. D–D0 Infected Srp.GFP, I3. In
infected animals, I3 is strongly nuclear (D, arrow) but most of the GFP-Dorsal colocalizes with the remaining cytoplasmic I3 (D0 – yellow). E–E0. P1 is
also mostly cytoplasmic in cells from uninfected animals (E, E0, arrowhead). F–F0. Upon infection, both GFP-Dorsal and P1 colocalize in the nucleus (F0,
white). All images are presented at the same magnification and scale bars represent 20 mm. Cg.GFP-dl, I3 cells from uninfected animals show
cytoplasmic localization of both proteins similar to Srp.GFP-dl I3 (data not shown).
doi:10.1371/journal.ppat.1003580.g006
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Figure 7. Effect of Vankyrins on wasp-induced encapsulation and tumorogenesis. A–B9. Decreased encapsulation when expressing
Vankyrins. Comparisons are made within experiments to account for variability in percent encapsulation. A–A9. One copy A or two copies A9 of I3
were expressed. In each case, the reduction in encapsulation was significant (X2 = 37.1, df = 1, p,0.001 for Cg.GFP, I3 and X2 = 12.8, df = 1, p,0.001
for Cg.GFP, I3, I3. A. N = 54 for control and N = 46 for I3 expressing animals. A9. N = 94 for control and N = 63 for I3 expressing animals). B–B9.
Expression of one B, or two copies B9 of P1 also reduced encapsulation (X2 = 9.8, df = 1, p = 0.002 for Cg.GFP, P1 and X2 = 115, df = 1, p,0.001 for
Cg.GFP, P1, P1. B. N = 124 for control and N = 114 for P1 expressing animals. B9. N = 62 for control and N = 64 for P1 expressing animals). Bars indicate
standard deviation. Stars indicate conditions that are different from controls (* for 0.05,p,0.01, ** for 0.01,p,0.001 and *** for p,0.001). C–F.
Effect of Vankyrins on Toll10b-induced tumorogenesis. C–D. Effect of P1 on C. average tumor size per larva (Wilcoxon test W = 8619, p = 0.04) and D.
average number of tumors per larva (t = 24.42, df = 21.6, p,0.001. N = 24 for control and N = 31 for P1 expressing animals). E–F. Effect of I3 on E.
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the success of their wasp, C. sonorensis. Our results predict that

parasitoid infections activate both immune arms of their natural

insect hosts, NF-kB-IkB interactions underlie this activation, and

successful immune-suppression targets both immune arms. The

Drosophila model system can be used to explore molecular functions

of additional immune-suppressive molecules critical to species

survival and evolution of natural communities.

Targeting immune pathways of enemies by immune-suppressive

molecules is a general strategy for success among Hymenopteran

insects [36]. Components in the bee venom protect bees against

arthropod and vertebrate predators. Bee venom is an ancient

therapy for chronic inflammation and pain relief [39]. The

context-independent inhibitory effects of Vankyrins on NF-kB

signaling reported here provide one clear mechanism by which

anti-inflammatory effects of Hymenopteran products may be

realized. In addition, inhibition of NF-kB signaling continues to be

a significant area of research for strategic development of drug

targets for human diseases [40,41]. Detailed structural studies

coupled with rational design of IkB-family ankyrin repeats have

potential for the treatment of inflammation-based human diseases

from arthritis to cancer. They can also provide the means to

weaken the immune system of insect pests to improve agriculture

and human health [42].

Materials and Methods

Strains and crosses
All D. melanogaster stocks were raised on standard medium at

25uC. Standard crosses were performed to obtain the desired

genetic backgrounds. y w; Ubc9/CyO y+ [14] lines were used for

anti-Dif and anti-Dorsal staining. Gal4 lines: Cg-Gal4, UAS-GFP

(expressed in fat body, lymph gland and hemocytes), Hml-Gal4,

UAS-GFP (expressed in hemocytes and lymph gland), y w; UAS-

mcd8GFP; Antp-Gal4/TM6 Tb (expressed in the lymph gland niche;

abbreviated as Antp.GFP), Srp-Gal4, GFP-dl (expressed in hemo-

cytes). UAS lines: UAS-dl (S. Tanda, Ohio State Univ.), UAS-

Toll10b (constitutively active Toll receptor), UAS-dlRNAi (TRiP),

UAS-DifRNAi (VDRC, transformant 30579), UAS-GFP (Blooming-

ton Stock Center) and the UAS-vankyrin and UAS-Dif lines as below.

Reporter strain for Dorsal/Dif activity, D4-lacZ (A. Courey)

contains four tandemly repeated Dorsal/Dif binding sites [27].

To induce flp-out clones [43], developmentally-synchronized 4-

day old larvae with the hybrid flip-out and Gal4 activation system

[hsp70-flp; Actin.CD2.Gal4] and UAS-GFP transgenes or those

with an additional UAS-GFP-dl transgene, were heat-shocked at

37uC in a water bath for 15 min.

To examine their effects on embryonic development, Vankyrins

were expressed maternally using the dl1/CyO; Mat-Gal4 strain (A.

Courey, UCLA). Percentage of eggs (n = 300 or more) hatched

from females with 0, 1, or 2 copies of either P1 or I3 transgenes

was recorded.

Mutant strains: b dl8/CyO b; y w; Df(2L)TW119/CyO y+ and y w;

Df(2L)J4/CyO y+ [14].

Production of transgenic lines
Vankyrin cDNAs from C. sonorensis, P-vank-1 (P1, Accession:

AAX56953.1, 171 amino acids) and I2-vank-3 (I3, Accession

AAX56959.1, 171 amino acids) (kindly provided by Dr B. Webb,

University of Kentucky [16]), were amplified by PCR using

forward primers containing a FLAG tag and an EcoR1 restriction

site and a common reverse primer containing a Xba1 restriction

site (Text S1).

average tumor size (t = 53.7, df = 28, p,0.001) and F. average number of tumors per larva (W = 405.5, p,0.001. N = 21 for control and N = 24 for I3
expressing animals). Data are based on three independent experiments. Bars indicate standard deviation. Stars indicate conditions that are different
from controls (* for 0.05,p,0.01, ** for 0.01,p,0.001 and *** for p,0.001).
doi:10.1371/journal.ppat.1003580.g007

Figure 8. Effect of Vankyrins on immune gene expression. A. Both Vankyrins strongly reduce the expression of Drosomycin in manually-poked
larvae (t = 4.1, df = 6, p = 0.006 for Cg.GFP, P1 and t = 4, df = 5, p = 0.009 for Cg.GFP, I3). B–B9. Levels of ProPO transcripts are increased in Cg.GFP,
Toll10b animals compared to controls (t = 14.2, df = 5, p,0.001 for ProPO59 and t = 11.2, df = 3, p = 0.001 for ProPO54). B. ProPO59 expression level is
reduced to control levels by expression of I3 (Cg.GFP, Toll10b, I3) (t = 3.4, df = 6, p = 0.01 compared to Cg.GFP, Toll10b and t = 0.4, df = 5, p = 0.7
compared to Cg.GFP). Expression of P1 (Cg.GFP, Toll10b, P1) also decreases (t = 6.9, df = 6, p,0.001 compared to Cg.GFP, Toll10b and t = 1.96, df = 5,
p = 0.1 compared to controls) the expression of ProPO59 to control levels. B9. The levels of ProPO54 transcripts are only affected by I3 expression
(Cg.GFP, Toll10b, I3) (t = 5.1, df = 5, p = 0.003) but not by P1 expression (Cg.GFP, Toll10b, P1) (t = 0.5, df = 5, p = 0.6). Stars indicate conditions that are
different from controls (* for 0.05,p,0.01, ** for 0.01,p,0.001 and *** for p,0.001).
doi:10.1371/journal.ppat.1003580.g008
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Both cDNAs were cloned into the P-element containing vector

pUAST. This vector contains five GAL4 binding sites, allowing

GAL4 inducible expression of vankyrins [44]. Constructs were

injected into y w embryos (Rainbow Transgenic Flies, Camarillo,

California, USA). A strain bearing the UAS-Dif transgene was

constructed by inserting the full-length Dif cDNA [45] into the

pUAST vector and injections were done in-house.

Wasp infection
L. victoriae or L. boulardi adults were exposed to developmentally-

synchronized larvae. Two days after infection, fly larvae were

dissected to score for infection and encapsulation.

Effects of Vankyrins on tumors and encapsulation
Fly larvae from a 48-hour egg lay expressing either vankyrin

cDNAs were infected by Leptopilina victoriae for 24 hours. After

48 hours, larvae were dissected and the number of live and

encapsulated wasp larvae was recorded. To test dose response,

larvae with either one copy (Cg.P1 or Cg.I3) or two (Cg.P1, P1

or Cg.I3, I3) copies of vankyrin transgenes were used. Cg-Gal4,

UAS-GFP flies were used as controls.

To evaluate immune suppressive effects of Vankyrins on the

Toll pathway, Cg.Toll10b (control) and Cg.Toll10b, P1 or

Cg.Toll10b, I3 larvae were examined for tumor penetrance and

expressivity. Third instar larvae from a 6 hour egg-lay were dissected

Figure 9. Vankyrins enhance maternal dorsal haplo-insufficiency in early embryonic development. A–B. Phenotypes of dorsalized
embryos imaged in dark field. A. Embryo with weak dorsalization defects (D4). B. Embryo with somewhat stronger dorsalization showing reduction of
ventral denticle belts (D3). Arrows point to the filzkorper. Arrowheads point to the ventral setae. Neither D4 not D3 embryos hatch. C. Percentage of
hatching embryos for each maternal genotype and associated phenotypes. Maternal genetic background for the dl locus was either wild type or
heterozygous dl1/+. A significant decrease in the percentage of hatching was observed for animals expressing two copies of either P1 (t = 5.5,
df = 2.37, p = 0.02) or I3 (t = 4.02, df = 2.6, p = 0.036) compared to embryos from dl1/+ control females at 29uC. The percentages were not significantly
affected when only one copy was expressed (t = 21.9, df = 4.69, p = 0.12 for P1 and t = 22.9, df = 2.3, p = 0.087 for I3). N represents the total number
of fertilized embryos analyzed; unfertilized embryos were not included. Stars indicate conditions that are different from controls (* for 0.05,p,0.01,
** for 0.01,p,0.001 and *** for p,0.001).
doi:10.1371/journal.ppat.1003580.g009
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and blood cells, aggregates and tumors from their hemolymph were

stained for DNA (Hoechst 33258 – Molecular Probes) and F-actin

(rhodamine phalloidin – Invitrogen). Images were acquired using a

Zeiss Axioscope 2 Plus fluorescence microscope. The size and

number of tumors were recorded using AxioVision LE 4.5 software.

Immuno-histochemistry
Developmentally synchronized larvae were collected, washed

and dissected for either hemolymph or lymph gland according to

methods described previously [23]. Antibodies and dilutions used

are as follows: b-galactosidase (chicken anti-b-Gal, 1:200; Immu-

nology Consultants Laboratory, Inc.), rabbit anti-phosphohistone

H3 (1:200 Upstate), mouse anti-prophenoloxidase (anti-ProPO,

1:10; Dr. T. Trenczek, University of Giessen) or rabbit anti-

ProPO2 [46], mouse anti-Dorsal (anti-dorsal 7A4, 1:4; DHSB,

Iowa [47]), rabbit anti-Dif (1:500; Dr D. Ferrandon – IBMC,

Strasbourg), mouse anti-Antp (8C11, 1:20; DSHB, Iowa), and

mouse anti-L1/Atilla (1:10, I. Ando [48]), mouse anti-Integrin b
PS (CF6G11, 1:10; DSHB, Iowa), and mouse anti-FLAG (1:1000;

Sigma). Secondary antibodies were Cy5, Cy3 or Alexa647 anti-

mouse (1:200; Jackson Immunological and 1:1000, Invitrogen,

respectively), Cy3 anti-chicken (1:500; Jackson Immunological)

and FITC or Cy3 conjugated anti-rabbit (1:200; Jackson

Immunological). All samples were counterstained with Hoechst

33258 (Molecular Probes). Rhodamine phalloidin (Invitrogen) was

used where indicated.

Imaging, data collection, and analysis
Confocal imaging. Images were acquired using a Zeiss Laser

Scanning Confocal microscope; a scale bar was added with Zeiss

LSM5 software. A series of consecutive confocal optical sections

(Z-stacks) were recorded at 8 bit. Figures were assembled in

Photoshop CS6 (Adobe Systems Inc., San Jose, CA). All samples

for the experiment were scanned with the same microscope and

software settings. Image acquisition settings were adjusted to avoid

under- or over-exposure by limiting white and black clipping to

less than 1% of pixels. In these settings, a majority of pixels in the

cells of interest had signal intensity between 0–255 (8 bit). Images

where a high number of pixels were not detected (underexposed)

or were saturated (overexposed) were not used for quantification.

A negative control (i.e., sample treated with secondary antibody

but without primary antibody to detect non-specific signal) was

used to establish an amplifier gain/offset cut-off value.

Intensity measurements in the niche. For analysis in

Adobe Photoshop CS6, Z-stacks of images were exported from

LSM 510 software (one color at a time) to tif format without

compression and in 8 bit, as series. The Elliptical Marquee Tool

was used to select an ellipse of constant area. Elliptical regions

were randomly selected over at least 15 cells (or all cells if the total

number of niche cells is below 15) through all optical sections of a

Z-stack. The Histogram Tool quantifies and averages 0–255 range

of signal intensity from the selected area and this tool was used to

collect data from over 1,000 pixels per niche. Intensity values were

compared for matched experimental groups. Average pixel

intensity and standard deviation for each experimental group is

presented in Fig. 3G and Fig. 4G.

Cell counts. (a) Cells in the niche were defined by Hoechst-

positivity for the nucleus and cell-associated Antp.mCD8-GFP

fluorescence (Fig. 3F and 4H). Optical Z-stacks were serially

analyzed to count all cells. (b) For crystal cells and lamellocytes

(Supplement 3F and 3L), cells positive for the anti-pro-PO or anti-

integrin-beta antibodies, respectively, and characteristic morphol-

ogies, were counted. Optical Z-stacks were analyzed. (c) For the

number of sessile/circulating crystal cells in three posterior-most

segments, larvae were heated in PBS (70uC for 15 minutes) and

were mounted on slides. Melanized cells, visible through the

transparent cuticle, were counted using 1006 magnification of a

Leica stereomicroscope.

Encapsulation. Wasp-exposed or control larvae were dis-

sected. For each, the number of wasp capsules and the number of

wasp larvae were recorded under a stereomicroscope. Uninfected

animals were excluded. Percent encapsulation was scored and

plotted with the standard deviation (Fig. 7A–B9).

Blood cell counts and tumors. For cell counts, third instar

animals were bled and cell concentration was determined using a

hemocytometer. For tumor phenotype expressivity and pene-

trance, larvae were dissected on slides; the entire hemolymph

preparation was fixed, stained with Hoechst and imaged for

quantification. Expressivity of the tumor phenotype was measured

by scoring the area of each tumor (Fig. 7C, E) using AxioVision

LE 4.5 Outline Tool. Using the same images, the phenotype

penetrance, i.e., number of tumors per larva (Fig. 7D, F) was

scored.

Preparation of epidermal cuticles
The cuticle patterns of embryos from wild type females or haplo-

insufficient for dl and expressing 0, 1 or 2 copies of either vankyrin

gene were visualized after dechorionation, clearing and mounting in

Hoyer’s mountant. Images were acquired using dark field optics

using a Zeiss Axioscope 2 Plus fluorescence microscope.

RNA extraction and quantitative PCR
RNA was extracted from 7 to 10 pooled third instar larvae using

Trizol (Invitrogen). RNA concentration and quality was checked

before treating the samples with DNase (Turbo DNA-Free,

Ambion). The first cDNA strand was then synthesized using

ProtoScript M-MuLV First strand cDNA synthesis kit (NEB). The

volume was then completed to 50 ml. RNA was stored at 280uC
while cDNA was aliquoted and stored at 220uC.

For quantitative PCR, iQ SYBR Green supermix kit (Biorad)

was used as per the manufacturer’s recommendations except the

reactions were done in 20 ml. Primers used and PCR conditions

are described in Text S1. For the qPCR, three technical and 3–4

biological repeats were performed. Transcripts levels were

normalized using the ribosomal rp49 gene. Melting curves were

analyzed and quantification was made by using the DDCT

method.

Statistical analysis
All analysis except for qPCR were performed using the R

software [49]. All data were tested for normality. The non-normal

data were transformed when possible or a non-parametric test was

applied. qPCR data were analyzed by Student t-test using the trial

version of GenEx software (http://www.biomcc.com/genex-

software.html).

Supporting Information

Figure S1 Manipulation of Dif/Dorsal levels in the niche affects

hematopoietic development. A–F. Crystal cells (A–E, magenta)

were visualized with ProPO2 antibody in A. wild type (wt), B.

Antp.GFP, DifRNAi, C. Antp.GFP, dlRNAi, D. Antp.GFP, Dif, E.

Antp.GFP, dl background. F. Crystal cell counts for each

genotype. The average number of crystal cells in anterior lobes

remain unchanged in Antp.DifRNAi (t = 21.6, df = 7.7, p = 0.15),

Antp.dlRNAi (t = 21.7, df = 6.6, p = 0.14 for), Antp.dl (W = 45.5,

p = 0.8) and is slightly increased in Antp.Dif (t = 22.8, df = 17.67,

p = 0.011), compared to controls. G–L. Lamellocytes, characterized
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by large nuclei, and with high integrin b PS staining (red, G–K) are

rare in G. wild type (wt), H. Antp.GFP, DifRNAi, and I. Antp.GFP,

dlRNAi, but are abundant in J. Antp.GFP, Dif, and K. Antp.GFP, dl

backgrounds. L. Average number of lamellocytes per anterior lobe

is significantly higher in Antp.Dif (Wilcoxon test W = 5.5, p,0.001)

and Antp.dl (W = 5.5, p,0.001) animals compared to controls. Cell

counts represent an average per lobe for N = 5 animals per

genotype. Stars indicate statistical significance relative to controls (*

for 0.05,p,0.01, ** for 0.01,p,0.001 and *** for p,0.001).

Antp.GFP expression visible in panels A–E (or G–K) of this figure is

also presented at higher magnification in Fig. 3.

(TIF)

Figure S2 Flp-out clones with GFP-Dorsal support non cell-

autonomous effects on hematopoietic lineage development. A–B.

Lymph glands with flp-out clones which express GFP (A, green), or

GFP and GFP-Dorsal (B, green) stained for Pro-PO2 (crystal cells,

magenta, A–B). Insets (A–B) show magnified crystal cells

neighboring the clones. C. A reduction in crystal cells per pair

of anterior lobes was found in lymph glands expressing GFP-

Dorsal (t = 22.5, df = 30.1, p = 0.02. N = 18 for controls; N = 22

for GFP-Dorsal-expressing animals). D–E. Lymph glands with flp-

out clones which express GFP (D, green), or GFP and GFP-Dorsal

(E, green) stained with anti-Integrin-b PS to mark lamellocytes

(D–E, red). F. Supernumerary lamellocytes are observed in glands

with GFP-Dorsal clones. E, but not in glands with control clones,

D. (Wilcoxon test W = 55.5, p,0.001. N = 8 for control; N = 7 for

GFP-Dorsal-expressing animals). Stars indicate conditions that are

different from controls (* for 0.05,p,0.01, ** for 0.01,p,0.001

and *** for p,0.001).

(TIF)

Figure S3 Effects of Vankyrins on circulating blood cell

population, and on mitosis and tumors due to hyperactive Toll

activity. A. Cg.GFP driven Vankyrin (2 copies each of P1 or I3)

expression does not significantly affect circulating hemocyte

concentration (CHC). In all cases, CHC is within the control

range [7]. Comparison between control Cg.GFP and Cg.GFP, P1

larvae: (11,58563,131 cells versus 12,96662,374 cells; t = 21.4,

df = 27.96, p = 0.17. N = 16) and Cg.GFP versus Cg.GFP, I3

larvae: (11,58563,131 cells versus 12,53962,612 cells; t = 20.9,

df = 29.07, p = 0.36. N = 16). All cells in all three genotypes are

GFP-positive. B. Expression of Cg.Toll10b increases the propor-

tion of phospho-histone H3 (PH3)-positive cells (Wilcoxon test

W = 10.5, p,0.01. N = 8 for Cg.GFP; N = 14 for Cg.GFP,

Toll10b), while Vankyrin expression reverses this effect (Wilcoxon

test W = 4.5, p,0.01 for Cg.Toll10b, GFP compared to Cg.Toll10b,

GFP, P1; Wilcoxon test W = 7.5, p,0.01 for Cg.Toll10b, GFP

compared to Cg.Toll10b, GFP, I3. N = 14 for Cg.Toll10b, GFP;

N = 11 for Cg.Toll10b, GFP, P1 and N = 27 for Cg.Toll10b, GFP,

I3). Vankyrin expression reverses mitosis to control levels

(Wilcoxon test W = 42.5, p = 0.86 for Cg.GFP compared to

Cg.Toll10b, GFP, P1 and Wilcoxon test W = 94.5, p = 0.61

Cg.GFP compared to Cg.Toll10b, GFP, I3. N = 8 for Cg.GFP;

N = 11 for Cg.Toll10b, GFP, P1 and N = 27 for Cg.Toll10b, GFP,

I3). C–E9. Melanized tumors from C–C9 Cg.GFP, Toll10b, D–D9

Cg.GFP, Toll10b P1, or E–E9 Cg.GFP, Toll10b I3 larvae.

(TIF)

Text S1 Nucleotide sequences of primers used for polymerase

chain reaction amplification conditions (number of amplification

cycles and melting temperatures) used for different genes

considered in this study.

(DOC)

Acknowledgments

We are grateful to our colleagues for sharing antibodies and fly stocks, the

Bloomington Stock Center and TRiP at Harvard Medical School for

providing fly stocks. We thank L. Huang, A. Hudgins, R. Rajwani, and Z.

Papadopol for help with experiments and Dr. J. Morales and D. Fimiarz

for support with microscopy.

Author Contributions

Conceived and designed the experiments: GG MEK JR JU SG. Performed

the experiments: GG MEK JR JU SG. Analyzed the data: GG MEK JR

JU SG. Contributed reagents/materials/analysis tools: SG. Wrote the

paper: GG MEK JR JU SG.

References

1. Lee MJ, Kalamarz ME, Paddibhatla I, Small C, Rajwani R, et al. (2009) Virulence

factors and strategies of Leptopilina spp.: selective responses in Drosophila hosts.

Adv Parasitol 70: 123–145.

2. Paddibhatla I, Lee MJ, Kalamarz ME, Ferrarese R, Govind S (2010) Role for
sumoylation in systemic inflammation and immune homeostasis in Drosophila

larvae. PLoS Pathog 6: e1001234.

3. Schlenke TA, Morales J, Govind S, Clark AG (2007) Contrasting infection
strategies in generalist and specialist wasp parasitoids of Drosophila melanoga-

ster. PLoS Pathog 3: 1486–1501.

4. Krzemien J, Crozatier M, Vincent A (2010) Ontogeny of the Drosophila larval
hematopoietic organ, hemocyte homeostasis and the dedicated cellular immune

response to parasitism. Int J Dev Biol 54: 1117–1125.

5. Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis

in Drosophila. Dev Biol 230: 243–257.

6. Sorrentino RP, Carton Y, Govind S (2002) Cellular immune response to parasite

infection in the Drosophila lymph gland is developmentally regulated. Dev Biol

243: 65–80.

7. Sorrentino RP, Melk JP, Govind S (2004) Genetic analysis of contributions of
dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentra-

tion and the egg encapsulation response in Drosophila. Genetics 166: 1343–
1356.

8. Qiu P, Pan PC, Govind S (1998) A role for the Drosophila Toll/Cactus pathway

in larval hematopoiesis. Development 125: 1909–1920.

9. Kidd S (1992) Characterization of the Drosophila cactus locus and analysis of
interactions between cactus and dorsal proteins. Cell 71: 623–635.

10. Geisler R, Bergmann A, Hiromi Y, Nusslein-Volhard C (1992) cactus, a gene

involved in dorsoventral pattern formation of Drosophila, is related to the I
kappa B gene family of vertebrates. Cell 71: 613–621.

11. Huxford T, Huang DB, Malek S, Ghosh G (1998) The crystal structure of the

IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inacti-

vation. Cell 95: 759–770.

12. Jacobs MD, Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB

complex. Cell 95: 749–758.

13. Fernandez NQ, Grosshans J, Goltz JS, Stein D (2001) Separable and redundant

regulatory determinants in Cactus mediate its dorsal group dependent
degradation. Development 128: 2963–2974.

14. Chiu H, Ring BC, Sorrentino RP, Kalamarz M, Garza D, et al. (2005) dUbc9

negatively regulates the Toll-NF-kappa B pathways in larval hematopoiesis and
drosomycin activation in Drosophila. Dev Biol 288: 60–72.

15. Falabella P, Varricchio P, Provost B, Espagne E, Ferrarese R, et al. (2007)

Characterization of the IkappaB-like gene family in polydnaviruses associated
with wasps belonging to different Braconid subfamilies. J Gen Virol 88: 92–104.

16. Kroemer JA, Webb BA (2005) I kappa beta-related vankytin genes in the

Campoletis sonorensis Ichnovirus: Temporal and tissue-specific patterns of

expression in parasitized Heliothis virescens lepidopteran hosts. Journal of
Virology 79: 7617–7628.

17. Thoetkiattikul H, Beck MH, Strand MR (2005) Inhibitor kappaB-like proteins

from a polydnavirus inhibit NF-kappaB activation and suppress the insect
immune response. Proc Natl Acad Sci U S A 102: 11426–11431.

18. Strand MR, Burke GR (2012) Polydnaviruses as symbionts and gene delivery

systems. PLoS Pathog 8: e1002757.

19. Bigot Y, Samain S, Auge-Gouillou C, Federici BA (2008) Molecular evidence for
the evolution of ichnoviruses from ascoviruses by symbiogenesis. BMC Evol Biol

8: 253.

20. Bezier A, Annaheim M, Herbiniere J, Wetterwald C, Gyapay G, et al. (2009)
Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science

323: 926–930.

21. Webb BA, Strand MR, Dickey SE, Beck MH, Hilgarth RS, et al. (2006) Polydnavirus
genomes reflect their dual roles as mutualists and pathogens. Virology 347: 160–174.

22. Espagne E, Dupuy C, Huguet E, Cattolico L, Provost B, et al. (2004) Genome

sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306:

286–289.

Anti-Inflammatory/Anti-Tumors Effects of Viral Ankyrins

PLOS Pathogens | www.plospathogens.org 13 August 2013 | Volume 9 | Issue 8 | e1003580



23. Kalamarz E, Paddibhatla I, Nadar C, Govind S (2012) Sumoylation is tumor-

suppressive and confers proliferative quiescence to hematopoietic progenitors in
Drosophila melanogaster larvae. Biology Open 1: 161–172.

24. Krzemien J, Oyallon J, Crozatier M, Vincent A (2010) Hematopoietic

progenitors and hemocyte lineages in the Drosophila lymph gland. Dev Biol
346: 310–319.

25. Jung SH, Evans CJ, Uemura C, Banerjee U (2005) The Drosophila lymph gland
as a developmental model of hematopoiesis. Development 132: 2521–2533.

26. Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A

Hedgehog- and Antennapedia-dependent niche maintains Drosophila haema-
topoietic precursors. Nature 446: 320–324.

27. Flores-Saaib RD, Jia S, Courey AJ (2001) Activation and repression by the C-
terminal domain of Dorsal. Development 128: 1869–1879.

28. Kroemer JA, Webb BA (2006) Divergences in protein activity and cellular
localization within the Campoletis sonorensis ichnovirus vankyrin family.

Journal of Virology 80: 12219–12228.

29. Holz A, Bossinger B, Strasser T, Janning W, Klapper R (2003) The two origins
of hemocytes in Drosophila. Development 130: 4955–4962.

30. Markus R, Laurinyecz B, Kurucz E, Honti V, Bajusz I, et al. (2009) Sessile
hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc

Natl Acad Sci U S A 106: 4805–4809.

31. Bitra K, Suderman RJ, Strand MR (2012) Polydnavirus Ank Proteins Bind NF-
kappaB Homodimers and Inhibit Processing of Relish. PLoS Pathog 8:

e1002722.
32. Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, et al. (2005) New

insights into Drosophila larval haemocyte functions through genome-wide
analysis. Cell Microbiol 7: 335–350.

33. Nam HJ, Jang IH, Asano T, Lee WJ (2008) Involvement of pro-phenoloxidase 3

in lamellocyte-mediated spontaneous melanization in Drosophila. Mol Cells 26:
606–610.

34. Lohs-Schardin M, Cremer C, Nusslein-Volhard C (1979) A fate map for the
larval epidermis of Drosophila melanogaster: localized cuticle defects following

irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:

239–255.
35. Mulinari S, Hacker U, Castillejo-Lopez C (2006) Expression and regulation of

Spatzle-processing enzyme in Drosophila. FEBS Lett 580: 5406–5410.

36. Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, et al. (2006) A Spatzle-

processing enzyme required for toll signaling activation in Drosophila innate
immunity. Dev Cell 10: 45–55.

37. Shim J, Mukherjee T, Banerjee U (2012) Direct sensing of systemic and

nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol
14: 394–400.

38. Lund VK, DeLotto Y, DeLotto R (2010) Endocytosis is required for Toll
signaling and shaping of the Dorsal/NF-kappaB morphogen gradient during

Drosophila embryogenesis. Proc Natl Acad Sci U S A 107: 18028–18033.

39. Danneels EL, Rivers DB, de Graaf DC (2010) Venom proteins of the parasitoid
wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins

(Basel) 2: 494–516.
40. Roman-Blas JA, Jimenez SA (2006) NF-kappaB as a potential therapeutic target

in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 14: 839–848.
41. Gilmore TD, Garbati MR (2011) Inhibition of NF-kappaB signaling as a

strategy in disease therapy. Curr Top Microbiol Immunol 349: 245–263.

42. Gilmore TD, Wolenski FS (2012) NF-kappaB: where did it come from and why?
Immunol Rev 246: 14–35.

43. Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila.
Cell 72: 527–540.

44. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering

cell fates and generating dominant phenotypes. Development 118: 401–415.
45. Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, et al. (1993) Dif, a dorsal-

related gene that mediates an immune response in Drosophila. Cell 75: 753–763.
46. Muller HM, Dimopoulos G, Blass C, Kafatos FC (1999) A hemocyte-like cell

line established from the malaria vector Anopheles gambiae expresses six
prophenoloxidase genes. J Biol Chem 274: 11727–11735.

47. Whalen AM, Steward R (1993) Dissociation of the dorsal-cactus complex and

phosphorylation of the dorsal protein correlate with the nuclear localization of
dorsal. J Cell Biol 123: 523–534.

48. Kurucz E, Vaczi B, Markus R, Laurinyecz B, Vilmos P, et al. (2007) Definition
of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biol Hung 58

Suppl: 95–111.

49. R Development Core Team (2010) R: A language and environment for
statistical computing. URL http://www.R-project.org/. R Foundation for

Statistical Computing, Vienna, Austria.

Anti-Inflammatory/Anti-Tumors Effects of Viral Ankyrins

PLOS Pathogens | www.plospathogens.org 14 August 2013 | Volume 9 | Issue 8 | e1003580


