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Abstract The age of large-scale genome-wide association studies (GWAS) has provided us with

an unprecedented opportunity to evaluate the genetic liability of complex disease using polygenic

risk scores (PRS). In this study, we have analysed 162 PRS (p<5�10�05) derived from GWAS and

551 heritable traits from the UK Biobank study (N = 334,398). Findings can be investigated using a

web application (http://mrcieu.mrsoftware.org/PRS_atlas/), which we envisage will help uncover

both known and novel mechanisms which contribute towards disease susceptibility. To

demonstrate this, we have investigated the results from a phenome-wide evaluation of

schizophrenia genetic liability. Amongst findings were inverse associations with measures of

cognitive function which extensive follow-up analyses using Mendelian randomization (MR)

provided evidence of a causal relationship. We have also investigated the effect of multiple risk

factors on disease using mediation and multivariable MR frameworks. Our atlas provides a resource

for future endeavours seeking to unravel the causal determinants of complex disease.

DOI: https://doi.org/10.7554/eLife.43657.001

Introduction
Developing our understanding of how modifiable social, behavioural and physiological factors influ-

ence risk of disease is of vital importance to improve effective medical treatment and preventative

interventions (Abraham et al., 2016). Genetic factors may also contribute substantially to disease

susceptibility, as demonstrated by recent large-scale genome-wide association studies (GWAS)

which have uncovered thousands of trait-associated single nucleotide polymorphisms (SNPs)

throughout the human genome. However, typically the magnitude of effect and variance explained

by one of these common genetic variants is small (Visscher et al., 2017). Polygenic risk scores (PRS),

commonly defined as the sum of trait-associated SNPs weighted by their effect sizes, harness find-

ings from GWAS to provide an overall measure of an individual’s genetic liability to develop disease

(Torkamani et al., 2018). Although early applications of PRS were found to be underwhelming in

terms of disease prediction (Ripatti et al., 2010), breakthroughs in the scale of GWAS and accessi-

bility to biobank scale datasets have substantially improved their performance (Khera et al., 2018;

Lee et al., 2018). As such, they hold considerable potential to improve early disease prognosis and

treatment plan formulation (Lewis and Vassos, 2017).

Along with the emerging utility of PRS to predict disease, they have also been previously used to

evaluate putative causal relationships (Davies et al., 2018; Palmer et al., 2012). For example,

instead of using a coronary heart disease (CHD) PRS to predict incidence of this disease, studies

have investigated whether scores for known risk factors, such cholesterol and lipid levels

(Holmes et al., 2015), are also strongly associated with CHD incidence. One such approach in this

paradigm is Mendelian randomization (MR), a method by which genetic variants are leveraged as

instrumental variables to investigate causal relationships between modifiable risk factors and disease
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outcomes (Davey Smith and Ebrahim, 2003; Davey Smith and Hemani, 2014). MR is typically lim-

ited to using SNPs which survive conventional GWAS corrections (i.e. p<5�10�08), which may lack

statistical power if these variants do not explain a large proportion of trait variance. In contrast, PRS

derived using a more lenient threshold (e.g. p<5�10�05) can help recover some of this missing heri-

tability due to a larger number of SNPs being included. This may help improve detection rates for

causal relationships, which can be particularly useful when evaluating associations between genetic

liability for a given trait and hundreds of diverse health outcomes. Such endeavours are commonly

referred to as phenome-wide association studies (Denny et al., 2013; Fritsche et al., 2018;

Krapohl et al., 2016; Millard et al., 2015).

To investigate this we undertook a preliminary simulation study to compare the performance of

using a PRS to detect causal relationships with a popular MR approach (the inverse variance

weighted (IVW) method (Burgess et al., 2013)) (Figure 1). Results indicated that, although using a

PRS provides higher statistical power, it also suffers from substantive false positive rates due to hori-

zontal pleiotropy, the phenomenon whereby a gene influences multiple traits via independent bio-

logical pathways (Davey Smith and Hemani, 2014). SNPs which are known to be pleiotropic with

large effects on different and diverse traits have been found to distort findings from PRS analyses

(Felsky et al., 2018). As a consequence, findings from phenome-wide association studies using a

PRS may be useful in terms of highlighting putative causal associations, although robust evaluations

are necessary to investigate results. We therefore propose using various sensitivity analyses devel-

oped in the field of MR to discern whether PRS associations represent causal relationships or not. To

facilitate such future analyses, an accessible resource to evaluate associations between disease

genetic liability and complex traits from across the human phenome should prove to be of consider-

able value.

In this study, we have constructed 162 different PRS (based on p<5�10�05) using findings from

large-scale GWAS and evaluated their association with 551 traits in up to 334,398 individuals

enrolled in the UK Biobank study (Bycroft et al., 2018; Sudlow et al., 2015). To disseminate these

findings, we have developed a web application to examine and visualise this derived atlas of

eLife digest An individual’s risk of developing many diseases, including heart disease and

schizophrenia, is influenced by a complex combination of lifestyle factors and the genes they inherit

at birth. The total number of genetic variants that an individual has that increases their risk of

developing a particular disease can be measured as their ‘polygenic risk score’. These scores allow

researchers to predict whether it is likely that someone will develop a disease during their lifetime.

Polygenic risk scores can also be used to link different conditions or traits to each other. For

example, if high blood pressure can be caused by obesity, then genetic variants linked to obesity

will also influence blood pressure. As a result, individuals with a high polygenic risk score for obesity

will, on average, have a higher blood pressure than those with a low score. Comparing associations

between polygenic risk scores and traits can therefore suggest whether one trait causes another.

Richardson et al. have developed an ‘atlas’ that uses data from the UK Biobank study – which

contains genetic data from over 300,000 people – to investigate how shared characteristics and risk

factors in individuals relate to their genetic likelihood of developing a disease. The data currently

includes 162 different polygenic risk scores and 551 traits.

Richardson et al. used the atlas to evaluate which traits are most strongly linked to the polygenic

risk score for schizophrenia. Analyses of these traits suggested that individuals with a high genetic

risk of developing schizophrenia tend to perform worse in IQ and short-term memory tests, and that

they are less likely to successfully quit smoking. These characteristics have previously been observed

in studies of individuals with schizophrenia.

In the future, the atlas could be used to identify possible relationships between a wide range of

individual traits and diseases. This could help to prioritise which relationships should be investigated

further as part of studies to understand the causes and consequences of disease. In the long term,

such studies should improve our ability to prevent and treat many different medical conditions.

DOI: https://doi.org/10.7554/eLife.43657.002

Richardson et al. eLife 2019;8:e43657. DOI: https://doi.org/10.7554/eLife.43657 2 of 24

Tools and resources Genetics and Genomics

https://doi.org/10.7554/eLife.43657.002
https://doi.org/10.7554/eLife.43657


associations. We have also undertaken follow-up analyses to demonstrate the usefulness of this

resource to help identify putative causal relationships. Firstly, we have interpreted findings from a

hypothesis-free scan of associations between the schizophrenia PRS and each of the 551 traits. We

demonstrate that amongst these findings are associations which may likely reflect underlying causal

relationships. We have also showcased the utility of evaluating the association between all 162 PRS

and a single outcome using our atlas. Using gout susceptibility as an example, we demonstrate how

recently developed methodology (mediation MR and multivariable MR) can be applied to evaluate

the effects of multiple risk factors on disease risk.

Results

An atlas of polygenic risk score associations across the human phenome
Overall, we undertook 89,262 tests to investigate the association between 162 different PRS derived

from GWAS (Supplementary file 1a) and 551 complex traits from the UK Biobank study

(Supplementary file 1b). PRS were constructed using independent SNPs for each GWAS

(p<5�10�05) based on r2< 0.001 using genotype data from European individuals (CEU) from phase

3 (version 5) of the 1000 Genomes project (Abecasis et al., 2012). As opposed to the conventional

GWAS cut-off of p<5�10�08, the threshold of p<5�10�05 was selected to incorporate additional

SNPs into scores which may explain additional heritability for GWAS traits. Furthermore, this allowed

us to create PRS for traits which had no SNPs surviving conventional GWAS corrections, as well as

increasing the number of SNPs used in scores for traits with only a small number of GWAS hits. Our

final sample size for analysis consisted of 334,398 individuals. This was determined using a strict

exclusion criterion to reduce false positive associations, removing individuals with withdrawn con-

sent, evidence of genetic relatedness or who were not of ‘white European ancestry’ based on a

K-means clustering (K = 4).

Of the 162 GWAS we identified, 11 reported that they included UK Biobank participants in their

analysis. As this may lead to overfitting, the PRS for these 11 traits were not weighted to reduce this

source of bias. To demonstrate this, we evaluated the association of the sleep duration PRS in the

UK Biobank study, weighting SNPs based on a GWAS involving the interim release of this dataset

(Jones et al., 2016) (Supplementary file 1c). However, this only mitigates this limitation, and as

such these scores in particular require extensive follow-up analyses. In case they are still useful for
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Figure 1. A comparison of the performance between the inverse variance weighted (IVW) Mendelian randomization (MR) model against polygenic risk

score (PRS) analysis. Simulations were conducted under different levels of horizontal pleiotropy for two different models; the causal model (where the

simulated exposure has a causal effect on the outcome) and the null model (where there is no causal effect between exposure and outcome).
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follow-up analyses despite overlapping with UK Biobank, these scores have been clearly flagged in

Supplementary file 1a by being allocated to the ‘unweighted’ subcategory.

In this study we have only interpreted findings from associations with PRS derived using the

p<5�10�05 threshold. However, analyses have been repeated using scores derived using the con-

ventional GWAS threshold of p<5�10�08 for future studies that wish to evaluate these results. Com-

plex traits from the UK Biobank study were selected based on p<0.05 from previously undertaken

heritability analyses within this study (Neale Lab, 2017). This threshold was chosen as a heuristic to

highlight associations worth pursuing in further detail. A web app to query and visualise these results

can be found at http://mrcieu.mrsoftware.org/PRS_atlas/.

Stratifying the UK Biobank sample into deciles based on their PRS supported previous findings in

the literature demonstrating the ability of PRS to predict risk of disease. For example, comparing

the highest and lowest deciles of the coronary heart disease (CHD) PRS found that individuals had

increased odds of 3.64 to develop this disease (based on the ICD10 code ‘I25’). A recent study by

Khera and colleagues (Khera et al., 2018) reported a similar odds ratio for CHD in their analysis

(OR:>3.0 for the highest 8% of individuals based on their PRS). However, we note that they identi-

fied a higher area under curve in their analysis (0.806), which is likely attributed to tuning parameters

such as LD clumping, along with covariates adjusted for in their analysis.

Combining this PRS with scores for established causal risk factors for CHD suggested that they

can help improve polygenic prediction (namely low density lipoprotein (LDL) cholesterol and myocar-

dial infarction), although integrating any associated scores in a hypothesis-free manner may hinder

prediction (Figure 2). This could potentially due to the increase in variance incorporated into predic-

tion analyses from scores that do not directly influence CHD, or alternatively may indicate that they

are spurious associations. Additional research is required to evaluate the contribution of multiple

PRS as predictors of a single outcome. Doing so may help develop a greater understanding regard-

ing which traits can help predict disease outcomes using PRS.

Amongst other findings, we observed that participants had increased odds of 2.43 in terms of

obtaining a University or College degree when comparing top and bottom deciles for the years of

schooling PRS. Other noteworthy examples included a 3.48 fold increase in odds of taking atorvasta-

tin as medication when comparing the extreme deciles for the LDL PRS. We also observed that par-

ticipants in the highest decile for the ulcerative colitis PRS had increased odds of 5.36 in terms of

developing this disease in comparison to those in the lowest decile (based on the ICD10 code

‘K51’).

Uncovering known and novel findings by conducting a phenome-wide
evaluation of associations
To demonstrate the value of this atlas of results, we have investigated some of the strongest associa-

tions detected between the schizophrenia PRS and all 551 complex traits analysed in the UK Biobank

study (Figure 3, Supplementary file 1d). Associations within our atlas could potentially be identified

due to underlying epidemiological relationships, although there are various other possible explana-

tions such as a shared genetic aetiology between traits. To investigate this for our associations with

the schizophrenia PRS, we have used various methods in two-sample MR as an example of how

future studies could evaluate findings from our atlas. For these analyses we only used SNPs with

p<5�10�08 as instrumental variables to reduce the likelihood of weak instrument bias in our analysis

(Davies et al., 2015). Furthermore, in these analyses we model liability to schizophrenia as our expo-

sure within an MR framework with associated complex traits as outcomes (unless stated otherwise).

Our systematic approach involved the following:

1. As an initial evaluation, we investigated evidence of association using the inverse variance
weighted (IVW) (Burgess et al., 2013) method and derived Cochran’s Q statistic as an indica-
tor of potential heterogeneity. Weak evidence of association in this analysis suggests that a
causal effect is unlikely.

2. If the IVW method provides strong evidence of association but in the presence of heterogene-
ity, we suggest undertaking two additional MR analyses using the weighted mode
(Hartwig et al., 2017) and weighed median (Bowden et al., 2016) methods. If there is a lack
of strong evidence in both of these analyses then associations are unlikely to be causal.

3. As a sensitivity analysis, repeat steps 1 and 2 but only using SNPs as instruments which are not
filtered out by applying the MR directionality test (Hemani et al., 2017). We also recommend
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evaluating the MR-Egger intercept term (Bowden et al., 2015) to discern whether estimates
may be biased by directional pleiotropic effects.

The top association with the schizophrenia PRS suggests that individuals with high schizophrenia

genetic liability have increased odds of seeing a psychiatrist at some point in their lives due to

nerves, anxiety, tension of depression (OR = 1.09 per standard deviation increase in PRS, 95%

CI = 1.08 to 1.10, p=1.55�10�50). The schizophrenia PRS was also strongly associated with various

neurological traits, such as neuroticism (Beta = 0.066, SE = 0.006, p=8.17�10�27), being ‘tense or

highly strung’ (OR = 1.07, 95% CI = 1.07 to 1.08, p=2.25�10�47) and self-reported depression

(OR = 1.07, 95% CI = 1.06 to 1.08, p=4.91�10�18).

We identified strong evidence that schizophrenia genetic liability influences this set of neurologi-

cal traits (Supplementary file 1e), except for self-reported depression where strong evidence was

only detected using the inverse variance weighted (IVW) method (Beta = 0.004, SE = 0.001,

Figure 2. A receiver operator curve for ischaemic heart disease polygenic prediction. A receiver operating characteristic (ROC) curve to compare the

sensitivity and specificity of polygenic risk scores (PRS) and individuals with ischaemic heart disease (defined using ICD 10 codes ‘I25’) in the UK Biobank

study. The scores evaluated were 1. Coronary Heart Disease (CHD), 2. A combined scored of CHD, Myocardial Infarction (MI) and Low Density

Lipoprotein cholesterol (LDL), 3. All traits with a p-value<1�10�06 in our PRS analysis (excluding scores from GWAS overlapping with the UK Biobank

sample). These were CHD, MI, LDL, Total cholesterol, Triglycerides, High Density Lipoprotein cholesterol, Years of schooling, Height and Waist

Circumference. All PRS were constructed from GWAS using independent SNPs with p<5�10�05.

DOI: https://doi.org/10.7554/eLife.43657.004
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p=0.009). There was also no strong evidence of directional horizontal pleiotropy for these results

based on the MR Egger intercept term and associations were detected after repeating analyses

using MR directionality filtering.

Along with using MR to investigate the effect of PRS traits on outcomes, we recommend investi-

gating the converse direction of effect where possible (also known as ‘bi-directional’ MR

(Timpson et al., 2011). For example, for the associations detected with the schizophrenia PRS, asso-

ciated traits in the UK Biobank were modelled as our exposure in an MR setting and schizophrenia

was treated as our outcome. Results suggested that neuroticism liability influences schizophrenia risk

(Supplementary file 1f), although we detected evidence of directional horizontal pleiotropy based

on the MR Egger intercept term (Beta = 0.043, SE = 0.018, p=0.018). After applying MR directional-

ity filtering, we also identified evidence of association between being ‘tense or highly strung’ and

schizophrenia risk. Therefore, the most parsimonious explanation for these findings could be that

they have been observed due to a shared genetic aetiology between schizophrenia and other neuro-

logical traits. This is also likely to be a plausible explanation for other associations within our atlas. In

particular, caution is advised when interpreting findings between autoimmune traits which are known

to be influenced by highly correlated genes residing in the HLA region of the genome (Gough and

Simmonds, 2007). Although these findings could still be of interest in terms of genetic correlations

between traits, they may not reflect underlying causal relationships (O’Connor and Price, 2018).

Amongst other findings, there were associations which suggested individuals with high schizo-

phrenia genetic liability had a lower fluid intelligence score (Beta = �0.083, SE = 0.006,

p=1.49�10�39). We also observed evidence that these individuals performed worse than others in

an assessment of cognitive function concerning memorising pairs of cards (Beta = 0.020, SE = 0.002,

p=6.66�10�34 for ‘number of incorrect matches’). Follow-up MR analyses provided evidence from

Figure 3. A bi-directional phenome-wide association plot for schizophrenia genetic liability. Each point on this plot represents the association between

the schizophrenia polygenic risk score (based on p<5�10�05) and a complex trait in the UK Biobank study. Along the y-axis are –log10 p-values for

these associations multiplied by the direction of effect for their corresponding effect size. As such, traits positively associated with schizophrenia

genetic liability reside above the horizontal grey line representing the null (i.e. –log10 (P) = 0), whereas negative associations are below. Points are

grouped and coloured based on their corresponding complex traits’ subcategory. Horizontal red lines indicate the Bonferroni corrected threshold for

the 551 tests undertaken (i.e. 0.05/551 = 9.07�10�05).

DOI: https://doi.org/10.7554/eLife.43657.005
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multiple methods that schizophrenia genetic liability (i.e. our exposure) influences both of these out-

comes (Supplementary file 1g). These results were robust to sensitivity analyses using MR direction-

ality filtering and MR Egger intercepts did not indicate that findings were prone to directional

horizontal pleiotropy. In contrast, we did not detect strong evidence of a causal effect in the oppo-

site direction for these associations (i.e. evaluating the effect on measures of cognition and memory

on schizophrenia risk), in particular after applying MR directionality filtering and when evaluating

results from the weighted median and mode methods (Supplementary file 1h). We also conducted

a leave-one out analysis which suggested that no individual SNPs were responsible for driving

observed effects (Appendix 1—Figure 1, Appendix 1—Figure 2). Taken together, these analyses

support evidence that schizophrenia genetic liability may lead to reduced cognitive function.

Elsewhere, there were associations indicating that participants with a high schizophrenia PRS

were more likely to be unsuccessful when attempting to quit smoking (Beta = 0.028, SE = 0.003,

p=3.87�10�22) and, accordingly reduced odds of being a past smoker (OR = 0.97, 95% CI = 0.97 to

0.98, p=9.71�10�17). We observed strong evidence of association that schizophrenia genetic liability

influences these outcomes (Supplementary file 1i), whereas the converse direction of effect pro-

vided weak evidence of an effect (Supplementary file 1j). However, the ‘number of unsuccessful

smoking attempts’ outcome could only be instrumented using a single variant which limits our ability

to investigate this effect. Moreover, a recent study has uncovered a large number of SNPs robustly

associated with smoking cessation and provided evidence of a bi-directional relationship between

smoking and schizophrenia using MR (Wootton, 2018). Leave-one out analyses suggested that no

individual SNP was responsible for driving observed associations (Appendix 1—Figure 3, Appen-

dix 1—Figure 4).

We also observed a strong inverse association between the schizophrenia PRS and various

anthropometric traits. However, evaluating the relationship between schizophrenia liability and body

mass index (BMI) provided weak evidence of a causal effect in both directions (Supplementary files

1k & 1l). This result reinforces our recommendation that all findings within our atlas require in-depth

evaluation to discern whether they represent potential causal associations.

Elucidating risk factors which may play a mediating role along the
causal pathway to disease
Another strength of our atlas is that findings can be evaluated by selecting an outcome of interest

and evaluating which of the 162 PRS are most strong associated with it. Doing so may motivate

future endeavours to investigate the effect of multiple risk factors on disease risk. As a demonstra-

tion of this, we have evaluated the associations between all PRS and self-reported gout in the UK

Biobank study (Supplementary file 1m). In this analysis, there was strong evidence of association

using the PRS for gout itself (OR = 1.16, 95% CI = 1.13 to 1.19), although we also observed a much

larger magnitude of effect using the urate PRS (OR = 1.75, 95% CI = 1.72 to 1.78). Although many

of the PRS in our analysis may be the best polygenic predictors for their target disease/trait, there

may be other examples similar to this where the strongest association for an outcome is not the cor-

responding PRS. For example, the strongest association for birth weight as an outcome in our atlas

was with the height PRS (Beta = 0.080, SE = 0.002, p=1.31�10-249).

A receiver operating characteristic plot (Figure 4) illustrates this point, where the area under

curve for the gout PRS was 0.54 in comparison to the urate PRS which had a value of 0.65. This may

be attributed to gout being a binary outcome heavily influenced by the number of cases analysed in

its corresponding GWAS (N = 2,115). In comparison, urate is a continuous trait measured in all par-

ticipants for its respective GWAS (N = 110,347). After urate, the next strongest positive associations

with self-reported gout were triglycerides (TG) and body mass index (BMI) (OR = 1.14, 95%

CI = 1.11 to 1.16 and OR = 1.09, 95% CI = 1.06 to 1.12 respectively). However, it is unclear whether

these risk factors influence gout risk independently of one and other or if they reside on the same

causal pathway to disease.

We investigated this by firstly using an MR mediation framework which involved evaluating bi-

directional relationships for each risk factor in turn. As before, only SNPs with p<5�10�08 for each

PRS were used as instrumental variables in MR analyses. There was strong evidence that BMI (i.e.

our exposure) had a causal effect on each other trait in turn (TG, urate and gout), where effect esti-

mates appeared to be consistent between different MR methods (Supplementary file 1n). Repeat-

ing this analysis for TG as our exposure provided evidence of a causal effect on urate and gout risk,
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but not BMI (Supplementary file 1o). We then modelled urate as our exposure variable, which sug-

gested that increased urate positively influences gout risk, although there was weak evidence of an

effect on either BMI or TG (Supplementary file 1p). In all analyses there was no strong evidence of

horizontal pleiotropy based on the MR-Egger intercept terms and findings were robust to sensitivity

analyses using MR directionality filtering (Supplementary file 1n-1p). We also undertook leave-one

out analyses which found that no single SNP was driving observed effects (Appendix 1—Figure 5,

Appendix 1—Figure 6, Appendix 1—Figure 7, Appendix 1—Figure 8). In conclusion, as illustrated

in Figure 5a, findings from the mediation MR analysis suggests that BMI influences TG levels

(Figure 5a (1)), which has an effect of urate (Figure 5a (2)), and this subsequently influences gout

risk (Figure 5a (3)). Using the effect estimates from our IVW analysis, we estimated that 77% of the

overall effect of BMI on gout risk (Figure 5a (4)) is mediated through this causal pathway.

We also used a related approach to investigate the effect of these multiple risk factors on gout

susceptibility, known as multivariable MR (Sanderson et al., 2018). In this analysis genetic instru-

ments for all exposures (i.e. BMI, TG and urate) are modelled simultaneously to investigate whether

these risk factors influence our outcome (i.e. gout) independently of one and other. We observed

Figure 4. A receiver operator curve for gout polygenic prediction. A receiver operating characteristic (ROC) curve to compare the sensitivity and

specificity of polygenic risk scores (PRS) and individuals with self-reported gout in the UK Biobank study. The scores evaluated were gout and urate

using independent SNPs identified by GWAS with p<5�10-05.

DOI: https://doi.org/10.7554/eLife.43657.006
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the effects of BMI and TG on gout risk attenuate when analysed in the same model as urate

(Supplementary file 1q). Furthermore, in subsequent analyses we applied multivariable MR to inves-

tigate each pairwise combination of these risk factors on gout risk. There was evidence of an attenu-

ation of the effect of BMI on gout risk when accounting for either the TG or urate effect

(Supplementary files 1r and 1s). We also observed the effect of TG on gout risk attenuate when

accounting for urate levels (Supplementary file 1t). These findings therefore support the same

direction of effect observed using the mediation framework (Figure 5b).

All Genetic
Instruments

Body Mass Index

Urate

Gout

Confounders

Body Mass Index Triglycerides Urate

Body Mass Index
Instruments

Triglyceride
Instruments 

Confounders

a) 

b) 

21

4

Gout

Urate  
Instruments

Triglycerides

3

Figure 5. Applying (a) mediation and (b) multivariable Mendelian randomization investigate the causal effect of body mass index, triglycerides and

urate on gout risk. (a) Mediation Mendelian randomization (MR) framework to investigate whether urate mediates the effect of body mass index (BMI)

and triglycerides (TG) on gout risk. The various analyses undertaken suggest that 1) elevated BMI increases TG levels 2) which subsequently has an

effect on urate 3) and this in turn influences gout risk. This mediation pathway may help explain the manner by which BMI, potentially driven by lifestyle

factors such as diet, is a risk factor for gout. (b) Multivariable MR framework attempting to reproduce findings from the mediation analysis. Genetic

instruments for BMI, TG and urate were analysed simultaneously to evaluate the joint effect of these risk factors on gout risk. The effect of BMI and TG

on gout risk attenuated compared to univariable analyses, suggesting that they influence gout risk through increased urate levels. Investigating each

combination of pairwise risk factors using this framework suggested that BMI influences TG rather than the opposite direction of effect, which also

supports findings from the mediation analysis.

DOI: https://doi.org/10.7554/eLife.43657.007
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Discussion
In this study we have developed an atlas of associations between PRS and complex traits across the

human phenome. Along with contributing to mounting evidence that PRS can be valuable in predict-

ing later life disease outcomes, we have provided examples of how this resource can be harnessed

to help identify potential risk factors in disease which warrant further investigation. We envisage that

the inferences we have made in this study are just the beginning of potential findings which can be

uncovered using such catalogues of associations. Multiple lines of evidence from robust follow-up

studies of putative causal risk factors will help improve our understanding of disease susceptibility

(Munafò and Davey Smith, 2018).

Large-scale biobank datasets provide an unparalleled opportunity to undertake hypothesis-free

causal inference. Such efforts can help identify evidence supporting established causal relationships,

as well as potentially implicating novel ones (Davey Smith and Hemani, 2014; Cai et al., 2018). We

have illustrated this approach in our study by evaluating the results of a phenome-wide association

study of schizophrenia genetic liability. This identified strong associations with measures of cognitive

function and smoking behaviour which MR follow-up analyses suggested may be due to putative

causal relationships with schizophrenia genetic liability.

There is long standing evidence from the literature that cognitive impairment is a recognised

characteristic of schizophrenia (Mohamed et al., 1999). Although PRS may prove useful in determin-

ing lifelong risk of developing schizophrenia, based on currently available data they may be less

effective in terms of predicting age of schizophrenia onset as well as the severity of its progression.

Characterization of cognitive decline in individuals with a high schizophrenia PRS may therefore help

improve elucidation of its neurological basis, and ultimately improvement in therapeutic approaches

to it (Green, 1996).

There is also a wealth of evidence in the literature from observational studies that individuals

diagnosed with schizophrenia smoke more frequently compared to the general population

(Sacco et al., 2005). Our results indicate that UK Biobank participants with a high schizophrenia

genetic liability are more likely to be unsuccessful in their attempts to stop smoking. This may there-

fore suggest that the high frequency of schizophrenia patients who smoke could be attributed to

their inability to quit smoking. However, we were unable to support recent evidence which suggests

that smoking is a risk factor for schizophrenia which could be attributed to weak instruments in our

analysis (Wootton, 2018). The positive association with smoking behaviour may also provide a possi-

ble explanation for the inverse association we observed between schizophrenia genetic liability and

anthropometric traits.

In this study we have also provided an example of how investigating various PRS associations

with the same outcome may help motivate studies evaluating the effect of multiple risk factors on

disease risk. Our analysis detected evidence of an association between body mass index and gout

risk, putatively mediated by triglycerides and urate levels. The findings from this analysis therefore

appear to recapitulate known biology regarding the established causal pathway to gout

(Matsubara et al., 1989), (Li et al., 2017). Speculatively, a diet including high calorie and alcohol

consumption, which are known risk factors for increased body mass index and triglyceride levels,

may result in elevated circulating uric acid level and in turn increase gout risk. A recent study has

suggested that genetic factors may have a greater impact on serum urate levels than environmental

factors such as diet (Major et al., 2018). Our findings suggest that genetic drivers of appetite which

may influence higher BMI levels are likely to predominantly influence gout risk via increased urate

levels. We hope this illustration will motivate creative hypotheses for future endeavours to investi-

gate the effect of multiple risk factors on disease risk.

The application of PRS is a topic which has sparked considerable recent debate, particularly con-

cerning whether scores are relevant for clinical decision making (Warren, 2018). Although resources

such as the UK Biobank provide an unparalleled opportunity to investigate the determinants of com-

plex disease as we have done in this study, findings regarding genetic liability may not be generaliz-

able to individuals who are not of European descent. As such, there is likely to be an emphasis in the

forthcoming years on efforts to establish disease-specific datasets for a diverse range of ancestries.

We also note that, although we have adjusted all analyses in our study using the top 10 principal

components from the UK Biobank, there may still be an influence of geographic clustering which

remains unaccounted for Abdellaoui et al. (2018). Furthermore, although we have flagged the PRS
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traits in our study derived using GWAS which have overlapping samples with the UK Biobank, we

are unable to assess this for scores whose GWAS predate this cohort. Future efforts to link anony-

mous identifiers between the UK Biobank and UK cohorts would be of helpful in terms of ascertain-

ing this information to prevent overfitting. Lastly, certain complex traits in our study may benefit

from being combined to improve statistical power. For instance, a more powerful approach to iden-

tify associations between genetic liability and statin medication could involve deriving a combined

measure of all the different types of statins reported. Investigating these results in a hypothesis-free

manner as we have described in this study may also prove useful for drug repurposing efforts.

Polygenic risk scores hold huge promise in the era of large-scale genetic epidemiology to identify

individuals who are at high risk of disease. Associations detected between these scores and out-

comes undertaken by large-scale analyses should prove powerful for future studies that wish to

unravel causal relationships between complex traits. Doing so will help improve disease prevention

by developing a stronger understanding of complex epidemiological pathways.

Materials and methods

Simulations to compare polygenic risk score analysis with Mendelian
randomization
Our simulation study concerned two different models; the causal model (simulating a risk factor

which has a causal effect on the simulated outcome) and the null model (where there is no causal

effect between the simulated exposure and outcome). We ran 1000 simulations using each model to

compare the PRS approach with the IVW method using a dataset comprising of 10,000 samples and

50 SNPs. Further details and all the code used to conduct these simulations can be found at https://

github.com/explodecomputer/prs-vs-mr.

Constructing polygenic risk scores from large-scale genome-wide
association studies
We have used the MR-Base platform (Hemani et al., 2018) to identify SNPs from large-scale GWAS

to include in our PRS. Our inclusion criteria for selected GWAS was having a sample size of more

than 1000 participants, over 100,000 SNPs measured on genotyping arrays and based on European/

mixed populations. If multiple studies were found for the same trait, we selected the most recent

study or the one with the largest sample size.

PRS were constructed using SNPs for each GWAS trait based on p<5�10�05. A threshold of

r2 <0.001 was selected to identify independent SNPs using genotype data from European individuals

(CEU) from phase 3 (version 5) of the 1000 genomes project (Abecasis et al., 2012). When a GWAS

SNP was not available from the UK Biobank study genotype data, we used a proxy SNP instead

based on r2 �0.8 using the same reference panel. Scores were then calculated as the sum of the

effect alleles for all SNPs weighted by their reported regression coefficients. However, a small subset

of PRS were left unweighted to reduce the likelihood of overfitting. This was due to their GWAS

including participants from the initial release of the UK Biobank study. As such, additional caution

should be exercised when interpreting findings from these unweighted PRS. Prior to analysis, each

PRS was normalised to have a mean of zero and a standard deviation (SD) of one. Our PRS construc-

tion pipeline was also applied using a more stringent threshold of p<5�10�08. Although we have

not interpreted any of the results using these more stringent scores in this report, they are available

within our atlas for future use.

Complex trait and genotype data from the UK Biobank study
We selected traits from the UK Biobank study (Sudlow et al., 2015) which had p<0.05 in the herita-

bility analyses conduct by the Neale lab (Neale Lab, 2017). Genotype data were available for

approximately 490,000 individuals enrolled in the study. Phasing and imputation of these data are

explained elsewhere (Bycroft et al., 2018). Individuals with withdrawn consent, evidence of genetic

relatedness or who were not of ‘white European ancestry’ based on a K-means clustering (K = 4)

were excluded from analysis. After exclusions there were up to 334,398 individuals with both geno-

type and complex trait data who were eligible for analysis.
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Statistical analysis
We evaluated the association between each combination of PRS and complex trait in the UK Bio-

bank study using linear regression (for continuous traits), logistic regression (for case/control traits),

ordinal logistic regression (for ordered categorical traits) and multinomial logistic regression (for

unordered categorical traits). All analyses were adjusted for age, sex, the first 10 genetic principle

components (to adjust for population stratification) and genotyping chip used to measure genetic

data in participants. Only female participants were included in the ‘Age at menarche’ and ‘Age at

menopause’ PRS analyses.

We also calculated R2 coefficients for continuous traits and McFadden pseudo R2 coefficients for

other models by repeating analyses unadjusted for covariates. McFadden’s R2 is defined as:

R2
McF= 1 – ln(Lm/ln(L0)

where ln is the natural logarithm, L0 is the value of the likelihood function of the model with no pre-

dictors and Lm is the likelihood of the model being estimated. We note that pseudo R2 coefficients

should not be interpreted in a similar manner to those derived using linear regression (Hu et al.,

2006).

Mendelian randomization analysis
We used various two-sample MR methods to evaluate associations detected in the PRS analysis. This

involved using the observed effects of the genetic variants used in the PRS on both the GWAS trait

that the score was based on (treated as the exposure in our MR analysis) as well as the UK Biobank

trait (treated as the outcome in our MR analysis). For all MR analyses we only selected SNPs with

p<5�10�08 based on GWAS findings as instrumental variables to reduce the likelihood of weak

instrument bias (Davies et al., 2015). In terms of MR methods, we applied the inverse variance

weighted (IVW) (Burgess et al., 2013), weighed median (Bowden et al., 2016) and weighted mode

approaches. We also conducted several different sensitivity analyses to evaluate findings. We

derived Cochran’s Q statistic when undertaking the IVW approach as an indicator of heterogeneity,

as well as repeating all analyses after filtering out SNPs which the MR directionality test suggested

did not influence the outcome of interest through the analysed exposure. The intercept of the MR-

Egger approach (Bowden et al., 2015) was used to investigate directional horizontal pleiotropy and

leave-one-out analyses (i.e. reapplying the IVW method after removing each SNP in turn with

replacement) were conducted to discern whether any individual SNPs were driving observed associa-

tions. These types of analyses are particularly important when assessing findings from our atlas, as

one possible explanation is that they could be attributed to a single pleiotropic SNP which has a

large effect size (e.g. the APOE locus which is associated with Alzheimer’s disease and lipid levels).

To investigate the direction of effect for associations identified in the PRS analysis we undertook

bi-directional MR (Timpson et al., 2011). This involves firstly modelling our PRS trait as our exposure

and complex trait as our outcome, and subsequently the complex trait as our exposure and PRS trait

as our outcome in a separate analysis. Lastly, we have incorporated two recent developments within

the field of MR; mediation MR and multivariable MR (Sanderson et al., 2018). These methods can

be used to investigate the effect of multiple risk factors on a single outcome, as well as uncover

potential mediators in disease. In this study we have evaluated findings from the PRS analysis based

on the p<5�10�05 threshold. We note however that it is only advisable to apply techniques in MR

using this threshold as long as in-depth sensitivity analyses (e.g. leave-one out, MR-Egger intercept)

are also undertaken to robustly evaluate findings.

When undertaking our example of mediation MR in this study, we also calculated the proportion

mediated along the causal pathway from exposure to outcome using effect estimates derived using

the IVW method, where:

Proportion mediated = direct effect � indirect effect

direct effect

The direct effect here is the IVW effect estimate derived for the association between the expo-

sure (i.e. BMI) and our outcome (i.e. gout). The indirect effect was calculated as the product of all

IVW effect estimates derived for all relationships along the causal pathway of interest (i.e. the effect

of BMI on triglycerides, the effect of triglycerides on urate and the effect of urate on gout).

All analyses were undertaken using R (version 3.5.1). The R package ‘shiny’ v1.1 was used to

develop the web application and ‘highcharter’ v0.5 was used to generate interactive plots. Figures

in this manuscript were generated using ‘ggplot2’ v2.2.1.
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Data availability
All summary statistics for the analyses undertaken in this study can be downloaded using our web

application (http://mrcieu.mrsoftware.org/PRS_atlas/). Our dataset was derived from the UK Biobank

study as part of projects 8786 and 15825. The same dataset can be created with an application to

use data from the UK Biobank study (http://biobank.ctsu.ox.ac.uk/crystal/).
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Appendix 1—figure 1. A plot illustrating a leave-one out analysis between schizophrenia

genetic liability and fluid intelligence.
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Appendix 1—figure 2. A plot illustrating a leave-one out analysis between schizophrenia

genetic liability and ‘number of incorrect matches in a round’.
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Appendix 1—figure 3. A plot illustrating a leave-one out analysis between schizophrenia

genetic liability and ‘number of unsuccessful smoking attempts’.
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Appendix 1—figure 4. A plot illustrating a leave-one out analysis between schizophrenia

genetic liability and past tobacco smoking.
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Appendix 1—figure 5. A plot illustrating a leave-one out analysis between body mass index

and triglycerides.
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Appendix 1—figure 6. A plot illustrating a leave-one out analysis between triglycerides and

urate.
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Appendix 1—figure 7. A plot illustrating a leave-one out analysis between urate and gout.
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MR leave−one−out sensitivity analysis for
'Body mass index || id:2' on 'Non−cancer illness code  self−reported: gout || id:UKB−a:107'

Appendix 1—figure 8. A plot illustrating a leave-one out analysis between body mass index

and gout.
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