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Abstract

Treatment management for Major Depressive Disorder (MDD) has been challenging. How-

ever, electroencephalogram (EEG)-based predictions of antidepressant’s treatment out-

come may help during antidepressant’s selection and ultimately improve the quality of life

for MDD patients. In this study, a machine learning (ML) method involving pretreatment

EEG data was proposed to perform such predictions for Selective Serotonin Reuptake

Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD

patients and 30 healthy controls. Consequently, a feature matrix was constructed involving

time-frequency decomposition of EEG data based on wavelet transform (WT) analysis,

termed as EEG data matrix. However, the resultant EEG data matrix had high dimensional-

ity. Therefore, dimension reduction was performed based on a rank-based feature selection

method according to a criterion, i.e., receiver operating characteristic (ROC). As a result,

the most significant features were identified and further be utilized during the training and

testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR

model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classifica-

tion results were compared with short-time Fourier transform (STFT) analysis, and empirical

mode decompositions (EMD). The wavelet features extracted from frontal and temporal

EEG data were found statistically significant. In comparison with other time-frequency

approaches such as the STFT and EMD, the WT analysis has shown highest classification

accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion,

significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data

involving delta and theta frequency bands may predict antidepressant’s treatment outcome

for the MDD patients.
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Introduction

Major depressive disorder (MDD), also termed as depression, is a common mental illness that

is life threatening, progressive, recurrent, and may cause functional disabilities. In USA, a high

prevalence among elderly patients (age: 50+ years) has been observed ranging from 13.2% to

16.5% [1]. In addition, MDD has been associated with low treatment efficacy as investigated in a

study known as sequenced treatment alternative to relieve depression (STAR�D) [2, 3]. The study

concluded with a response rate, i.e., 47% which was even less than half the total study participants.

Selective Serotonin Reuptake Inhibitors (SSRIs), including more than 2 dozen antidepressants,

are considered as first-line treatment selection for MDD [4]. However, due to heterogeneity of

the condition, an appropriate selection of antidepressants, early during patient care, remains an

elusive goal for MDD. In case of treatment failure, an adequate period of 2 to 4 weeks is wasted

and a reselection is also based on minimal scientific evidence.

Successfully predicted antidepressant’s treatment outcomes early during patient’s care

could improve the low treatment efficacy associated with antidepressants. In this context, the

electroencephalogram (EEG)-based research studies have shown promising results and can be

reviewed elsewhere [5–7]. EEG offers high temporal resolution and low cost which makes it

suitable for applications such as monitoring epileptic patients [8, 9], quantification of sleep

stages [10], and monitoring anesthesia dosage [11]. In the literature, various studies have pro-

posed EEG features to predict antidepressant’s treatment outcome, for example, spectral

power estimation for EEG alpha and theta frequency bands [12, 13], alpha asymmetry [14, 15]

and theta power [16, 17]. In addition, combinations of EEG features including signal powers

at alpha and theta frequency bands are proposed, e.g., the antidepressant treatment response

(ATR) index [18] and the EEG theta cordance [19]. The ATR index had achieved 70% accuracy

for classifying treatment responders (R) and non-responders (NR) [18]. In addition, similar

findings are endorsed in different studies [20, 21]. Furthermore, studies based on EEG theta

cordance have reported a consistent observation, i.e., a decreased prefrontal theta cordance

associated with treatment response [12, 19, 22, 23]. The research results implicate that both the

ATR index and the EEG theta cordance are promising methods. However, their clinical utility

has been largely understudied because they have demonstrated low values of specificity.

Referenced EEG (rEEG) is a technique involving a database of MDD patient’s EEG patterns

and medical treatment histories [24, 25]. The EEG patterns are used to guide the selection of

suitable antidepressants for a new MDD patient visiting the facility. The rEEG-based research

studies have shown improved treatment results than the STAR�D studies [24, 26]. However,

rEEG is less explored clinically and may need more research efforts. Furthermore, the EEG-

based brain source estimation technique such as the LORETA (LOw Resolution brain Electro-

magnetic Tomography Analysis) is used to localize neuronal sources deep inside the brain and

explored associations between the activated (based on current density) brain areas and antide-

pressant’s treatment outcome. For example, the activations found in rostral anterior cingulate

cortex (rACC) are associated with antidepressant treatment responders [27–30]. Recently,

machine learning (ML) techniques have shown 85% and 87.9% accuracies as treatment out-

come prediction for schizophrenic and MDD patients [31–33]. The ML techniques have uti-

lized various EEG features as input data such as coherence, mutual information between any 2

EEG sensors, power spectral density (PSD), and PSD ratios [31].

In summary, research studies based on utilizing EEG features to predict antidepressant’s

treatment outcome for MDD have shown their promises, termed as EEG biomarkers [34].

However, the EEG biomarkers for MDD could not prove their clinical utility due to certain

limitations such as low specificities, small sample sizes, less generalizability and large scale rep-

lications. Hence, more solid and systematic research efforts are needed that could result into
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high values of sensitivities and specificities. This could be achieved with carefully selected

study participants such as having balanced gender distribution, large enough samples that

reflect the whole population and utilizing robust EEG features as input data to develop robust

ML methods.

The time-frequency decomposition of EEG data involves multiple techniques, such as, the

wavelet transform (WT) analysis [35, 36], empirical mode decomposition (EMD) [37], and the

short-time Fourier transform (STFT) analysis [38]. However, the time-frequency decomposi-

tion of EEG data has not been investigated to generate predictions for antidepressant’s treat-

ment outcome for MDD. For example, the WT analysis has been utilized into various medical

applications [39, 40] including diagnosing Epilepsy and Alzheimer [9, 41]. In a study, both

STFT and WT analysis are used for electrocardiogram (ECG) analysis to extract information/

features [42]. However, the STFT is unable to provide a detailed analysis. In contrary, the WT

analysis successfully extracts the desired information due to well-capturing the EEG signal

nonlinearities than fixed window functions employed by STFT analysis. Hence, the WT analy-

sis performs better than STFT analysis during feature extraction. In addition, the authors con-

cluded that the WT analysis provides more robust features than STFT in order to characterize

ECG signals and to help physicians obtaining the qualitative and quantitative measurements.

The WT analysis utilizes predefined window functions at customized frequencies and time

scales [43]. However, the selection of a window function is subjective and depends on the type

of analysis and underlying EEG data. For example, in a study, the wavelet window function

‘db4’ is found appropriate for analyzing EEG data [44]. Moreover, the WT analysis has the

ability to compute or manipulate the data into compressed parameters, termed as features that

may help reduce irrelevant information and characterize the behavior of EEG. The WT analy-

sis is implemented based on filter banks approach that include low and high filter branches.

In EMD, the EEG data are decomposed into intrinsic mode functions (IMFs) without a pre-

selected window function. Instead the window functions are constructed based on the maxi-

mum and minimum values of the underlying EEG data. The original EEG signal decomposed

into various IMFs represent different time-scales and frequency bandwidths [45]. For example,

the first IMFs correspond to high frequency components. On the other hand, the last IMFs rep-

resent low frequencies, termed as the residues. In EMD, the frequency is derived by differentia-

tion rather than by convolution, as for the WT analysis; this allows to overcome the limitations

of uncertainty principle, and hence solves intrinsic limitation of WT analysis [43]. On the other

hand, the EMD lacks theoretical foundation because of its empirical nature. However, both WT

analysis and EMD might be able to cope with possible non-linearity of the EEG signals.

In this study, a ML method is proposed that involves feature extraction, selection, classifica-

tion, and 10-fold cross validation (10-CV). The EEG data are decomposed with WT analysis in

order to classify the MDD patients into responders (R) and non-responders (NR). In addition,

the same EEG features are used to classify the MDD patients and healthy controls. Further-

more, replication of previous work is performed by identifying best feature from EEG and

event-related potential (ERP) data found in the related literature, e.g., alpha and theta powers,

alpha asymmetry, ATR index, EEG theta cordance, coherence and the ERP components such

as P300 amplitudes and latencies.

Materials and methods

Study participants

In this research, a sample of 34 MDD outpatients (17 males and 17 females, mean age = 40.3

±12.9) was recruited according to the experiment design approved by the human ethics commit-

tee of the Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia. The study participants

EEG-based treatment outcome prediction for MDD
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were able to sign the consent forms of participation and were briefed about the experiment

design. The MDD patients met the internationally recognized diagnostic criteria for depression,

named as Diagnostic and Statistical Manual-IV (DSM-IV) [46]. Table 1 provides statistics regard-

ing patient’s age, gender and pre- and post-treatment disease severity scores, the sample size cal-

culation, and the study’s inclusion and exclusion criteria. In addition, Table 2 illustrates the

diagnosis information of the MDD patients. The diagnosis information reflected the patient’s

conditions at the time of recruitment. In order to avoid medication effects, the MDD patients

had gone through a washout time period of two weeks before commencing the 1st EEG record-

ing. The MDD patients started taking antidepressants under the general category of SSRIs with

psychiatrist’s consultation.

Moreover, a second group of 30 age-matched healthy controls (21 males and 9 females,

mean age = 38.3±15.6) were recruited as a control group. The healthy participants were exam-

ined for psychiatric conditions and were found healthy.

Definition of response

During each visit to the clinic, the MDD patients were assessed by experienced clinicians

based on two questionnaires, i.e., Beck Depression Inventory-II (BDI-II) [47] and Hospital

Table 1. Summary of MDD patient’s clinical characteristics.

Information R NR Total

Age [years] 40.7 (±13.0) 41.1 (±12.5) 40.3 (±12.9)

Gender (female/male) 8/8 9/9 17/17

Pretreatment BDI [47] 18.4 (±7. 4) 22.8 (±12.5) 20.6 (±8.6)

Pretreatment HADS [48] 11 (±1.5) 10.4 (±3.2) 10.7 (±2.4)

Post-treatment BDI-II 9.1 (±6.3) 22.1 (±3.3) 15.6 (±4.5)

Post-treatment HADS 5.9 (±4.7) 10.1 (±5.1) 7.5 (±5.0)
1SSRI treatment E:9,F:2,S:4,Fl:1 E:5,F:7,S:4,Fl:2 E:14,F:9,S:8,Fl:3

Sample Size Calculation A group of thirty four (34) MDD patients will be recruited based on formula given below [49, 50]: n ¼
Pð1� PÞ:ðZ1� a=2Þ

2

e2 where P is the expected proportion (e.g., expected diagnostic sensitivity), e is the error limit

which is one half the desired width of the confidence interval, and Z1−α/2 is the standard normal Z value

corresponding to a cumulative probability of 1−α/2. The investigator must specify the best guess for the

proportion that is expected to be found after performing the study [2]. For the research project study

following are the parameter values.—significance α = 0.05 (alpha)—power of test = 80%, β = 0.2 (Beta)—

expected diagnostic accuracy P = 90% [31]—expected error e = 10%

P ¼ 0:90; a ¼ 0:05; e ¼ 0:10;Z1� a=2 ¼ 1:96 n ¼ ð0:90Þð0:10Þð1:96Þ2

ð0:10Þ2
ffi 34

Inclusion Criteria 1)Able to provide written informed consent

2)Patients with Age (18–65 years)

3)Patients Diagnosed MDD (DSM-IV)

3a)Newly Diagnosed (New Cases)

3b)Newly Started (Old Cases)

4)Re-Started On Antidepressant (Two Week Washout)

4a)Switched To New Antidepressant

Exclusion Criteria 1- Patients having psychotic, cognitive disorder

2- Patients with any other drug abuse

3- Pregnant patients

4- Patients with epilepsy

1 SSRI medication administered: E: Escitalopram 10–20 mg per day, F: Fluvoxamine 100–300 mg per day, S: Sertraline 50–200 mg per day, Fl: Fluxetine

20–60 mg per day.

doi:10.1371/journal.pone.0171409.t001
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Anxiety and Depression Scale (HADS) [48]. After 4th week, the MDD patients were labeled as

‘R’ and ‘NR’ based on the scores observed from BDI-II and HADS, and the scores were consid-

ered as gold standard during EEG analysis. According to the treatment algorithm for MDD

published by the Malaysian Psychiatric Association (MPA), at-least four weeks of treatment,

termed as adequate period, is required before making any assessment of the treatment [52].

However, in this study, the MDD patients were followed for six weeks after starting medica-

tion. Table 1 shows the observed changes monitored with BDI-II and HADS.

In this study, there were multiple reasons to select BDI-II and HADS instead of the Hamilton

rating scale for depression (HAM-D) and Montgomery-Asberg Depression Scale (MADRS).

Firstly, the HADS and BDI-II have been considered as the standard clinical tools to assess the

severity of depression. Secondly, properly validated Malay version of BDI-II [47] and HADS

[48] were available and could easily be understood by the local population of MDD patients.

In the literature, the response to treatment with SSRIs has been consistently reported rang-

ing from 50% to 60% [53–57]. In this study, the response to treatment was defined as a 50%

improvement in clinical symptoms assessed with the BDI-II scores, i.e., a 50% improvement in

pre- vs. post-treatment BDI-II scores. According to the BDI-II, a study participant was consid-

ered as normal for an accumulated score ranging from 0 and 10; as mildly depressed for scores

range from 11 to 20; as moderately depressed for scores ranging from 21 to 30; as severely

depressed for 31 to 40; very severely depressed for 41 to 63. In addition, according to HADS,

the cumulative scores greater than seven (>7) is considered as abnormal.

EEG data acquisition

As shown in Fig 1, EEG cap with nineteen (19) electro-gel sensors was used to acquire EEG

data. The electro-gel sensors required fewer adjustments than the hydro-sensors; hence, facili-

tating longer recordings and enhanced patient care. In this study, the on-scalp placements of

the EEG sensors followed the international 10–20 system [58]. According to the 10–20 system,

the sensors can be categorized into different regions, e.g., the frontal included 7 electrodes:

Fp1, F3, F7, Fz, Fp2, F4, and F8. In addition, the central included C3, C4 and Cz; the parietal

lobe included P3, Pz and P4; the occipital involved O1, O2 and the electrodes T3, T4, T5, T6

cover left and right temporal region.

In this study, the EEG data were recorded with Linked ear (LE) reference and were re-refer-

enced to the Infinity reference (IR) [59]. The EEG data recorded with LE reference can be re-ref-

erenced as Average reference (AR) and IR. In the literature, the AR and IR were recommended

Table 2. Diagnosis information of MDD patients with comorbidities [51].

Percentage of Patients With Major Depression Who Also Suffer From a Current Anxiety Disorder

Percentage [51] Responders Non-responders

Anxiety disorder 51% 11 12

Social phobia 20% 2 3

Generalized anxiety disorder (GAD) 15.4% 1 1

Post-traumatic stress disorder (PTSD) 15.2% 2 0

Panic/Agoraphobia 12.6% 1 1

Rates of Depression in Patients With Medical Illness

Percentage [51] Responders Non-responders

Cancer 20.5% 0 0

Coronary artery disease or Myocardial infarction 15.4% 0 0

Stroke 20.4% 0 0

Parkinson disease 30.4% 0 0

doi:10.1371/journal.pone.0171409.t002

EEG-based treatment outcome prediction for MDD
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as equally efficient [60, 61]. However, none of the methods were considered as gold standard

[60].

An amplifier named Brain Master Discovery (Make: Brain Master, Model: Discovery 24e,

Manufacturer: Brainmaster Technologies Inc.) was used to amplify the weak EEG signals from

the sensors. Furthermore, the EEG data were digitized with 256 samples per second, band pass

filtered from 0.1 to 70 Hz with an additional 50 Hz notch filter to suppress power line noise.

The EEG data were recorded at pretreatment (before start of medication) and after each

week until the completion of the study duration (6 weeks). In this study, the pre-treatment

EEG data were used to perform EEG-diagnosis and EEG-based prediction of treatment out-

come and were considered as the main contribution of the paper. However, the EEG data

recorded at week 1 (after the medication started) and the ERP data recorded at week 0

Fig 1. The EEG cap from Brain Master Discovery, employed sensors placed according to the internationally recognized 10–20 electrode

placement standard.

doi:10.1371/journal.pone.0171409.g001
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(pretreatment) were used to replicate the prior art. The details on the EEG and ERP data are

provided below.

The EEG data were recorded during eyes closed (EC) (5 minutes) and eyes open (EO) (5

minutes) conditions while the study participants (MDD patients and healthy controls) were

instructed to sit in a semi-recumbent position with minimal eye blinks and head movements.

The ERP data were recorded for ten (10) minutes involving a 3-stimulus visual oddball task

[62]. The study participants were exposed to a computer screen displaying a random sequence

of shapes (as shown in Fig 2). A total of three (3) shapes were used named as the Target (a blue

circle with 5.0 cm size), the Standard (a blue circle with 4.5 cm size), and the Distractor (a

checker board with 18.0 cm size). The shapes were displayed on the computer screen randomly

and one-by-one for 400 times such as the Standard, the Distractor, and the Target shapes were

appeared for 314, 45, and 41 times, respectively. The display time for a stimulus was 1.5 sec-

onds involving display of the shape (0.5 second) and display of a fixation window (1 second).

The participants were instructed to press the SPACE key on a keyboard only when the Target

shape appeared. On the other hand, they were instructed to remain idle during the occurrences

of the Standard and the Distractor shapes.

Finally, both the EEG and ERP data were saved on a computer disk for noise reduction

(EEG pre-processing) and analysis (ML process).

EEG pre-processing

Artifact-free EEG data were desirable to avoid erroneous subsequent analysis and to make sure

that the data truly represent the underlying neuronal activity. Therefore, in this study, the EEG

preprocessing involved correction of artifacts due to eye movements (horizontal and vertical),

blinks, muscular, and heart activities. Moreover, the artifact corrections were performed with

standard tools including adaptive and surrogate filtering techniques, implemented in brain

electrical source analysis (BESA) software [63]. A similar procedure of artifact correction was

adopted for all study participants including the MDD patients and the healthy controls.

In BESA, cleaning EEG data (artifact types: eyes blinks, muscle activity, line-noise, heart

activity, etc.) was based on a semi-automatic procedure, the technique has the name multiple

source eye correction (MSEC) [64]. According to the technique, the raw EEG data were used

to first estimate noise topographies. An appropriately selected head model (selected in BESA)

and the noise topographies were used further to correct the artifacts. According to the proce-

dure, an investigator needed to select the type of artifact (artifact types: eyes blinks, muscle

activity, line-noise, heart activity, etc.) to be corrected. The selection allowed the software to

Fig 2. Shapes used during the 3-stimulus visual Oddball Task.

doi:10.1371/journal.pone.0171409.g002

EEG-based treatment outcome prediction for MDD
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mark the artifacts in the whole EEG recording. The marking of artifacts facilitated further to

estimate the noise topographies generated by BESA. The procedure was repeated for all kinds

of artifact types including the artifacts due to the eye-blinks, eye movements, muscular, and

heart activity. Hence, the artifacts found in the raw EEG were corrected.

Overview of ML process

Fig 3 shows the proposed ML method that involved pretreatment EEG-based features as input

data to classify the study participants into either ‘R’ or ‘NR’. The input data involved WT

Fig 3. Overview of the ML scheme for EEG data analysis.

doi:10.1371/journal.pone.0171409.g003
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analysis including two minutes of each of the clean EC and EO data. Two (2) minutes of rest-

ing-state EEG data has been considered as sufficient to extract the useful information. In this

study, different lengths (1, 2, and 3 minutes) of the EEG segments were considered during

computation of the features, e.g., the PSD. We have observed slightly better results for 2 min-

utes of EEG data than 1 minute of EEG data. However, there are no considerable changes

observed in the performances between 2 minutes of EEG data and 3 minutes of EEG data.

Hence, in this study, the results were reported for EEG data of 2 minutes length.

The feature extraction resulted into a large number (Nc) of candidate features and were

arranged column-wise in a matrix, termed as EEG data matrix. Each column of the data matrix

represented a feature/variable and denoted as xi, where i = 1. . . Nc. In the matrix, rows repre-

sented MDD patient’s EC and EO data, termed as instances/examples. The feature space

denoted by L = [(xi,yi), i = 1 . . . Nc] included both the EEG data matrix and the corresponding

output class labels or targets, y = [R, NR]. To determine the effects of EEG data lengths, EEG

segments of one and two minutes were used to compute the classification results.

As shown in Fig 3, the EEG data matrix was divided into train and test sets according to the

10-CV. The iterations of 10-CV ensured independence of the train and test sets and the feature

selection and building classification model were performed based on the training sets only. On

the other hand, the selection of features in the test set involved the feature indices already iden-

tified from the train set. Hence, the training process including feature selection and building

classification model was performed independent of the test data. Similarly, the feature normal-

ization (z-transformation) was performed separately for the train and test sets [65].

In this study, the proposed ML process involved feature extraction, selection, classification,

and validation. The feature extraction included multi-resolution decomposition of EEG data

with WT analysis. Moreover, two similar techniques, i.e., EMD, and STFT were also employed

for comparison purposes. Hence, the EEG decomposition resulted into three different EEG

data matrices. To reduce the dimensionality of the input EEG data matrices, the feature selec-

tion was performed with two techniques: 1) rank-based feature selection according to their rel-

evance with the class labels (R Vs. NR and MDD patients Vs. healthy controls) based on a

criterion known as receiver operating characteristics, i.e., roc [66], and 2) minimum redun-

dancy and maximum relevance (mRMR) method [67]. In the proposed ML scheme, the rank-

based feature selection method was used to select most significant features from the EEG data

matrix. To validate the rank-based feature selection method, it was compared with the mRMR

method. Finally, the discriminant EEG features were identified and used as input data to train

and test the LR classifier involving 100 iterations of 10-CV.

Feature extraction: WT analysis. Fig 4 shows multi-resolution decomposition of

recorded EEG signals into corresponding detail and approximate wavelet coefficients based on

Fig 4. Multi-resolution decomposition of EEG signal (delta and theta bands) into detail and

approximate coefficients.

doi:10.1371/journal.pone.0171409.g004
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Daubechies (db4) wavelet window function. The selection of this particular window function

was motivated by the highest classification accuracy achieved when compared with other

wavelet window functions. Moreover, the db4 provides near-optimal time-frequency location

properties [68].

In this study, the WT analysis was performed in Matlab (version 7) software with ‘wavedec’

function. Further, the WT analysis involved the convolution of EEG signals with different dila-

tions and translations of a wavelet basis function, e.g., the Daubechies (db4) wavelet. The dila-

tions have resulted into different scales of EEG signal and the translations provided the

convolution results which were function of time, and resulted into detailed and approximate

wavelet coefficients, accordingly.

As described in Table 3, the EEG signals were recorded involving frequencies between 0.5

to 70 Hz. Therefore, five levels of wavelet decomposition were sufficient to extract the desired

EEG bands. The wavelet coefficients extracted during each level of decomposition corre-

sponded to individual EEG frequency bands such as the delta, theta, alpha, beta, and gamma

(Table 3). In this study, wavelet coefficients from delta (A4) and theta (D4) bands were found

most efficient (higher accuracies) than alpha, beta, and gamma bands while classifying treat-

ment R and NR. Hence, the wavelet coefficients corresponding to alpha, beta, and gamma

bands were discarded and were not considered while building the classifiers.

After performing the WT analysis, the extracted features were saved in the EEG data matrix.

The columns of EEG data matrix corresponded to the EEG features such as the wavelet coeffi-

cients per channel (2825) × number of channels (19) = 53,675. Each EEG channel corre-

sponded to 2825 wavelet coefficients representing delta and theta frequency bands (D4, A4).

The rows of the data matrix (data points = 68) corresponded to the MDD patients data during

EC and EO conditions. Finally, the resulting EEG data matrix dimension, i.e., the number of

rows (data points = 68) were significantly less than the number of columns (number of obser-

vations per data point = 53,675). Table 4 provides the Matlab codes for the WT analysis.

Feature extraction: STFT analysis and EMD. In this study, the short-time Fourier trans-

form (STFT) was computed by convolving a short-time squared window function with the

EEG signal [69]. The Fourier transform of the windowed EEG signal was computed while tra-

versing the whole EEG signal. The Fourier transform was computed based on the parameter

values such as STFT window (hamming), Window length (2 sec), hop size (0.5 sec), number of

fft points (4096 points, or 16 sec), sample frequency (256 samples/sec) and a 50% overlap

between the squared window functions. The length of window function was selected such as to

maintain the stationary nature of the EEG signal. In this study, a 2 second EEG segment was

considered as stationery [70]. In this study, these parameter values were found optimal that

provided best performance for STFT.

The empirical mode decomposition (EMD) involved decomposing the EEG signal into its

subcomponents known as intrinsic mode functions (IMFs) [71]. EEG signal was decomposed

into multiple IMFs using the parameters: Resolution (40 dB), residual energy (40 dB), gradient

step size (1) [72]. An IMF can be computed by the following procedure: the peaks and troughs

Table 3. Wavelet Coefficients in the delta and theta frequency bands.

Wavelet coefficients EEG Frequency Bands Frequency Range

D1 Gamma 35–70 Hz

D2 Beta 17.5–35 Hz

D3 Alpha + Low Beta 8.5 to 17.5 Hz

D4 Theta 4 to 8.5 Hz

A4 Delta 0.5 to 4 Hz

doi:10.1371/journal.pone.0171409.t003
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of the EEG signal were determined while inspecting its maxima and minima respectively.

Based on these maxima and minima, the upper and lower envelops were constructed by cubic

spline interpolation. Further, the mean of the upper and lower envelops was computed and

subtracted from the EEG signal to obtain the probable IMF. An IMF should fulfill two condi-

tions: 1) the number of extrema’s and zero-crossings must be equal or different not more than

1 and, 2) the mean of all IMFs must be zero or near to zero. In case an IMF was identified, it

was subtracted from the EEG signal. The process of computing IMFs was repeated until each

subsequent IMF was different from the previous one and fulfills the mean square error stop-

ping criterion.

Feature extraction: Coherence and P300 components. In this study, the coherence was

computed pair-wise between two different EEG electrodes and can be expressed by the follow-

ing mathematical formula. According to the formula, the magnitude squared of the cross spec-

trum of two EEG sensors was computing and divided by a product of the power spectral

densities (PSD) (PSD using Welch averaged periodogram method) of each of the signals as

described in Eq (1):

Cxy fð Þ ¼
jSxyj

2
ðf Þ

Sxðf ÞSyðf Þ
ð1Þ

where f is the frequency, Sx is the PSD of x, Sy is the PSD of y, and Sxy is the cross-spectral den-

sity of the two EEG sensors of interest. The coherence was computed for each channel pair

involving frontal (Fp1, Fp2, F3, F4, F7, F8, Fpz), temporal (T3, T4, T5, T6), parietal (P3, P4,

P7, P8), occipital (O1, O2), and central (C3, C4). The coherence was computed for all possible

pair combinations of EEG sensors over the scalp. In addition, the following parameter values

were utilized such as 2 sec windows, 2 Hz-30 Hz band with 1 Hz resolution. Moreover, we

have used the same feature selection and classification methods as used during the WT

analysis.

In the event-related potential (ERP) data, the P300 peak was expected to appear between

300 to 700 milli-seconds after stimulus onset. In this study, the P300 amplitudes and latencies

were computed by averaging the ERP data that corresponded to multiple target shapes or

events of interest. Further, the data were grand averaged across all participants of one group in

order to compare the P300 between the MDD patients and healthy controls. In addition, the

computed values of P300 were utilized as input for the classification models.

Table 4. The Matlab code to compute the wavelet coefficients for delta and theta bands.

% The example code for decomposing a single EEG channel. A variable ‘Data’ has been assigned the de-

artifacted EEG data with 1 channel.

1. Data = EEG_signal(1,:);

%Decomposition Levels

2. N = 5;

%Wavelet window function

3. wname = ‘db4’;

%Wavelet decomposition of the Data with 5 levels of decomposition using db4 window

4. [C,L] = WAVEDEC(Data, N, wname);

%Wavelet coefficients ‘A4’

5. Delta_band_coeff = C(1:L(1));

% Wavelet coefficients ‘D4’

6. Theta_band_coeff = C(L(1):L(1)+L(2));

doi:10.1371/journal.pone.0171409.t004
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Standardization. The EEG data matrix might not be centered and also unequally distrib-

uted. Therefore, in order to eliminate the possible outliers, and to improve classification per-

formance, the data standardization based on z-scores was performed in Matlab (version 7)

function ‘zscore’. For this purpose, the EEG data of second group (30 healthy control subjects)

were used. The means μl and standard deviations σl, l = 1,. . ., Nc for each feature were calcu-

lated over the healthy subject sample. Then for MDD patients, the corresponding l-th feature

value xl is replaced with its normalized z-score value zl ¼
xl � ml

sl
before being fed to the feature

selection and classifier processes.

Feature selection. Most of the features extracted during feature extraction might be either

redundant or irrelevant. Therefore, the feature selection is desirable to reduce dimensionality

of the feature space, from Nc to a lower dimension, i.e., Nr. For high dimensional data sets, fea-

ture selection remains as a challenging research topic and carries critical importance during

data analysis involving a typical ML methodology. The high dimensional data/feature matrices

have been commonly found during practical studies such as the research areas of Genetics and

Chemo-metrics, where a large number of genes or compounds may be encountered typically

within thousands to few millions. From the classification point of view, this high dimensionality

may easily over-fit or under-fit a classification model. Hence, the high dimensionality causes a

considerable deterioration of classifier performances. In addition, the larger the number of fea-

tures used to describe the patterns in a domain of interest, the larger is the number of examples

needed to learn a classification function to a desired accuracy [73, 74]. In this study, to enhance

the classification performance and to reduce the irrelevancy and redundancy of the features, a

rank-based feature selection method was used to select the most significant features from the

EEG data matrix. In order to compare the rank-based feature selection method with a standard

method, the study has employed minimum redundancy and maximum relevance (mRMR)

method [67]. Hence, the classification results incorporated both types of feature selection

methods.

The rank-based feature selection method was performed according to receiver operating

characteristics (ROC) criterion [66, 75]. The area covered by the ROC curve for each feature

indicated its relevance with the class labels such as more area under the curve (AUC), the

higher is the relevance of that feature with the class label. Hence, the AUC was computed and

a corresponding weight value (z-value) was assigned to each feature. The z-value was directly

proportional to the area between the empirical ROC curve and the random classifier slope and

may vary from 0 and 0.5 indicating bad to good classification ability, accordingly. A high z-

value (equal or near 0.5) corresponded to the ability of a feature to discriminate within classes.

After computing z-values, the features were arranged in descending order of the z-values such

as the top-ranked features were listed at the top of the list. In order to eliminate the relevance

among the top-ranked features, their correlations with each other were computed and the fea-

tures with high correlation values were discarded because they might be redundant during

classification. Hence, the discriminating features were obtained with the ROC-based feature

selection based on the entire dataset (N = 34).

Table 5 provides pseudo code for the rank-based feature selection method to compute the

AUC for an individual feature. Let x be a vector that represents a feature and the vector y rep-

resents the target labels (-1, +1). In this study, both x and y have same dimensions.

The sample data provided in Table 6 further explains the pseudo code for the rank-based

feature selection method. Table 6 lists the sample data for 10 examples as shown in the first col-

umn. In addition, the columns ‘i’ and ‘j’ represent 2 different features, accordingly. The last

column shows the corresponding class labels.

EEG-based treatment outcome prediction for MDD
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Tables 7, 8 and 9 lists the intermediate values of different variables during the computation

of the AUC for the feature ‘i’ (as listed in Table 6). The computations follow the pseudo code

provided in Table 5. As shown in Table 8, the first step is to sort the feature values in a

descending order (1st column) and the corresponding labels are also adjusted (2nd column),

accordingly. Further, the values of intermediate variables (i.e., p, n, tp, and fp) are computed

and listed in the respective column.

Table 8 provides the computation of the intermediate variable Y according to the formula

Y = (tp(2:n)+tp(1:n-1))/2. Table 8 shows computation of Y based on values in Table 8.

Similarly, Table 9 provides the computation of the intermediate variable X according to the

formula ‘X = fp(2:n)—fp(1:n-1)’. Table 9 shows the computed X based on the values obtained

in Table 8.

Finally, the AUC is computed base on the formula ‘auc = sum(Y.�X)-0.5’. Table 10 shows

the detailed values of intermediate variables Y and X and the AUC, respectively.

As shown in Table 10, the value obtained for AUC (z-value) is zero which means that the

feature ‘i’ would not be a good option for further classification process and could be rejected.

The process is repeated for all other features in the EEG data matrix.

Furthermore, a second technique of feature selection was employed, known as the mini-

mum redundancy and maximum relevance (mRMR) [67]. According to mRMR, the most dis-

criminant features were identified based on the measures such as maximum relevance and

minimum redundancy. For example, the maximum relevant features were those that share

maximum value of mutual information between the feature and the target labels. On the other

Table 5. Pseudo code for feature ranking method.

patterns = [x y];

patterns = sortrows(patterns,-1);

y = patterns(:,2);

p = cumsum(y = = 1);

tp = p/sum(y = = 1);

n = cumsum(y = = -1);

fp = n/sum(y = = -1);

n = length(tp);

Y = (tp(2:n)+tp(1:n-1))/2;

X = fp(2:n)—fp(1:n-1);

auc = sum(Y.*X)-0.5;

doi:10.1371/journal.pone.0171409.t005

Table 6. Sample data.

Sample ID . . . i j . . . Label

1 -0.2 +0.5 (-)

2 -1.4 -1.4 (-)

3 +0.8 -0.9 (-)

4 -0.8 +0.2 (+)

5 . . . +0.1 -2.5 . . . (+)

6 +0.5 +1.4 (-)

7 +1.6 -0.3 (+)

8 -2.1 -1.2 (-)

9 -0.3 +2.2 (+)

10 +3.4 -1.7 (-)

doi:10.1371/journal.pone.0171409.t006
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hand, the features with minimum redundancy were identified based on the principle that if

two features are highly dependent on each other, the respective class discriminative power

would not change much if one of them is removed.

In order to find minimum number of features that would be sufficient to train the classifier

model without over-fitting, an empirical process was adopted. According to the process, the

minimum number of features were determined based on iteratively observing performance of

the classification models for each feature subsets selected from top 1, 2, 3, 4, 5, 10, 15, 20, 25,

30, 35, and 50 features. In order to generate a sufficient statistical distribution of classifier per-

formance metrics such as the accuracy, sensitivity and specificity for each subgroup, 100 times

simulations were performed and box-plots were plotted.

In this study, the EEG features for EC and EO were combined by concatenating the individ-

ual feature columns-wise: 15 best features of WT + 15 of best STFT + 15 of best EMD features

to make 45 features in total and then feed them to classifier.

Classification. In this study, a multivariate relationship between the EEG-based features

and the clinical outcomes, i.e., R and NR was modeled based on logistic regression (LR) model

[76]. The reduced set of EEG features was considered as independent variables and the corre-

sponding treatment outcomes (R or NR) were the dependent variables. Logistic function pro-

vides the mathematical base on which the logistic model is based and is given by Eq (2):

F zð Þ ¼ E Y=xð Þ ¼
1

1þ e� z
ð2Þ

where Y is the class labels and assigned a value of either ‘R’ or ‘NR’, and x represent a combina-

tion of the EEG features after feature selection, i.e., the coefficients achieved by WT technique

and the features extracted from EMD and STFT analysis. To obtain the LR model from the

logistic function, we used Eq (3):

z ¼ aþ b1X1 þ b2X2 þ . . .þ bkXk ð3Þ

where z is a linear combination of α plus β1 multiplied with X1, plus β2 multiplied with X2, and

Table 7. Intermediate variables values.

Feature values (sorted in descending order) labels p n tp fp

3.4 (-) 0 1 0 0.1667

1.6 (+) 1 1 0.25 0.1667

0.8 (-) 1 2 0.25 0.333

0.5 (-) 1 3 0.25 0.5

0.1 (+) 2 3 0.5 0.5

-0.2 (-) 2 4 0.5 0.6667

-0.3 (+) 3 4 0.75 0.6667

-0.8 (+) 4 4 1 0.6667

-1.4 (-) 4 5 1 0.8333

-2.1 (-) 4 6 1 1

doi:10.1371/journal.pone.0171409.t007

Table 8. Computation of Y = (tp(2:n)+tp(1:n-1))/2.

tp(2:n) 0.25 0.25 0.25 0.5 0.5 0.75 1 1 1

tp(1:n-1) 0 0.25 0.25 0.25 0.5 0.5 0.75 1 1

(tp(2:n)+tp(1:n-1))/2 0.25 0.5 0.5 0.75 1 1.25 1.75 2 2

Y 0.125 0.25 0.25 0.375 0.5 0.625 0.875 1 1

doi:10.1371/journal.pone.0171409.t008
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plus βk multiplied with Xk, where the Xk are the independent variables and α, and βi are con-

stant terms representing unknown parameters. Furthermore, by replacing the value of z from

Eq (3) to Eq (2), the following Eq (4) represents the logistic function:

F zð Þ ¼ E Y=xð Þ ¼
1

1þ e� ðaþ
X

biXiÞ

ð4Þ

The likelihood of a person to be a non-responder or a responder was estimated and that

resulted into a likelihood value F(z), where 0� F(z)� 1, which was an indication of subject’s

association with either R or NR category. If F(z) was greater than the threshold = 0.5, the sub-

ject was declared as R (responder), and otherwise as a NR (non-responder). In summary, the

LR classifier generated probability values to categorize the MDD patients as either R or NR to

the treatment.

Validation. The validation of classification results is provided by 100 iteration of 10-fold

cross validation (10-CV) including a permutation test method [77]. Permutation tests were

suggested in the evaluation of classification performance [78, 79]. After classifier design, a fair

evaluation requires assessment of its performance over a range of selected features, data points

(study participants) and classifier design that corresponds to a large number of subjects. To

address this consideration, we evaluated classification performance based on 10-CV. The data

points (study participants) were segmented such that during each round, nine of the segments

were utilized as training subset and the remaining 1 as test subset.

For each feature subset, a 100 times run of the simulations were performed involving

10-CV to achieve box-plot representations of the accuracies, sensitivities and specificities.

Since the individual iteration resulted into 100 different values of performance metrics (the

accuracy, the sensitivity and the specificity), the final confusion matrix was computed by aver-

aging. The performance metrics computed from the confusion matrix were presented by Eqs

(5–8). The sensitivity of a classification model corresponds to the percentage of true cases (TP)

which are correctly classified as cases defined by Eq (5). The specificity of a classification

model refers to the percentage of true non-cases (TN) which are correctly classified as non-

cases as described by Eq (6). The accuracy of a classification model illustrates the percentage of

correctly classified cases and non-cases among all the example points as depicted in Eq (7).

F-Measure, as described in Eq (8), could be interpreted as a weighted harmonic average of pre-

cision and recall values [80]. The precision was defined as the probability that a randomly

selected patient analyzed to be MDD was really MDD patient. The recall was defined as the

probability that a randomly selected MDD patient was correctly identified as a MDD patient.

Table 9. Computation of X = (fp(2:n)-fp(1:n-1)).

fp(2:n) 0.1667 0.333 0.5 0.5 0.6667 0.6667 0.6667 0.8333 1

fp(1:n-1) 0.1667 0.1667 0.333 0.5 0.5 0.6667 0.6667 0.667 0.8333

X 0 0.1667 0.1667 0 0.1667 0 0 0.1667 0.1667

doi:10.1371/journal.pone.0171409.t009

Table 10. Computation of AUC = sum(Y.*X)-0.5.

AUC = sum(Y.*X)-0.5;

AUC = (0.125×0 +0. 25×0.1667 + 0.25×0.1667 + 0.375×0 + 0. 5×0.1667 + 0.625×0 + 0.825×0 + 0.1667×1

+ 0.1667×1)-0.5

AUC = 0.5–0.5 = 0

doi:10.1371/journal.pone.0171409.t010
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The F-Measure indicated that both the precision and recall were reasonably high.

Sensitivity ¼
TP

TPþ FN
ð5Þ

Specificity ¼
TN

TN þ FP
ð6Þ

Accuracy ¼
TPþ TN

TPþ TN þ FP þ FN
ð7Þ

F � Measure ¼
2� TP

ð2� TPÞ þ FP þ FN
ð8Þ

Construction of 2D maps of scalp topographies

In this study, the 2D topographic maps were constructed based on assigning values, i.e., either

0 or 1 and a corresponding color to each of 19 scalp locations involving the Wilcoxon rank-

sum test [81, 82]. The Wilcoxon rank-sum test assigned values such as either ‘1’ or ‘0’ to each

location showing the statistical differences between the two groups, i.e., the R and NR. Since

the construction of topographic maps required values for 19 scalp locations, and 11 of them

were listed in Table 3 (Fp2, F3, F4, F7, F8, Fz, C3, C4, P4, T3, T4). Therefore, the remaining

locations such as Fp1, O1, O2, P3, T6, T8, Cz, Pz were determined from the 100 top-ranked

features. The wavelet features corresponding to delta and theta bands were used to compute

values for each scalp location.

According to the Wilcoxon rank-sum test, the null hypothesis (H = 0) stated that the medi-

ans of the two groups (R Vs. NR) were equal, and assigned a ‘0’ value and blue color for the

location. On the other hand, the alternate hypothesis (H = 1) indicated a significant difference

(not equal) at the 5% level and correspondingly assigned ‘1’ value and a red color for the loca-

tion. The space between the two sensors was assigned a color by method of interpolating values

of the two nearest sensor locations. As a result, the topographical maps for the 19 channels

were constructed. The Wilcoxon rank-sum test was performed using a Matlab (version 7)

function ‘ranksum’. In this study, the construction of 2D maps was performed in EEGlab [83],

involving a Matlab function ‘topoplot’.
In this study, the particular selection of the Wilcoxon rank-sum test was based on the

test of normality of the selected wavelet coefficients involving the kolmogrov-smirnov test

[84, 85]. According to the kolmogrov-smirnov test, the analysis of variance (ANOVA) test

was not feasible; therefore, an equivalent non-parametric test was chosen. In this study, to

examine agreement between the distribution of the reduced set of EEG features and a nor-

mal distribution, the Kolmogrov-Smirvon (KS) test was performed. The KS test returns a

test decision for the null hypothesis that the data in vector x (EEG features) comes from a

standard normal distribution, against the alternative that it does not come from such a dis-

tribution. The test resulted into a value ‘1’ if the the null hypothesis was rejected at the 5%

significance level, or into a value ‘0’ otherwise. The KS test was implemented using a Matlab

(version 7) function ‘kstest’.
The gender stratification was recommended useful to elucidate the brain regions that could

not be highlighted otherwise [86]. In order to realize the importance of gender stratification,

the topographical maps were constructed without gender stratification as well.

EEG-based treatment outcome prediction for MDD
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2D scatter plotting with KPCA

In this study, the feature selection resulted into a reduced subset of the most discriminant fea-

tures involving both the R and NR groups. To visualize a 2D representation of the data, a

reduced set of EEG data matrix was computed involving the kernelized principal component

analysis (KPCA) method [87]. The KPCA method was implemented involving a Matlab (ver-

sion 7) function ‘princomp’. The method transformed the EEG data matrix into its principal

components representing the variance of data. Specifically, the first two principal components

depicted more than 80% variance of the EEG data and were plotted on the x-axis and y-axis,

respectively. The resulting scatter plot diagram represented the distribution of R and NR clas-

ses in 2D space. The shape of the scatter plot helped in visualizing clustering behavior of the

feature set and aids in identifying the outliers. In the scatter plot, each point corresponds to the

epochs (2×34 = 68) involving all the MDD patients for EC and EO EEG data.

Results

Significance of wavelet coefficients and clustering behavior

To observe an overall behavior based on both MDD male and female patients, Table 11 lists

top-ranked 15 wavelet features in delta and theta bands sorted in descending order accord-

ing to their individual computed z-values. The p-values implicated that the wavelet features

showed statistically significant difference between the R and NR groups. To summarize,

among the top-rated 15 significant wavelet coefficients, nine of them were computed from

the frontal lobe while three were found associated with temporal. The parietal and central

areas had one and two coefficients, respectively. Based on the number of coefficients, it may

be concluded that the frontal and temporal brain regions have shown most significant fea-

tures in order to discriminate the two groups which is in accordance to the study conducted

by [88].

Fig 5 shows distribution of responders and non-responders on a 2D plane for the top-

ranked 15 wavelet features. As shown in the figure, the shapes of the two clusters provide a

bird’s eye view of the data and indicated that there were no outliers in this reduced set of EEG

data.

Table 11. A list of discriminating features (Frontal = 9, Temporal = 3, Parietal = 1 and Central = 2).

EEG Electrode Names Frequency band Absolute z-values p-value

Fp2 Delta 0.3024 0.016

C3 Theta 0.2886 0.022

F7 Delta 0.2794 0.013

F3 Delta 0.2794 0.022

F7 Theta 0.2739 0.016

T4 Theta 0.2711 0.022

F8 Theta 0.2711 0.008

T4 Delta 0.2711 0.010

F3 Theta 0.2665 0.002

Fz Delta 0.2656 0.045

F4 Delta 0.2638 0.0021

C4 Delta 0.2601 0.015

F8 Theta 0.2574 0.021

T4 Delta 0.2555 0.030

P3 Theta 0.2555 0.001

doi:10.1371/journal.pone.0171409.t011
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Topographic maps

Figs 6 and 7 show topographic maps constructed for MDD female and male patients, respec-

tively. Fig 6 (left-side) shows the MDD female patients during EC. Brain regions such as the

frontal, left and right temporal have shown significant differences between the R and NR. In

addition, some other areas such as left central, parietal and occipital have also exhibited signifi-

cant differences. In Fig 6, during EO (right-side), the MDD female patients have exhibited dif-

ferences between female R and NR in the right frontal and temporal areas. In addition, a right

sided occipital and parietal have shown significant difference. In short, during both EC and

EO conditions, frontal and temporal areas were commonly observed as significantly different

between the two groups.

In Fig 7, the male participants during EC (left-side) had exhibited statistically significant

differences in the right frontal, left temporal and right parietal regions. During EO (right-side),

in addition to the frontal and temporal areas, the central and parietal regions have shown the

statistical differences. Similar to the female patients, it was observed that the frontal and tem-

poral regions were common between the EC and EO conditions.

The Fig 8 was plotted without gender stratification including the EC (left) and EO (right)

conditions. During EC (left-side), statistical differences were observed in the right frontal, left

Fig 5. Scatter plot representation of first two PCs representing clustering behavior of the treatment

responders (R) and non-responders (NR) achieved by kernelized principal component analysis

(KPCA).

doi:10.1371/journal.pone.0171409.g005

Fig 6. Wavelet coefficient based statistical differences between responders and nonresponders

(Females Patients Only). According to the topo plots the left temporal areas showed significant differences

during EC and EO conditions. The statistical difference of activation, between R and NR, was found in the

frontal and central regions also.

doi:10.1371/journal.pone.0171409.g006
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and temporal and right parietal regions. During EO (right-side), except some small areas, the

whole brain region has shown the statistical difference.

Classification of MDD patients based on significant wavelet coefficients

Table 12 provides comparison of the proposed ML method with state-of-the-art methods as

mentioned in the ‘Introduction’ section including power of EEG bands, i.e., alpha and theta

power, alpha asymmetry, ATR index, EEG theta cordance, coherence and P300 amplitude and

latencies. The number of features reported here has shown maximum classification accuracies

with the given feature set. According to the Classification results, the proposed ML method

out-performed the existing state-of-the-art methods. The second best accuracy was achieved

by the P300 amplitude and latencies, i.e., 74.16%. However, the associated specificities are very

low.

Fig 9 shows classifier performances as a function of the total number of features in a subset.

The LR classifier has exhibited an over-fitting phenomenon because the accuracy of the classi-

fier decreases with an increase in the number of features. According to the figure, the top 15

features exhibited highest efficiencies. Increasing the features more than 15 resulted into a

decrease in the classification performance.

Table 13 provides comparison of the three time-frequency decomposition techniques

including WT analysis, STFT and EMD while classifying the treatment R and NR. According

to the results, the EEG features computed with WT analysis have shown highest classification

efficiencies (accuracy = 87.5%) among other EEG features. In addition, the rank-based feature

selection showed better results than the mRMR. On the other hand, the STFT and EMD based

EEG feature extraction have shown lower performance than WT analysis. An integration of

the features including WT analysis, EMD, and STFT as a single features space matrix has

shown accuracy = 91.6%.

Fig 7. Wavelet coefficient based statistical differences between responders and nonresponders (Both

male and female Patients Only). During EC, left and right temporal areas as well as the left frontal have

shown significant differences. In addition, during EO condition the frontal, right temporal and central and

parietal areas were also exhibited significant differences.

doi:10.1371/journal.pone.0171409.g007

Fig 8. Wavelet coefficient based statistical differences between responders and non-responders (All

MDD patients). The figure shows significance of gender stratification for topographical analysis.

doi:10.1371/journal.pone.0171409.g008
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Fig 10 shows the results for training and testing the LR classifier for each subset of features

while classifying the MDD patients and healthy controls. As shown in the figure, each plot

shows classifier performance as a function of the total number of features in a subset. The LR

classifier has exhibited an over-fitting phenomenon that can be observed from the figures as

the accuracy of the classifier decreases with an increase in the number of features. According

to the diagram, the top 15 features have exhibited highest efficiencies. Increasing the features

greater than 15 resulted in a decrease of classification performance.

Table 14 provides comparisons of the three time-frequency decomposition techniques

including WT analysis, STFT and EMD while classifying the MDD patients and healthy con-

trols. The EEG features computed with WT analysis have shown highest classification efficien-

cies (accuracy = 89.6%) among other EEG features. In addition, the rank-based feature

selection showed better results than the mRMR. On the other hand, the STFT and EMD based

EEG feature extraction have shown lower performance than WT analysis. The detailed results

can be seen from the table. An integration of the features including WT analysis, EMD, and

STFT as a single features space matrix has shown accuracy = 90.5%. Studies using the similar

idea of using the ML methods have reported diagnosis accuracy such as [90, 91].

Discussion and conclusion

In this paper, a ML method is proposed involving time-frequency decomposition of EEG data

with WT analysis. A primary finding is that the pre-treatment EEG-based wavelet features

Table 12. Comparison of classification (R Vs NR) methods among the proposed ML method and the methods presented in the related literature.

Derived EEG Measure Accuracy Sensitivity Specificity

ATR Index [18] 61.68% (±9.1) 70% (±15.3) 54% (±17.2)

EEG Theta Cordance [19] 70.7% (±6.5) 75.7% (±9.1) 65.7% (±8.3)

Coherence, PSD, PSD ratio [31] 72.08% (±7.6) 80% (±13.5) 65% (±12.3)

P300 (amplitude and latencies) [89] 74.16% (±13.1) 70% (±15.6) 75% (±7.7)

PSD, PSD ratios [31] 54.5% (±8.0) 55% (±14.7) 50% (±15.6)

Proposed ML Method 87.5% (±7.1) 95% (±4.3) 80% (±8.8)

doi:10.1371/journal.pone.0171409.t012

Fig 9. Classification accuracies (Logistic Regression (LR)) as a function of number of features. Over-

fitting can be observed by a decrease in accuracy (more than 15 features) with an increase in the number of

features.

doi:10.1371/journal.pone.0171409.g009
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involving delta and theta frequency bands can predict antidepressant’s treatment outcome for

MDD patients treated with SSRIs. On the other hand, in psychiatric clinics, treating MDD is

an iterative process with hit-and-trial sequential treatment strategy, until an effective antide-

pressant is found. In case of treatment failure, a two to four weeks’ time is wasted. This con-

ventional clinical practice may be improved by incorporating EEG data because the scientific

predictions based on electrophysiological recordings may help psychiatrists to evaluate the

most appropriate antidepressant. Moreover, the successful predictions may effectively improve

treatment process while reducing the useless treatment iterations.

In this study, utilizing EEG features as input data to the proposed ML method to perform

classification of treatment respondents and non-respondents is based on the findings reported

by [32]. However, the proposed ML method offers new methodology that provides high effi-

ciency (accuracy, sensitivity and specificity) with less features, i.e., only 15 wavelet coefficients.

The decomposition of EEG data at various scales has been considered as direct representations

of the brain behavior at various scales with timing information [92, 93]. In comparison to the

techniques proposed in literature, our method has shown highest efficiencies in discriminating

R and NR. For example, recent studies based on ML concepts have shown 85% [31], and

87.9% [32], while our proposed method shows 87.5% accuracy. In addition, our proposed

Table 13. Classification (R vs. NR) for EEG Data including Delta and Theta Wavelet coefficients.

EEG Features Feature Selection Classification Performance

Accuracy Sensitivity Specificity F-Measure

Wavelets Rank Based 87.5% (±7.1) 95% (±4.3) 80% (±8.8) 0.81 (±2.1)

mRMR 72.0% (±7.3) 70% (±9.9) 77.5% (±12.2) 0.70 (±2.8)

STFT Rank Based 80% (±11.1) 75.0% (±10.5) 90% (±8.7) 0.76 (±4)

mRMR 70.8% (±9.2) 60% (±14.8) 75% (±12.1) 0.64 (±4.9)

EMD Rank Based 72.5% (±9.1) 77.5% (±17.7) 67.5% (±10.1) 0.73 (±5.2)

mRMR 64.1% (±9.3) 60.0% (±9.2) 70.0% (±12.1) 0.52 (±1.3)

Combination (Wavelets+STFT+EMD) Rank Based 91.6% (±3.2) 90% (±9.4) 90% (±8.9) 0.86 (±1.7)

mRMR 76.2% (±8.6) 72.5% (±10.8) 77.5% (±11.7) 0.74 (±1.9)

doi:10.1371/journal.pone.0171409.t013

Fig 10. Classification accuracies (Logistic Regression (LR)) as a function of number of features. Over-

fitting can be observed by a decrease in accuracy (more than 15 features) with an increase in the number of

features.

doi:10.1371/journal.pone.0171409.g010
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scheme is different in terms of extracted features, feature selection and classification models.

We have employed 10-fold cross validation similar to the paper as employed by [32].

In this study, the brain areas such as frontal, temporal, parietal and occipital were identified

as significantly different between the study groups. This finding is in accordance with other

research studies related to MDD [94]. More specifically, the finding in visual cortex is interest-

ing as some previous studies have reported functional abnormalities within the visual cortex in

depression [95, 96]. Other studies based on structural observation such as MRI including

MDD patients with abnormalities associated with frontal, temporal, parietal and occipital

regions [94, 97–99]. However, the main contribution is that our data has replicated these find-

ings with wavelet coefficients. In addition, our findings suggest that EEG could be used to

assess treatment efficacy involving most relevant EEG features.

While constructing the topographical maps, the activation refers to the statistical differ-

ences between the brain areas of treatment responders and non-responders. The statistical dif-

ferences are color-coded as red and blue corresponding to 1 (activation) and 0 (no-activation),

respectively. In this study, the MDD patients are stratified as male and female MDD patients.

It has been established that the gender stratification could help identifying the brain areas that

could not be revealed otherwise [86]. In the literature, it is reported that gender differences

affect pathological brains, including the subjects with subclinical depression and MDD [100].

In an old study, gender differences in the EEG activity during stimulus and non-stimulus con-

ditions are also reported [101]. However, the proposed method has incorporated customized

wavelet coefficients for this replication of previous findings. The results further motivate the

use of topographical maps based on EEG data to localize brain regions that are different

between the MDD responders and non-responders. The brain areas such as frontal, temporal,

occipital, and parietal have shown significant associations with the disease pathology. This

finding implicates that the topographical maps constructed with statistical quantities could be

utilized to localize the disease pathology with a certain level of confidence. This finding would

be of interest for the clinicians.

According to our topographic analysis, a gender difference is statistically significant

between R and NR stratified into male and female MDD participants specifically at frontal and

temporal brain regions. As shown in Figs 6, 7 and 8, while constructing the topographical

maps, the significance of gender stratification is evident. Because only Figs 6 and 7 are able to

show those brain regions which could not be manifested without gender stratification (shown

in Fig 8). According to the literature, the gender differences in prevalence of depression is

well-established which is found 2:1 in females as compared with male patients [102]. In addi-

tion, the gender difference is commonly found in terms of clinical features such as female

patients report greater severity of illness and are more likely to receive the previous treatment

Table 14. Classification (MDD patients vs. healthy controls) for EEG features including Delta and Theta Wavelet coefficients.

EEG Features Feature Selection Classification Performance

Accuracy Sensitivity Specificity F-Measure

Wavelets Rank Based 89.6% (±5.1) 81.7% (±11.3) 96.7% (±3.1) 0.77 (±2.9)

mRMR 65.2% (±4.2) 63.3% (±6.4) 68.7% (±9.5) 0.62 (±1.9)

STFT Rank Based 82.2% (±8.8) 80% (±14.1) 82.9% (±9.2) 0.83 (±2.9)

mRMR 62.5% (±5.5) 63.3% (±9.1) 60.8% (±6.5) 0.58 (±2.9)

EMD Rank Based 71.7% (±7.4) 68.3% (±16.1) 77.1% (±14.1) 0.56 (±14.6)

mRMR 56.1% (±9.1) 56.6% (±11.9) 51.6% (±9.2) 0.52 (±2.8)

Combination (Wavelets+STFT+EMD) Rank Based 90.5% (±8.3) 91.6% (±5.7) 88.7% (±7.5) 0.84 (±3.6)

mRMR 73.9% (±6.6) 75% (±7.8) 74.1% (±9.5) 0.70 (±1.9)

doi:10.1371/journal.pone.0171409.t014
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for depression than male patients [103]. Moreover, greater functional impairment is noticed in

women during marital adjustments whereas the men show more functional impairment dur-

ing work-related issues. Gender differences in clinical symptoms may have implications in the

treatment planning which may be gender-specific. In short, the chronicity of depression may

affect female MDD patients more seriously than the male MDD patients. The analysis of topo-

graphical maps have shown similar brain regions that are in accordance with the literature

[88]. However, our main contribution is that we have produced these topographical maps

based on customized wavelet coefficients from pretreatment EEG data of patients recruited in

this study.

The ATR [18] method predicts antidepressant’s treatment outcome with ~74% accuracy.

However, the method suffers from the disadvantage that it can predict the treatment outcome

based on the data acquired during week 0 (pretreatment) and 1 (one week after treatment

start). Moreover, the EEG theta cordance and the ERP-based techniques, i.e., P300 and loud-

ness dependence auditory evoked potential (LDAEP) resulted in low values of specificities

[104, 105]. In contrary, the method we presented in this paper provides higher values of speci-

ficities after only a single pretreatment EEG data that favors its clinical utility.

While comparing power spectral density (PSD) and WT analysis, the PSD is computed

while averaging the high resolution EEG data which would eliminate the temporal informa-

tion. On the other hand, the WT analysis decomposes the EEG signal while preserving both

time and frequency information. Therefore, in our study, the WT analysis is preferred over

estimating PSD of the EEG signal. Moreover, in Table 13, the classification results for both the

PSD and PSD rations have shown that the power computed with Welch’s averaged periodo-

gram method are able to acquire 54.5% classification accuracy. In contrary, the WT analysis

exhibits 87.5% accuracy. Hence, WT analysis performs better than the PSD estimation for the

EEG data acquired in this study. Moreover, the quantification of connectivity among different

brain regions is performed using the coherence measure. Regarding the effects of EEG data

lengths on EEG analysis, we observed slight changes in classifier performances as a function of

EEG data lengths. Hence, recommending the use of two minutes of EEG data that would per-

form better in terms of classification accuracy than one minute recording of EEG data.

In this study, wavelet coefficients extracted from delta and theta bands have shown higher

efficiencies in discriminating the two study groups than the wavelet coefficients extracted from

alpha and beta bands. In addition, the wavelet coefficients from frontal, temporal, and occipital

regions are found significant. The neurobiology of MDD associated with EEG delta and theta

band and with the frontal region can be explained: the theta current density, localized by LOR-

ETA to the rostral anterior cingulate cortex (rACC), has been associated with response to vari-

ous antidepressants including, nortriptyline, citalopram, reboxetine, fluoxetine or venlafaxine

during depression [28–30]. Pizzagalli has demonstrated biological mechanisms for this associ-

ation [106]: According to Pizzagalli, the rACC has been considered as a main hub within the

default network (DN) of the brain and involved in self-focused processing. Moreover, elevated

resting state activity in rACC is associated with focusing on reflective thought or task indepen-

dent introspection such as rumination, remembering and planning [107]. Rumination is a

mechanism of responding to distress by repetitively focusing on the symptoms, causes and

consequences of distress, and it is comprised of two components: reflective pondering and

brooding. Cognitive problem solving is carried out through reflective pondering whereas the

brooding is analytic self-focus, which is ultimately destructive because it worsens depressive

symptoms. Based on these findings, Pizzagalli proposes that elevated rACC activity may lead

to treatment response because of adaptive self-referential functions such as mindfulness and

non-evaluative self-focus. Moreover, the rACC functional connectivity is observed in MRI

EEG-based treatment outcome prediction for MDD
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study that demonstrated the discriminative power of rACC functional connectivity in depres-

sion [108].

There is a possibility that our proposed ML models are confounded with some outliers

other than the relevant patterns extracted from the brain activities. We have ruled out this con-

cern by 1) properly adopting artifact removal techniques, 2) standardizing preprocessed data

based on z-scores, 3) plotting the low dimensional representation of our feature space: this

helps in identifying outliers which may disturb the interpretations and conclusions, 4) during

classifier’s testing and training, selecting random data points so that each data point in the fea-

ture space can be used, 5) in terms of classification, equally distributing both the R and NR

classes within MDD male and female patients. Based on all these precautions, we may con-

clude that the results shown here are un-biased and true representation of the information

from the recorded pretreatment EEG data.

The study is confounded with few limitations. During our MDD patient recruitment, it is

difficult to recruit patients under a common treatment. As a result, the inclusion of patients is

restricted to a single class of antidepressants i.e., SSRIs. Since the pharmaco-EEG profiles of

different antidepressants are not clear yet, therefore, it is difficult to study medication-specific

treatments effects. A potential confounding of head motion should be considered in caution,

since both the neuronal and noise effects of head motion have been demonstrated to relate to

the frontal and temporal regions, while head motion levels are always significantly different

between different populations [109]. In this study, the results are based on small sample sizes,

the generalizations of the results are necessary based on replicating our method into larger

population. The study patients are required to be in washout for a period of two weeks before

first EEG data recording session. However, the possibility of medication effects cannot be

avoided completely. In future studies, inclusion of psychophysiological characteristics inte-

grated with EEG may improve prediction performance.

In conclusion, despite the above mentioned limitations, the higher efficiencies shown in

the results suggest that wavelet features from delta and theta bands might be a promising tool

for prediction of therapeutic actions for SSRIs treatment. Specifically, the high specificities

achieved by our method are of considerable interest for their clinical utilities. However, cau-

tion must be adopted while interpreting these results.
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