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A group of presumed drug-like molecules that possess high in silico affinity for angiotensin-converting
enzyme 2 were computationally designed. This enzyme is a promising new target in both cardiorenal dis-
ease and some coronavirus infections. A set of substrate analogous molecules were optimized by means of
the LeapFrog module of the SYBYL package. Later, Molinspiration and Molsoft were used for screening
out the compounds with low oral bioavailability. Similarly, OSIRIS was used for screening out the com-
pounds having serious side effects. At the end of several stages of screening, seven candidates to anti-viral
drugs fulfiling all the evaluated criteria were obtained. They are amenable for future studies in vitro and in

vivo. These designed ligands were finally evaluated by Quantitative Structure Activity Relationship stud-
ies. 21 molecules were used to carry out the qsar models. Fom these four molecules were taken as external
sets yielding models with q2 = 0.652 and r2 = 0.962 values.
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INTRODUCTION

The monocarboxypeptidase angiotensin-converting

enzyme 2 (ACE2) is a novel biochemical component of the

renin–angiotensin system whose discovery has added a fur-

ther layer of complexity to the classical concept of this car-

diovascular regulatory system.1 Hitherto, its physiological

and pathological roles are not fully deciphered but it has

been reported that ACE2 is implicated in cardiovascular

and renal biology, obesity, inflammatory activity, and dia-

betes.2-5 This enzyme has also been established as the func-

tional receptor of both SCV (the etiological agent of the Se-

vere Acute Respiratory Syndrome) and H-CoV NL63 vi-

rus.6,7 Hereby, ACE2 is considered an important target in

the control of those diseases.

Developing anti-SCV therapeutical agents is of para-

mount importance due to the high lethality of SCV infec-

tions, its enormous economic and social impact, fears of re-

newed outbreaks as well as the potential misuse of such vi-

ruses as biologic weapons.8 Besides, it is known that di-

verse coronaviruses bind to a similar region of ACE2 im-

plying that ACE2 ligands could inhibit both infections by

SCV and HCoV-NL63.9,10 Although the HCoV-NL63 virus

circulating in the human population is only modestly path-

ogenic in most cases, an inhibitor would be useful in the

treatment of a subset of serious cases or more pathogenic

forms of the virus.11 In this work computational methods

were applied for obtaining inhibitors of the viral fusion

event as they have previously proven their ability of target-

ing ACE2.12

PREPARATION OF THE STRUCTURES,

CONFORMATIONAL SEARCH AND CONSENSUS

The 1R4L structure13 corresponding to an X-ray crys-

tallography of the extracellular metallopeptidase domain of

ACE2 in complex with the MLN-4760 ligand was ex-

tracted from the Brook Haven PDB.14 The ACE2 inhibitors

developed by Dales et al.15 were sketched, energetically

minimized, and charged in the SYBYL package version

7.0.16 In addition, the optimized structures of these com-

pounds were prepared for running docking experiments

following the same procedure. FlexX program was used as

search algorithm for finding 100 binding poses of the lig-

ands with respect to the structure of enzyme 1R4L obtained

from the RCSB Protein Data Bank. In the definition of the

active site for the docking simulations a radius of 7.2 Å

from His345 was taken. Subsequently, one of the 100 poses

was selected through rank by rank consensus17 among the

scoring functions G score,18 PMF Score,19 D score20 and

Chemscore.21 The same docking protocol was imple-

mented for each study of Quantitative Structure Activity
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Relationship (QSAR).

QSAR STUDIES

A set of 21 compounds [Figure 1, Table 1] taken from

a publication of Dales et al.14 was utilized for the 3D-

QSAR CoMSIA (Comparative Molecular Similarity Anal-

ysis)22 analyses. These models were developed in the

SYBYL 7.0 package using the ligands in the Table 1 in their

top ranked pose after docking in FlexX. No further align-

ment of the ligands was performed. CoMSIA descriptors

(steric, electrostatic, hydrophobic, hydrogen bond donor,

hydrogen bond acceptor) were calculated with the standard

Tripos force field at every point of the three dimensional

lattice, using the sp3 carbon probe with +1 charge with stan-

dard CoMSIA cut-off values.

The method of partial least squares (PLS) imple-

mented in the QSAR module of SYBYL was used to con-

struct and validate the models. Column filtering was set to

2.0 kcal/mol to speed up the analysis and reduce the noise.

The CoMSIA descriptors served as independent variables

and pIC50 values as dependent variable in PLS regression

analysis. The performance of the derived models was cal-

culated using the leave one out (LOO) cross-validation

method. The optimum number of components (Nc) used to

derive the non cross-validated model was defined as the

number of components leading to the highest r2 cross-vali-

dated (q2) and lowest standard error of prediction (SEP). To

obtain the statistical confidence limits on the analyses,

bootstrapping was carried out with 100 groups.

LEAD OPTIMIZATION

Optimization was carried out by LeapFrog (LF). LF

is a second-generation lead optimization tool to design a

series of potential active ligand molecules. Binding energy

calculations in LF are performed by three major compo-

nents: direct steric, electrostatic, and implicit hydrogen

bonding enthalpies of ligand–cavity binding using the Tri-

pos force field.16 In LF, ligand atom coordinates are binned

to increase speed and the binding energy of each ligand

atom is calculated as though the atom were actually located
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Fig. 1. Scaffold of the Compounds Synthesized and
Evaluated by Dales.

Table 1. Biological Activity Values of the Compounds Reported by Dales et al.

Molecules constituting the test set are indicated by an asterisk

R1 R2 R3 IC50

1RS* � CH(CH3)2 H 1.4
1SR � CH(CH3)2 H 2.2
1SS � CH(CH3)2 H 1.2
2 � CH(CH3)2 Benzyl 10
3 Benzyl CH(CH3)2 � 0.024
4 Benzyl Me � 0.30
5 Benzyl Ph � 0.34
6 Ciclohexyl CH2 CH(CH3)2 � 0.27
7* Ciclohexyl (CH3)2CH2 CH(CH3)2 � 0.010
8 4-NO2Benzyl CH(CH3)2 � 0.076
9 4-ClBenzyl CH(CH3)2 � 0.021
10 4-CF3Benzyl CH(CH3)2 � 0.052
11 4-MeBenzyl CH(CH3)2 � 0.032
12* 2-MeBenzyl CH(CH3)2 � 0.29
13 3-MeBenzyl CH(CH3)2 � 0.0042
14 3,4-diMeBenzyl CH(CH3)2 � 0.010
15 3,5-diMeBenzyl CH(CH3)2 � 0.0014
16RR 3,5-diClBenzyl CH(CH3)2 � 0.072
16RS 3,5-diClBenzyl CH(CH3)2 � 8.4
16SR* 3,5-diClBenzyl CH(CH3)2 � 0.470
16SS 3,5-diClBenzyl CH(CH3)2 � 0.00044

* Molecule of the QSAR test set



in the center of a cube containing that atom. A simple linear

expression then yields the energy of interaction between

the site and that particular ligand atom. Summing over all

ligand atoms yields the overall site–ligand interaction en-

ergy. When the LF program was executed, the bin created

contained the 22 closest residues to the co-crystallized

ligand in 1R4L. This cavity was used to generate the Site-

points. The charge of a Site-point atom is positive, nega-

tive, or lipophilic. No optional cavity desolvation energy

was used. On each of the inhibitors from Table 1 ten thou-

sand modifications were stochastically performed.

VIRTUAL SCREENING

In silico ADMET has taken an increasingly signifi-

cant place within the drug development pipeline. The struc-

tural optimization process in LF gives rise to a profusion of

chemical structures with high ligand efficiency. To assess

their real pharmaceutical usefulness successive filtering by

means of on-line services23 were implemented as depicted

in Figure 2. A set of QSAR-based proposed candidates un-

derwent screening as well. The employed tools for predic-

tion of drug-likeness were Molinspiration [http://www.

molinspiration.com/cgi-bin/properties], OSIRIS24 and

Molsoft [http://www.molsoft.com/mprop/]. Drug-likeness

may be defined as a complex balance of various molecular

properties and structure features which determine whether

a particular molecule is similar to the known drugs.

A widely used filter for drug-like properties is known

as Lipinski’s rule or rule of five (RO5). The original RO5

deals with orally active compounds and defines four simple

physicochemical parameter ranges (MWT � 500, log P � 5,

H-bond donors � 5, H-bond acceptors � 10) associated with

90% of orally active drugs that have achieved phase II clin-

ical status.25 On the other hand, toxicity is responsible for

many compounds failing to reach the market and for the

withdrawal of a significant number of compounds from the

market once they have been approved.26

RESULTS AND DISCUSSION

Docking

The definition of the active site focused most of the

computational resources on the hydrophobic core of the en-

zyme. The deeply recessed and shielded active site of

ACE2 is a common structural feature of proteases serving

to avoid proteolysis of large structured peptides.27 The

blind docking performed by eHiTS 6.228 scanned the entire

protein rigorously confirming that the binding site of all

ligands with the ACE2 protein effectively is the one se-

lected for the docking through FlexX. Inside the specific

recognition site where the peptide bond is cleaved were

found three pockets which are displayed rendered as a Con-

nolly surface in Figure 2. The hydrophobic S1 subsite is

composed by the residues N51, W349, A348, T347, H374, H378,

E402, and Y510. Fig. 3 shows that the pseudo-Leu isobutyl

chain of the inhibitors from Table 1 packs nicely into it15

but is big enough to accommodate longer chains. In con-

trast, electrostatic chemical environment of the S1’ subsite

favours interaction with polar residues of the ACE2 natural

substrates. This thin pocket is one of the mayor determi-

nants of the substrate specificity of ACE2. In fact, topology

of S1’ in ACE2 differs from that of its homologue in ACE.29

S1’ is composed by the side chain of the residues S128, A342,
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Fig. 2. Procedure of Successive Filters Used in this
Study. Five Criteria Were Taken Into Account:
Target Affinity, LF Energy, Lipinski Parame-
ters, Toxicity and Drug-likeness.

Fig. 3. Consensus Pose of a Compound from Table 1
Docked in the Active Site of ACE2. The Car-
boxicate Groups are located Closed to the Zn
Atom Which is Displayed as a Red Sphere. The
pseudo-Leu isobutyl chain of the inhibitors is
oriented towards the S1 Pocked.



V343, C344, H345, L359, M360, T371, E375, F504, H505, L503, and

disulfide link C334/C361 which restrict size of the substrate

P1 side chains while suitably are adapted to accommodate

the imidazol ring and one of the carboxylate group of the

Dales ligands. Further, bulky N-3 substituents at the imi-

dazole ring interact with a third cavity in the ACE2 beyond

S’1 that could be termed S’2 according to the interaction

model of Schechter and Berger30 since it binds to functional

substrates. This third pocket is constituted by the residues

E145, L144, N149, W271, and R273. The docking study also re-

vealed that inhibitors with stereochemistry 1SR and 16RR

exhibit an inverse mode of binding by lodging its benzyl

moiety inside the S1 subsite whereas inhibitor 7 binds such

a way that the whole structure of inhibitor 2 is excluded

from S1 subcavity.

LF Calculations

It was generated a large database by means of LF, a

program for optimization of the ligands docked into their

target. In most LF simulations the structures retained their

place inside the cavity as the automatic optimization pro-

ceeded. The most difficult calculation was those of ligand 7

which only produced 2 LF molecules. Altogether 2372 ac-

ceptable structures were obtained. From this database, the

structures with the highest LF affinity score were selected.

Although any atom in the starting strutures was protected

from modifications their imidazole rings and amino dicar-

boxylate cores were conserved except in the case of the two

first molecules from Table 1.

The binding mode of one of the LF generated struc-

tures in the active site of ACE2 is displayed in Figure 4. It

shares the two carboxylate groups of the compounds from

Table 1. These groups coordinate to Zn but the linker group

is a methylene instead of an amino group. In addition, the

chain in S1 is enlarged and posseses two fluride atoms and a

ceto group to establish electrostatic interactions with the

residues N51 and E402. Finally, the ligand E has an oxygen

atom that connects the imidazol ring to an ethyl-pyridazine

moiety which parcially occupy the S2’ subsite. A pyridazine

ring is found within the structure of several pharmaceutical

drugs.31 Nitrogen atom containing heterocyclic com-

pounds, pyridazines, pyridazinones and phthalazines are

important structural feature of many biologically active

compounds and show diverse pharmacological properties.

Overall, the LF-generated scaffolds fit with high comple-

mentarity into the ACE2 catalytic site.

QSAR Calculations

In addition, CoMSIA QSAR 3D models were built.

The docked-based alignment method led to several signifi-

cative CoMSIA models in contrast to the CoMFA model

and those ones elaborated from the ALIGMENT SYBYL

module. To select the best CoMSIA model the possible

combinations of their 5 physicochemical standard proper-

ties were tried. The respective statistics of the models hav-

ing q2 values above 0.5 are summarized in the Table 2. The

best CoMSIA model from the Dales ligands yielded q2 =

0.652 and r2 = 0.962 values. The best CoMSIA model from

the ligands of Table 2 yielded q2 = 0.566 and r2 = 0.992 val-

ues. Steric parameter alone gave the best statistics in both

cases.

The steric contribution contour maps of CoMSIA are

plotted in Figure 5. It shows that the greater potency of

ligand 16 (which is also named MLN-4760) with respect to

ligand 2 is related to the overlapping of the ligand 16 moi-

eties with the green fields. In fact, the benzene ring of the

ligand 16 is farer from the yellow polyhedral than ligand 2
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Fig. 4. The LF Designed Molecule D in the Active Site
of ACE2. The moiety pyridazine which is ori-
ented towards the S2’ subsite.

Fig. 5. Comparation of the Polyhedral Orientation of
the CoMSIA Steric Model of the Dales Ligands
2 (Above) and 16 (Below) in the Contour Maps
(STDDEV*COEFF)



and the chloride atoms at this ring of the ligand 16 goes fur-

ther into the green region. In addition, the imidazole ring of

ligand 16 changes its orientation so that the N1 atom is

much more separated from the unfavourable yellow region

of the steric field.

The biological activity of the LF-generated chemo-

types were calculated by the CoMSIA models. The results

shown in Table 3 suggest that they are more potent than

previously reported inhibitors.

ADMET Predictions and Drug-likeness Predictions

The files generated by LF were converted to SMILES

format by the Cactus translator (http://cactus.nci.nih.gov/

services/translate/). Next, theses molecules were submitted

to the on-line server MOLINSPIRATION to predict impor-

tant molecular properties (logP, polar surface area, number

of hydrogen bond donors and acceptors, molecular weight,

number of Oxygen and Nitrogen atoms, number of Hydro-

gens attached to N and O, number of violations, number of

rotable bonds and volume). After screening the top 77 LF

compounds generated by structural optimization a 50% of

hits against the Lipinski’s rule was observed. Prediction of

toxicity before the synthesis of compounds ensures the re-

moval of compounds with potential toxic effects. A number

of in silico systems for toxicity prediction are available,

which help in the classification of toxic and non-toxic com-

pounds.32 Here, assessment of the studied molecules was

performed by means of the OSIRIS property explorer

yielding 12 selected prototypes. Since any member of a

precomputed set of structural fragment characteristic of

harmful compounds was encountered in the screened struc-

tures it can be claimed that they are as free of toxic effects

as traded drugs. It therefore indicates that there is neither

risk of mutagenicity, tumorigenicity, irritability nor repro-

ductive effects. As positive controls were used Ritonavir,

Ribavirin, Amantadine and Acyclovir. The fragments in

the submitted molecules that gave rise to toxicity alerts are

shown in table 6. According to OSIRIS the most potent

compound of Table 1, the MLN4760 co-crystallized ligand,

turned out also to be mutagenic by virtue of a benzene ring

moiety bearing two chlorides in meta position. Nonethe-

less, a compound containing a halogenated pyridine ring

passed the OSIRIS test.

In addition, Molinspiration server was used to predict

the bioactivity over the four most important drug targets:

GPCR ligands, kinase inhibitors, ion channel modulators,

and nuclear receptors. The method implemented in Molin-

spiration uses sophisticated Bayesian statistics to compare

structures of representative ligands active on the particular

target with structures of inactive molecules and to identify

substructure features typical for active molecules. Descrip-
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Table 2. Statistics Parameters in the Built CoMSIA Models

Statistics Parameters of the QSAR
Field

q2 r2f NCg SEEh F value R2
BS

i SDj

Sa, Eb, Dd 0.506 0.940 6 0.214 83.952 0.976 0.010
S, Ae 0.5 1.000 6 0.008 24808.95 1.000 0.000
Hc 0.506 1.000 10 0.014 7779.978 1.000 0.000
S 0.652 0.962 6 0.272 59.759 0.988 0.011
a Steric field
b Electrostatic field
c Hydrophobic field
d Donor hydrogen bond field
e Aceptor hydrogen bond field
f Non cross-validated square of correlation coefficient
g Number of components
h Standard error of prediction
i From 100 bootrapping runs
j Standard deviation

Table 3. Predicted Biological Activity of the LF-Generated
Structures

Molecule pIC50 prediction by means of QSAR

A 3.46
B 3.71
C 3.64
D 3.52
E 3.99
F 3.90
G 4.00



tors calculated for the eight previously screened entities are

registered in Table 4. As positive controls were included

the drugs: propanolol, xylocaine, Imatinib and estradiol.

They all are conspicuous drugs targeting the above men-

tioned classes of receptors. Celullar toxicity was not ob-

served in the molecules ACE2 ligands shown in Table 4,

whereas bioactivity was found in every control molecule.

The drug-likeness score was also calculated by the

On-line server Molsoft [http://www.molsoft.com/mprop/].
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Table 4. Bioactivity Out of Target

Candidate/
Control

GPCR
Ligand

Ion chanel
Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Propanolol 0.32 0.21 �0.27 �1.04
Xylocaine 0.07 0.03 �0.06 �0.49
Imatinib �0.18 �0.54 0.41 �0.88
Estradiol �0.37 �0.23 �1.03 0.87
A �0.93 �0.93 �1.09 �1.01
B �0.67 �0.72 �1.20 �1.29
C �0.65 �0.42 �1.14 �1.19
D �0.62 �0.59 �0.94 �1.09
E �0.63 �0.57 �0.96 �1.14
F �0.21 �0.01 �0.54 �1.10
G �0.12 �0.18 �0.67 �1.01

Table 5. Designed Molecules with the Top Molsoft Drug Score

A 0.43
B 1.10
C 0.79
D 0.37
E 0.60
F 0.64
G 0.98

Fig. 6. Scores Yielded by the Molsoft Model for the
Top Candidates Ranked from 0.37 to 1.10
Showing These Compounds afforded Virtual
Drug-likeness.

Table 6. Screened Structures
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The Molsoft calculated parameters molecular weight, hy-

drogen bond acceptors and donors, logP, logS, PSA, mo-

lecular volume and number of estereogenic centers are reg-

istered in Table 5 and Figure 6.

CONCLUSIONS

Since any member of a precomputed set of structural

fragment characteristic of harmful compounds was en-

countered in the screened structures it can be claimed that

they are as free of toxic effects as traded drugs. It therefore

indicates that there would be no risk of mutagenicity, tu-

morigenicity, irritability nor reproductive effects. Besides,

according to the QSAR-3D models predictions, the LF-de-

signed molecules are more potent than the starting com-

pounds from which they were developed and they could be

active in the nanomolar range. Previously other studies had

achieved increased the potency of bioactive molecules.33-34

In summary, seven therapeutical entities having high calcu-

lated drug-likeness are proposed to be synthesized and ex-

perimentally evaluated. An obsticle regarding chemotype

A, B, and C is that they have several chiral centers implying

they are rather difficult for synthesize. Though precision of

the ADMET prediction methods is limited, it is possible

that some of the molecules in Table 6 which passed all the

filters turn to be safe and effective drugs.
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