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Elevation of glucose level in response to acute coronary syndrome (ACS) has been

recognized as stress induced hyperglycemia (SIH). Plenty of clinical studies have

documented that SIH occurs very common in patients hospitalized with ACS, even in

those without previously known diabetes mellitus. The association between elevated

blood glucose levels with adverse outcome in the ACS setting is well-established. Yet, the

precise definition of SIH in the context of ACS remains controversial, bringing confusions

about clinical management strategy. Several randomized trials aimed to evaluate the

effect of insulin-based therapy on outcomes of ACS patients failed to demonstrate

a consistent benefit of intensive glucose control. Mechanisms underlying detrimental

effects of SIH on patients with ACS are undetermined, oxidative stress might play an

important role in the upstream pathways leading to subsequent harmful effects on

cardiovascular system. This review aims to discuss various definitions of SIH and their

values in predicting adverse outcome in the context of ACS, as well as the effect

of intensive glucose control on clinical outcome. Finally, a glimpse of the underlying

mechanisms is briefly discussed.

Keywords: stress induced hyperglycemia, acute coronary syndrome, admission blood glucose, intensive glucose

control, oxidative stress

INTRODUCTION

Stress-induced hyperglycemia (SIH) is an acute response of the bodies to many critical illnesses,
including acute coronary syndromes (ACS) (1). Many observational studies have documented
that hyperglycemia occurs frequently among patients hospitalized with ACS, even those without
diabetes mellitus (1–3). It has been well-established that elevated glucose is associated with
increased in-hospital and long-term mortality in ACS patients, especially in non-diabetic patients
(4–10). Yet, hyperglycemia is not identified as an independent risk factor of ACS to date. Many
questions regarding the relationship between SIH and ACS remain unclarified. For example,
which glucose metrics, such as the blood glucose on admission (ABG), the average blood
glucose, or the glucose variability (GV), is the most appropriate measurement of hyperglycemia
and best correlated to the poor outcome; what the cut-off values that precisely define SIH
are; whether there’s any difference between cut-off values in the presence and absence of
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recognized diabetes mellitus; whether glucose-lowering therapy
can improve the prognosis of ACS patients with SIH; and finally,
what the mechanisms underlying SIH in the ACS setting are. This
article aims to address some of the undetermined issues based on
the present available data.

DEFINING SIH IN THE CONTEXT OF ACS

Defining SIH With ABG
Despite numerous studies regarding SIH have been published,
there’s currently no uniform definition for SIH in the setting
of ACS. Most early studies defined hyperglycemia by the first
available glucose value or ABG (1, 4, 5, 8, 11–13). The most
acceptable description of ABG refers to the first acquired blood
glucose within 24 h of admission (1, 7). Nevertheless, the cut-
point of ABG used to define hyperglycemia in patients with ACS
was different from study to study. Back to 2008, the American
Heart Association (AHA) Scientific Statement on Hyperglycemia
and Acute Coronary Syndrome suggested using an ABG level
>140 mg/dL as the definition of hyperglycemia under such
circumstances (6). Evidence behind this recommendation mainly
came from retrospective observational studies. In a national
retrospective study of 141680 elderly acute myocardial infarction
(AMI) patients, non-diabetic patients with higher ABG (range
from>110 to 140 mg/dL) had increased risk of both 30-day
and 1-year mortality compared with patients whose ABG was
≤110 mg/dL. In contrast, increased mortality was observed
only in those with an ABG >240 mg/dL among diabetic AMI
patients (4). Another study found AMI patients with a baseline
glucose level <140 mg/dL had lower 30-day mortality compared
to those with higher baseline glucose (14). Similarly, Buturlin
et al. reported in a recent study of 4,520 ACS patients that
mildly elevated ABG with glucose levels <140 mg/dL was not
independently associated with increased 1-year mortality in
non-diabetic patients (15). In a meta-analysis of 15 relatively
small studies which discussed the association between ABG
and ACS outcomes, Capes et al. indicated that among non-
diabetic patients with AMI, the relative risk of in-hospital
death in those with an ABG level >110 mg/dL was 3.9
compared with that of patients who were normoglycemic. On
the contrary, among diabetic AMI patients, a greater risk of
in-hospital death was observed only in patients whose ABG
level ≥180 mg/dL (1). The phenomenon that cut-off values of
ABG for predicting adverse outcome differed between diabetic
and non-diabetic AMI patients was reported in similar studies
(4, 8). An appropriate reason for such discrepancy might be
the unawareness of different baseline glucose metabolic status
between diabetic and non-diabetic patients. The ABG level
is influenced by both acute physiological stress and chronic
baseline glycemic levels, especially in patients with established
diabetes mellitus. It’s obviously that using a single cut-off value
of ABG to define SIH, regardless of the previous glucose
metabolic status, is not compelling. Therefore, new metrics
including glycemic gap and stress hyperglycemia ratio (SHR),
which eliminate the interference of chronic glycemic levels, were
introduced (16–18).

Defining SIH With Glycemic GAP/SHR
The glycemic gap is calculated from the ABG minus the HbA1c
derived average glucose level. A recent study showed that
glycemic gap instead of ABG was associated with increased
mortality (9). Similarly, SHR is calculated from ABG divided
by the HbA1c derived average glucose level, which is also
expressed as acute-to-chronic glycemic ratio in some articles.
In a prospective study including 1,553 AMI patients, the
prognostic power of glycemic ratio for in-hospital mortality was
particularly evident in diabetic patients. However, among non-
diabetic patients, both glycemic ratio and ABG had a similar
prognostic accuracy (17). Another study of patients with ST-
segment elevation myocardial infarction (STEMI) found that
the glycemic ratio was closely associated with an increased risk
for poor in-hospital outcome among both diabetic and non-
diabetic patients (19). In contrast, ABG showed an association
with poor in-hospital outcome only in non-diabetic patients.
A recent randomized study evaluated the predictive value
of SHR for long-term outcome in both diabetic and non-
diabetic patients with STEMI. It included 6,287 STEMI patients
and followed up over 5 years, and finally demonstrated that
high SHR was significantly associated with worse long-term
outcome in non-diabetic, instead of diabetic patients (10).
Coincidently, Yang et al. reported in an AMI cohort that
patients with a high SHR were at increased risk for long-
term MACCE, defined as composites of all-cause death, non-
fatal myocardial infarction, and non-fatal stroke (20). Again,
when the same analysis was applied to diabetic patients, the
risk of MACCE did not differ between patients with and
without a high SHR. Hence, the predictive value of SHR was
similar among diabetic and non-diabetic patients for in-hospital
outcomes, but differed for long-term outcomes. The underlying
mechanisms is unknown, one possible explanation might be
the effect of SIH is masked by diabetes itself, given the fact
that diabetes contributes to poor long-term prognosis in AMI
patients (10).

Defining SIH With GV
Both ABG and SHR are derived from one blood glucose
test. The nature of the metrics determines that it cannot
reflect the full profile of glucose swings in the ACS setting.
Patients with similar mean glucose levels can have markedly
different glucose excursions. Meanwhile, glucose fluctuations
can exert deleterious effects on both endothelial function and
oxidative stress (21, 22). Previous studies reported increasing
GV conferred a higher risk of mortality among critically ill
patients, independent from mean glucose levels (23). Gong
Su et al. demonstrated in an AMI cohort that GV, indicated
as the mean amplitude of glycemic excursions (MAGE), was
associated with increased risk of MACE instead of ABG
or HbA1c (24). In a further study of 256 non-diabetic
STEMI patients, high GV but not ABG was turned out to
be associated with 3-month MACE (25). Subsequent studies
emerged with similar conclusions that GV was a predictor
of prognosis in patients with ACS regardless of the diabetic
status (26–28). In addition, an elevated GV was suggested
to be associated with hypoglycemia, an independent risk
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factor for patients with coronary artery disease (29, 30). Yet,
among several methods to quantify GV, such as standard
deviation, MAGE and coefficient of variation, there is no
universally accepted “gold standard.” Given different methods
being utilized in studies, the results should be interpreted
with caution. Besides, there were a few studies focusing
on other metrics, such as fasting glucose (FG). Considering
the definition of FG used in these studies, it seems to be
an alternative index for ABG. However, FG within 24 h of
admission was reported to be associated with both increased
short and long-term mortalities only in diabetic patients with
ACS (31–33).

With present methodology, it seems unable to describe the
complete profile of SIH in the ACS setting by utilizing a
single glucose metrics. Moreover, an optimal definition of SIH
should have a similar accuracy in predicting the cardiovascular
outcomes among both diabetic and non-diabetic patients.
Further investigations regarding how to precisely define or draw
the outline of SIH are in demand.

INTERVENTIONS

Although it’s widely accepted that ACS patients presenting with
hyperglycemia are at increased risk for adverse outcome, it
remains to be illustrated whether hyperglycemia is a direct
mediator of poor outcome, or it’s simply a marker indicating a
greater disease severity. To address the issue, large randomized
clinical trials of glucose control in hospitalized ACS patients are
requisite. In contrast to plenty of clinical trials of target-driven
glucose control in chronic hyperglycemia patients, a few trials
exploring the optimal glycemic target for ACS patients have been
performed (Table 1).

To our knowledge, DIGAMI was the first randomized clinical
trial designed to evaluate the effect of intensive glucose control
in AMI patients presenting with SIH. A total of 620 patients
presenting with AMI, either had recognized diabetes mellitus
or had a blood glucose level >11 mmol/L without diabetes,
were enrolled (34). Patients were randomized into intervention
arm with insulin-glucose infusion followed by multidose
subcutaneous insulin and control armwith conventional therapy.
The primary endpoint was all-cause mortality at 3 months.
Patients from the insulin arm had significantly lower glucose
levels compared to the control arm during the interventional
period. Although there was no difference between two treatment
groups for the primary outcome, reduced all-cause mortality was
observed in the insulin arm at both 1- and 3.4-year follow up
points (35). Nevertheless, given that over 80% of the patients
had recognized diabetes mellitus and the insulin treatment lasted
3 months, it’s hard to tell whether acute or chronic intensive
glucose control contributed more to the reduced mortality.
Although similar studies emerged subsequently, DIGAMI was
the only trial demonstrating a survival benefit from intensive
glucose control. The following study DIGAMI 2 was performed
to compare the effects of 3 different treatment strategies in
diabetic patients with AMI. Unexpectedly, no difference in the
glucose control was achieved between the treatment groups, and

it failed to demonstrate early and continued insulin-based intense
glucose control could reduce mortality (36).

In the HI-5 study, 40% of the enrolled AMI patients
were hyperglycemic without known diabetes. Patients
were randomized to receive either insulin-based therapy or
conventional therapy (37). There was no difference between
two treatment arms in the mean 24-h blood glucose level.
Despite a lower incidence of cardiac failure and reinfarction
in the intervention arm within 3 months, HI-5 failed to
demonstrate a reduced mortality at the in-hospital stage, 3 or
6 months. Nerenberg et al. enrolled 287 patients with AMI
and hyperglycemia and randomly assigned them to either tight
glucose control or usual care (38). At 24 h, patients from the
tight glucose control arm had significant lower glucose levels
compared to those from control arm, yet the 90-day mortality
didn’t differ between two arms. Besides, in a study by Marfella
et al., 50 hyperglycemic patients diagnosed with AMI were
randomized to intensive glycemic control (target glucose level
80–140 mg/dL) or conventional glycemic control for almost
3 days before surgery (39). Compared to the control group,
patients in the intensive group had higher ejection fraction, less
oxidative stress, less inflammation in peri-infarcted specimens.
In their following studies, tight glucose control in hyperglycemic
patients with STEMI brought benefits to both myocardial salvage
and in-stent restenosis at 6 months after onset (40, 41).

Given the inconsistent results of clinical trials about glucose
control in AMI patients, de Mulder et al. realized the
inappropriate glucose target might be the problem. In their
randomized trial BIOMArCS-2, a total of 294 patients with ACS
and hyperglycemia were randomized to either intensive glucose
control or conventional management (42). The target glucose
levels were 85–110 mg/dL and <288 mg/dL, respectively. The
primary endpoint was high-sensitive troponin T-value 72 h after
admission. Glucose levels in the intensive arm were significantly
lower than that of control arm within 36 h, but equalized by
72 h. Unexpectedly, there’re no difference between the groups in
the troponin T-values at 72 h. In contrast, a median follow-up
of 5.1 years of the study reported higher rates of mortality at
both 30 days and long term, suggesting intensive glucose control
in the early phase of AMI resulted in persistent harmful effects
(43). Compared to DIGAMI, BIOMArCS-2 had a more stringent
target glucose level in the intervention arm. Although further
analysis of BIOMArCS-2 didn’t demonstrate an association
between hypoglycemia and increased mortality, a lower glucose
target might be responsible for the opposite results gained from
DIGAMI and BIOMArCS-2.

Additionally, insights from the cardiovascular outcome trials
of new glucose-lowering drugs, including Glucagon-Like Peptide
1 Receptor Agonists (GLP-1 RAs) and Sodium-Glucose Co-
Transporter 2 (SGLT-2) inhibitors (44–46), indicated a new
management strategy on hyperglycemia which focused on
clinical outcomes directly instead of just glucose control itself.
Despite protective effects of GLP-1 RAs and SGLT-2 inhibitors
on ischemia heart proved in animal infarction models (47–51),
few trials have been performed in humans in the ACS setting.
A pilot study found that STEMI patients treated with exenatide
at the time of PCI had improved salvage of myocardium (52).
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TABLE 1 | Randomized trials designed to compare effect of intensive glycemic control with that of standard therapy in patients presenting with ACS and associated SIH.

Clinical trial

(year)

Study

population

Number of

patients

(percentage of

patients without

known diabetes)

Admission

glycemia (mg/dL)

Intervention

glycemic target

(mg/dL)

Achieved glycemic

target (intervention

vs. control)

(mg/dL)

Primary endpoint Result

DIGAMI

(1995)

AMI 620

(13%)

>198 mg/dL 126–180 mg/dL in

acute phase

148

vs.

162 mg/dL at

discharge*

Mortality at 3

months

NS

DIGAMI 2

(2005)

ACS 1,253

(NA)

>198 mg/dL Group 1: 90–126

mg/dL(fasting), <180

mg/dL (non-fasting)

Group 2: 126–180

mg/dL

163.8

vs.

163.8 mg/dL during first

24 h (NS)

All-cause mortality

difference between

group 1 and 2

NS

A1c ∼6.8

vs.

6.8% by the end of

2-year follow-up (NS)

HI-5

(2006)

AMI 240

(52%)

≥140 mg/dL <140 mg/dL 149.4

vs.

162 mg/dL during first

24 h (NS)

Mortality at

in-hospital stage, 3

and 6 months

NS

A1C 6.9

vs.

6.8% at 3 months (NS)

A1C 7.4

vs.

7.0 at 6 months (NS)

Marfella

(2009)

AMI

(CABG)

50

(58%)

≥140 mg/dL 80–140 mg/dL for

intervention arm

180–200 mg/dL for

control arm

162.7

vs.

192.4 mg/dL*

LVEF, oxidative

stress, apoptosis

↑LVEF*

↓oxidative stress

and apoptosis*

Marfella

(2012)

AMI

(CABG)

50 (62%) >140 mg/dL 80–140 mg/dL for

intervention arm

160.9

vs.

193.9 mg/dL*

Myocardial

regeneration

↑Myocardial

regeneration*

180–200 mg/dL for

control arm

Marfella

(2012)

STEMI

(pPCI)

165 (53%) ≥140 mg/dL 80–140 mg/dL for

intervention arm

145

vs.

191 mg/dL*

ISR ↓ISR

180–200 mg/dL for

control arm

Marfella

(2013)

STEMI

(pPCI)

106

(62%)

≥140 mg/dL 80–140 mg/dL for

intervention arm

144

vs.

201 mg/dL**

Myocardial salvage ↑Myocardial

salvage

180–200 mg/dL for

control arm

RECREATE

(2012)

STEMI 287

(72%)

≥144 mg/dL 90–117 mg/dL 117.5

vs.

142.9 mg/dL**

Difference in mean

glucose levels at

24 h

↓Glycemia

BIOMArKS2

(2013)

ACS

(pPCI)

280

(90%)

140–288 mg/dL 85–110 mg/dL 112

vs.

≈130 mg/dL**

hsTropT 72 h after

admission

NS

AMI, acute myocardial infarction; ACS, acute coronary syndrome; STEMI, ST-elevation myocardial infarction; NA, not available; NS, not significant. *p<0.05; **p<0.001; CABG, coronary

artery bypass sugery; pPCI, primary percutaneous coronary intervention; LVEF, left ventricular ejection fraction; ISR, in-stent restenosis; hsTropT, high-sensitive troponin T-value.

Similar findings were reported in ACS patients treated with
liraglutide (53–55). However, patients enrolled in these studies
were not required to be hyperglycemic. Empagliflozin, a SGLT-
2 inhibitor, were reported to reduce LV mass and improve
diastolic function in patients with ACS and diabetes (56).
Nevertheless, further human studies are needed for evaluation of

the cardiovascular outcome of both drugs in the presence of ACS
with SIH.

So far, given limited results from clinical trials, there’re
no unified recommendations on the optimal glucose target
and therapeutic strategy for SIH in the ACS setting. A
scientific statement from AHA recommended initiation of
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FIGURE 1 | Postulated mechanisms underlying detrimental effects of SIH.

intensive glucose control when plasma glucose was >180
mg/dL (6). In contrast, NICE recommendations suggested
to manage hyperglycemia in ACS patients by keeping blood
glucose levels below 198 mg/dL (57). The most recent ESC
guidelines onmanagement of non-STEMI/STEMI recommended
it’s reasonable to keep the blood glucose concentration <200
mg/dL (58, 59). Anyway, absolute avoiding of hypoglycemia is
consistent across various statements and guidelines. As most
ACS patients are hospitalized in intensive care units, intravenous
insulin infusion with close blood glucose monitoring is the
recommended glucose-lowering strategy.

MECHANISMS

Depending on baseline glucose metabolic status, the mechanisms
underlying SIH could be very different (60). The development
of SIH in patients without established diabetes mellitus in
the context of ACS probably results from a combination of
pancreatic β-cell dysfunction and acute insulin resistance (60,

61). Beta cell responsiveness was significantly related to ABG
amongst patients with AMI (62). Furthermore, plasma proinsulin
concentration and the proinsulin/insulin ratio were higher in
AMI patients compared to control populations (63). These
results indicated β-cell dysfunction might be prevalent among
patients suffering AMI. Besides, glucose production is enhanced
by upregulation of both gluconeogenesis and glycogenolysis. A
complicated interplay of neurohormones and cytokines plays
an important role in the development of hyperglycemia during
ACS (64). In particular, excessive glucagon is the primary
mediator of augmented glucogenesis. Sympathetic nervous

system activation stimulates glucagon release, together with
other anti-insulin hormones including cortisol and growth
hormone, leading to hyperglycemia (65, 66). Cytokines, for
example, tumor necrosis factor-α (TNFα), could promote
gluconeogenesis via stimulation of glucagon production (67).
Meanwhile, acute insulin resistance develops through two major
pathways, including impaired post-receptor insulin signaling and
downregulation of glucose transporter-4 (68). Both cytokines,
such as TNFα and interleukin 1, and stimulation of β-adrenergic
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receptors can inhibit post-receptor insulin signaling (69–72).
Overproduction of cortisol also reduces insulin-mediated glucose
uptake (73). Additionally, insulin resistance promotes lipolysis
because of a catabolic state. In turn, the resultant excessive
circulating free fatty acids exacerbate insulin resistance by
disrupting insulin signaling and glycogen synthase (74, 75).

It’s accepted that oxidative stress plays an important role
in myocardial reperfusion injury as well as post-infarction
remodeling (76, 77). Meanwhile, insights from both animal
and human studies highlighted the role of increased oxidative
stress in the pathophysiology of SIH (78–81). In turn, increased
oxidative stress resulted in various tissue damaging via certain
intracellular pathways, including the inflammatory and the non-
oxidative glucose pathways (NOGPs) (60). Taking together,
exacerbated oxidative stress during SIH might be a plausible
mechanism responsible for additive subsequent detrimental
effects in the ACS setting (Figure 1). First, acute hyperglycemia
exerts a direct harmful effect on ischemic myocardium, probably
via interfering with remote ischemic preconditioning (RIPerC).
Kersten et al. showed that acute hyperglycemia abolished
RIPerC induced cardioprotection and increased myocardial
infarct size in a dose-dependent way (82). Similar finding was
reported by Baranyai et al. in a rat model (83). However,
some evidence suggested that chronic hyperglycemia reduced the
infarct size and improved systolic function in rats after MI (84).
Mechanisms underlying the cardioprotective effect of chronic
hyperglycemia could be reduced cell necrosis, proinflammatory
cytokines, and increased cell survival factors expression (84,
85). It seems that chronic hyperglycemia ahead of MI sets up
a cellular preconditioning in response to acute rise of blood
glucose. Secondly, both exacerbated vascular inflammation and
endothelial cell dysfunction were implicated in the context of
SIH (39, 86). Several studies showed an association of higher
glucose levels with increased markers of vascular inflammation,
including C-reactive protein, interleukin-6 and TNF-α (87, 88).
Besides, hyperglycemia was reported to increase activation of
prothrombotic factors, such as fibrinopeptide A and factor VII,
and decrease plasma fibrinolytic activity (89–91). In an analysis
of coronary thrombus from patients with STEMI, hyperglycemic
patients showed a higher thrombus size, erythrocyte, fibrin, and
macrophage levels (92). Finally, increasing studies implicated
an association of SIH with post-infarct left ventricular systolic
dysfunction (93, 94). Nevertheless, the underlying mechanisms
need further illustration.

DISCUSSIONS

In this brief review, we discussed the definition, effects on
clinical outcome, management, and pathophysiology of SIH
in the context of ACS. A precise definition of SIH is helpful
for designing interventional trials about glucose control in
ACS patients. Only in this way, can we have high quality
trials that shed lights on the nature of SIH. Therefore, we
mainly focused on how to precisely define SIH. An optimal
glucose metrics defining SIH should fulfill the following
criteria that it correlates well with both short- and long-term
outcomes regardless of the prior diabetic status. Unfortunately,
a single glucose metrics seems unable to fulfill such criteria
with present methodology. In the future, a combination of
glucose metrics used to define SIH is reasonable and needs
further investigations. We have fully understood that SIH is
independently associated with adverse outcome of patients
with ACS. However, it remains to be illustrated whether it’s
a marker of disease severity or a risk factor contributing
directly to the poor clinical outcome. To address the issue,
both clinical trials utilizing a unified precise definition of SIH
and basic experiments revealing the underlying mechanisms
are in demand. We suggest that researchers consider to set
different glucose targets for patients with or without recognized
diabetes mellitus in the future clinical trials targeting SIH in
patients with ACS. With regards to underlying mechanisms,
difference between the pathophysiological response of patients
with or without previous persistent hyperglycemia should be
taken into consideration.
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