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Abstract

Background: Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-
sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this
work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method
to improve prediction performance using comprehensive information represented in the form of high dimensional feature
vector obtained by 11 feature extraction methods.

Methodology/Principal Findings: A novel two-stage multiclass support vector machine is proposed to predict protein
subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and
physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used.
The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9
dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and
that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization
dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our
method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities
and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7%
for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model
are further confirmed by permutation analysis.

Conclusions: It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations.
A web server has been designed to implement the proposed method. It is freely available at http://bioinformatics.
awowshop.com/snlpred_page.php.
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Introduction

The cell nucleus is the most important organelle within a cell. It

directs cell reproduction, controls cell differentiation and regulates

cell metabolic activities [1–3]. The nucleus can be further

subdivided into subnuclear localizations, such as PML body,

nuclear lamina, nucleoplasm, and so on. The subcellular

localizations of proteins are closely related with their functions.

A mis-localization of proteins can lead to protein malfunction and

further cause both human genetic disease and cancer [4]. At the

subnuclear level, elucidation of localizations can reveal not only

the molecular function of proteins but also in-depth insight on

their biological pathways [1,3].

It is time-consuming and costly to find subnuclear localizations

only by conducting various experiments, such as cell fractionation,

electron microscopy and fluorescence microscopy [5]. On the

other hand, the large gap between the number of protein

sequences generated in the post-genomic era and the number of

completely characterized proteins has called for the development

of fast computational methods to complement experimental

methods in finding localizations.

There have been various methods for predicting protein

subcellular localizations based on sequence information [2,6–17]

as well as non-sequence information, such as function domain

[18], gene ontology [19–22], evolutionary information [20,23–27],

and protein-protein interaction [28]. Some methods predict

subcellular localizations at specific genomic level

[16,20,24,29,30]. These methods did not provide information on

subnuclear localizations.
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So far, a few methods have been reported for predicting protein

subnuclear localizations [1,2,21,25–27]; however their prediction

accuracies are relatively poor for small size localizations. The

prediction of localizations at the subnuclear level is more

challenging than that at the subcellular level due to three factors

[31–33]: the nucleus is more compact and complicated as

compared to other cell compartments [32]; protein complexes

within the cell nucleus can alter their compartments during

different phases of the cell cycle [33]; and proteins within the cell

nucleus face no apparent physical barrier like a membrane [31]. In

the face of these difficulties, we believe that diverse information is

required to solve this problem. Feature extraction methods from

different sources can complement each other in capturing valuable

information, and prediction accuracy can be enhanced through

effectively combining those feature extraction methods.

In this paper, we design a novel two-stage multiclass support

vector machine (MSVM) in combination with a two-step optimal

feature selection process for successfully predicting protein sub-

nuclear localizations. The process incorporates various features

extracted from amino acid classifications-based methods including

local amino acid composition (LAAC) [11], local dipeptide

composition (LDC) [11], global descriptor (GD) [34], Lempel-

Ziv complexity (LZC) [35], and those extracted from physico-

chemical properties-based methods including autocorrelation

descriptor (AD) [36], sequence-order descriptor (SD) [36,37],

autocovariance method (AC) [38–40], physicochemical property

distribution descriptor (PPDD) [41], recurrence quantification

analysis (RQA) [42], discrete wavelet transform (DWT) [43] and

Hilbert-Huang transform (HHT) [44,45]. If each protein is

represented by all these obtained features, the dimension of the

feature vector will be too high. In order to reduce computation

complexity and feature abundance, we propose a two-step optimal

feature selection process to find the optimal feature subset for each

binary classification, which is based on the maximum relevance

and minimum redundancy (mRMR) feature prioritization method

[46]. We use the one-against-one (OAO) strategy to solve the

multiclass problem: for a k classification problem, k|(k{1)=2
classifiers will be constructed. In our system, these classifiers are all

constructed using support vector machine with probability output.

After this, the high-dimensional feature vector of each protein is

converted into a probability vector with k dimensions. At the

second stage, conventional MSVM is used to construct the final

models.

Results and Discussion

Data Sets
We chose two datasets, Lei dataset [1] and SNL9 dataset [26],

to evaluate the performance of our method in comparison with

previous methods. Lei dataset was extracted from the Nuclear

Protein Database (NPD) [47] and is non-redundant with less than

50% sequence identity. It consists of 504 proteins divided into 6

subnuclear localizations: 38 belong to PML body, 55 to nuclear

lamina, 56 to nuclear splicing speckles, 61 to chromatin, 75 to

nucleoplasm, and 219 to nucleolus. Each of these proteins belongs

to a single localization. This data set is unbalanced because the size

of the largest localization is 219, whereas the smallest is just 38.

The SNL9 dataset was collected from Swiss-Prot (version 52.0

released on 6 May 2007) at http://www.ebi.ac.uk/swissprot/by

following a strict five-step filter procedure. The details about this

procedure can be found in [26]. The final data set contains 714

proteins, of which 99 belong to chromatin, 22 to heterochromatin,

61 to nuclear envelope, 29 to nuclear matrix, 79 to nuclear pore

complex, 67 to nuclear speckle, 307 to nucleolus, 37 to

nucleoplasm and 13 to nuclear PML body. All sequences have

,80% sequence identity.

In order to estimate the effectiveness of our prediction method,

two independent testing sets are used. One consists of 92 multi-

localization proteins, which was also constructed by Lei et al. [1].

Another is constructed from SNL9 dataset. We only select 5 types

which are in Lei dataset because this dataset does not contain

nuclear lamina. Then, we filter out those which have larger than

30% sequence identity with any other in Lei dataset. The final

dataset includes 328 proteins: 8 belong to PML body, 36 to

nuclear splicing speckles, 77 to chromatin, 25 to nucleoplasm, and

182 to nucleolus.

Amino Acid Classification
To capture more contextual information, the LAAC [11], LDC

[11], GD [34] and LZC [35] methods consider different amino

acid classification approaches. Some of these approaches [36,48–

53] are listed in Table 1.

Physicochemical Properties
In order to capture as much information of protein sequences as

possible, a variety of physicochemical properties are used in the

procedure of feature extraction. All physicochemical properties

used can be found in the Amino Acid index (AAindex) database

[54], which store physicochemical or biochemical properties of

amino acids or pair of amino acids. The latest version of the

database (version 9) is separated into three parts: AAindex1,

AAindex2 and AAindex3. AAindex1 has 544 properties associated

with each of the 20 amino acids, AAindex2 contains 94 amino acid

substitution matrices, and AAindex3 contains 47 amino acid

contact potential matrices. For the purpose of amino acid

sequence transformation, we only considered the 544 amino acid

properties (i.e., indices in AAindex1). Of the 544 indices, 13 have

incomplete data or an over-representation of zeros, hence were

removed. Thus 531 indices were evaluated for potential use in the

procedure of feature extraction. In particular, in the AD method

we chose the 30 physicochemical properties of amino acids as in

[55], which are listed in Table 2.

System Construction
Support vector machine. In 1995, Vapnik [56] introduced

the support vector machine (SVM) method to solve the binary

classification problem. In order to solve a multiclass classification

problem, such as the prediction of protein subnuclear localiza-

tions, the method must be extended. There are three notable

extension strategies: one-against-all, one-against-one and directed

acyclic graph SVM (DAGSVM) [57]. In this paper, we adopted

the one-against-one strategy. For a k classification problem, the

SVM designed by the one-against-one strategy constructs

k|(k{1)=2 classifiers, each of which is trained on data from

two different classes. The optimal complexity parameter C in the

SVM classifier is fixed by grid search. Throughout, the radial basis

kernel function (RBF) is used and the corresponding kernel

parameter c can be determined by grid search or automatic

methods [58,59]. We select the method GFO for the supervised

case proposed in [59] due to its simplicity. In GFO, the optimal

kernel parameter c is approximated by the mathematical

expectation of distances between data points.

Furthermore, we used a weighting scheme as in [60] for each

class in order to reduce the effect of over-prediction when using

unbalanced training data sets. The weighting scheme assigns

weight 1.0 to the largest class and higher weights to the remaining

classes. The weights of these classes are simply calculated by

dividing the size of the largest class by that of each smaller class.

A Method for Predicting Subnuclear Localizations
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Two-step optimal feature selection. After running each

feature extraction method, all primary protein structures with

different length are converted into numerical feature vectors with

the same dimension. In order to reduce feature abundance and

computation complexity, we propose a two-step optimal feature

selection process by using an incremental feature selection (IFS)

method [61].

The IFS is based on the mRMR method originally proposed by

[46] for analyzing microarray data. The detailed information

about the mRMR and IFS methods can be found in [46,61],

respectively. In the first step, we consider each feature extraction

method separately and construct corresponding models for each

binary classification. Supposing that the number of feature

extraction methods used is M, there are M optimal feature

subsets constructed for each binary classification in this step. In the

second step, for each binary classification, we extract the final

optimal feature subset on the union of M optimal feature subsets

obtained in the first step. We simultaneously find the optimal

feature subset and the SVM parameters C and c for each binary

classification using 5-fold cross validation on the training set for

each turn in the leave-one-out cross validation process.

Two-stage support vector machine. Finally, we construct

a novel two-stage support vector machine to predict protein

subnuclear localizations. In the first stage, k|(k{1)=2 binary

classifiers with probability estimates are constructed based on the

two-step optimal feature selection procedure for each turn in the

leave-one-out cross validation process. All optimal feature subsets

and SVM parameters for k|(k{1)=2 binary classifiers are

simultaneously obtained by the two-step optimal feature selection

procedure. We use LIBSVM for probability estimation as in [62].

After this, each primary protein structure is represented by a k-

dimensional numerical vector, each element of which is the

probability of the corresponding class to be predicted. The outputs

of this stage are used as inputs for the next stage. In the second

stage, we use conventional multiclass SVMs to predict protein

subnuclear localizations. Here we use LIBSVM [62] to implement

SVMs. The complete flow chart of our method is shown in

Figure 1. Note that if the leave-one-out cross validation is chosen

to test this two-stage SVM, different two-stage SVM is constructed

for each turn the leave-one-out cross validation.

Performance Evaluation
In statistical prediction, three validation tests are often used to

evaluate the prediction performance: independent dataset test,

sub-sampling test and jackknife test [63]. We adopted the jackknife

test in this paper to make fair comparison with existing methods.

That is, each protein sequence in the samples is singled out in turn

as a test sample and the remaining protein sequences are used as

training samples. In this sense, the jackknife test is also known as

the leave-one-out test.

The overall prediction accuracyAc, individual sensitivitySin,

individual specificity Sipand Matthew’s correlation coefficient

MCCi are used to evaluate the prediction performance of our

work. Their definitions are as follows:

Sin~TPi=(TPizFNi)

Sip~TNi=(TNizFPi)

MCCi~
TPi|TNi{FPi|FNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPizFPi)|(TPizFNi)|(TNizFPi)|(TNizFNi)
p

Table 1. Amino acid classifications.

Method Number Amino acid classification Reference

HP 2 (ALIMFPWV) (DENCQGSTYRHK) [48]

DHP 4 (ALVIFWMP) (STYCNGQ) (KRH) (DE) [49]

7-Cat 7 (AGV) (ILFP) (YMTS) (HNQW) (RK) (DE) C [50]

20-Cat 20 A G V I L F P Y M T S H N Q W R K D E C -

ms 6 (AVLIMC) (WYHF) (TQSN) (RK) (ED) (GP) [51]

lesk 6 (AST) (CVILWYMPF) (HQN) (RK) (ED) G [51]

F-Ic4 7 (AWM) (GST) (HPY) (CVIFL) (DNQ) (ER) K [51]

F-Ic2 9 (AWM) (GS) (HPY) (CVI) (FL) (DNQ) (ER) K T [51]

F-IIIc4 9 (ACV) (HPL) (DQ) S (ERGN) F (IMT) (KW) Y [51]

F-Vc4 8 (AWHC) G (LEPV) (KYMT) (IN) Q D S [51]

Murphy8 8 (LVMIC) (AG) (ST) P (FYW) (DENQ) (KR) H [52]

Murphy15 15 (LVIM) C A G S T P (FY) W E D N Q (KR) H [52]

Letter12 12 (LVIM) C (AG) (ST) P (FY) W (ED) N Q (KR) H [53]

Hydrophobicity 3 (RKEDQN) (GASTPHY) (CLVIMFW) [36]

Normalized van der Waals 3 (GASTPD) (NVEQIL) (MHKFRYW) [36]

Polarity 3 (LIFWCMVY) (PATGS) (HQRKNED) [36]

Polarizability 3 (GASDT) (CPNVEQIL) (KMHFRYW) [36]

Charge 3 (KR) (ANCQGHILMFPSTWYV) (DE) [36]

Secondary structure 3 (EALMQKRH) (VIYCWFT) (GNPSD) [36]

Solvent accessibility 3 (ALFCGIVW) (PKQEND) (MPSTHY) [36]

doi:10.1371/journal.pone.0057225.t001
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Ac~

P
i TPi

N
, i~1,2,3, . . . ,k

where true positives TP=number of positive events that are

correctly predicted; true negatives TN=number of negative events

that are correctly predicted; false positives FP=number of

negative events that are incorrectly predicted to be positive; false

negatives FN=number of subjects that are predicted to be

negative despite they are positive; k=number of classes.

To further evaluate the performance of our method, we also use

the receiver operating characteristic (ROC) curve [64], which is

probably one of the most robust approaches for classifier

evaluation. The ROC curve is obtained by plotting true positive

rate (Sin) on the y-axis against the false positive rate (1{Sip) on the

x-axis. The area under the ROC curve (AUC) [65] can be used as

a reliable measure for the prediction performance. The case that

maximum value of AUC equals to 1 means a perfect prediction. A

random guess receives an AUC value close to 0.5.

Comparison of Feature Extraction Methods: Grid Search
vs Automatic Search
First, we observed each feature extraction method separately to

see which method is more effective. The same leave-one-out cross

validation process as [1] is used to evaluate each feature extraction

method and their combinations on Lei benchmark dataset. For

details, during the training process, each protein is selected as the

test sample in turn and the remaining ones constitute the training

set. We used a grid search approach to find optimal feature subsets

and optimize the SVM parameter C using 5-fold cross validation

on the training set for all binary classification models. For the

SVM parameter c, we use two kinds of methods to find the

optimal value: grid search and GFO [59]. It is found that the

number of elements of the optimal feature subset for each binary

classification is generally less than 300. So we chose the top-rank

300 features as the upper bound for optimal feature subset search.

The top-rank 10 features are used as an initial feature subset. The

size of the feature subset is increased by 10, obtaining 10, 20, 30,...,

300 features. At each size, we searched a pair (C,c) with the best 5-

fold cross validation (e.g. logC =25, 23, 21,..., 15; log c=215,

213, 211,..., 3). From this process, each binary classification

Table 2. 30 physicochemical properties of amino acids selected from AAindex database.

AAindex Physicochemical property Range of property

BULH740101 Transfer free energy to surface [22.46 0.16]

BULH740102 Apparent partial specific volume [0.558 0.842]

PONP800106 Surrounding hydrophobicity in turn [10.53 13.86]

PONP800104 Surrounding hydrophobicity in alpha-helix [10.98 14.08]

PONP800105 Surrounding hydrophobicity in beta-sheet [11.79 16.49]

PONP800106 Surrounding hydrophobicity in turn [9.93 15.00]

MANP780101 Average surrounding hydrophobicity [11.36 15.71]

EISD840101 Consensus normalized hydrophobicity scale [21.76 0.73]

JOND750101 Hydrophobicity [0.00 3.15]

HOPT810101 Hydrophilicity value [23.4 3.00]

PARJ860101 HPLC parameter [210.00 10.00]

JANJ780101 Average accessible surface area [22.8 103.0]

PONP800107 Accessibility reduction ratio [2.12 7.69]

CHOC760102 Residue accessible surface area in folded protein [18 97]

ROSG850101 Mean area buried on transfer [62.9 224.6]

ROSG850102 Mean fractional area loss [0.52 0.91]

BHAR880101 Average flexibility indices [0.295 0.544]

KARP850101 Flexibility parameter for no rigid neighbors [0.925 1.169]

KARP850102 Flexibility parameter for one rigid neighbor [0.862 1.085]

KARP850103 Flexibility parameter for two rigid neighbors [0.803 1.057]

JANJ780102 Percentage of buried residues [3 74]

JANJ780103 Percentage of exposed residues [5 85]

LEVM780101 Normalized frequency of alpha-helix, with weights [0.90 1.47]

LEVM780102 Normalized frequency of beta-sheet, with weights [0.72 1.49]

LEVM780103 Normalized frequency of reverse turn, with weights [0.41 1.91]

GRAR740102 Polarity [4.9 13.0]

GRAR740103 Volume [3 170]

MCMT640101 Refractivity [0.00 42.35]

PONP800108 Average number of surrounding residues [4.88 7.86]

KYTJ820101 Hydropathy index [24.5 4.5]

doi:10.1371/journal.pone.0057225.t002
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model corresponds to an optimal feature subset and a parameter

pair (C,c). Thus we can construct all binary classification models

and make preparation for training the second stage model. The

training method for the second stage model is identical to the first

stage except that it does not need feature selection. The final

prediction system was constructed as follows: the entire Lei dataset

of proteins is used as a training set; the optimal feature subsets for

each binary classification are taken as the union of all optimal

feature subsets obtained from the leave-one-out cross validation;

and the optimal value for each parameter of the SVMs for the

training set was taken as the average value of the optimal

parameters obtained from the leave-one-out cross validation. And

then the final system is tested on the multi-localization dataset and

the new independent testing set. Note that all parameters of the

final system including optimal features and SVM parameters are

not re-paramiterized to apply on the independent datasets.

The overall prediction accuracies for all feature extraction

methods on Lei data set and the new independent dataset are

listed in Table 3. We also combined the feature extraction

methods LAAC, LDC, GD, LZC, AD, SD and AC as one

method, named Combination1, in order to balance the number of

features used in the methods. In the following, the values on the

new independent dataset are shown in the parentheses From

Table 3, as far as the individual feature extraction method is

concerned, broadly speaking, the HHT method is the best. Its

prediction accuracy is 63.49% (65.87%), only worse than the

accuracy of 69.84% (70.83%) for Combination1. Of particular

interest, HHT outperforms DWT (57.54 and 56.15%), implying

that HHT is more effective. Note that HHT and DWT are both

time-frequency analysis methods and use similar definitions of

statistical features. Finally, we evaluate the performance of the

combination of all feature extraction methods, named Combina-

tion2. As shown in Table 3, Combination2 achieves the overall

accuracy of 77.8% (75.2%) for single-localization proteins, with

accuracy increase against individual methods between 7.9%

(4.4%) and 24.2% (22.2%).

We can also see from Table 3 that it takes far less CPU time to

train the models using GFO comparison with those using grid

search. Note that all experiments on the same PC (CPU: Intel

Core2 Duo T7700, 2.4 GHz; RAM: 3 GB). In view of this reason,

we propose the model using GFO as the system model although its

OAs are 2.6% lower than that using grid search.

In addition, we also plot the ROC curves for each binary

classification in the final prediction system. The ROC curves are

shown in Figure 2. All the AUC values for these curves are over

0.9, which indicates that our predictions are satisfactory for all

binary classifications. One can see the binary classification for

Figure 1. The architecture of our method.
doi:10.1371/journal.pone.0057225.g001
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nuclear speckles and nucleolus is the worst one, which degrades

the system performance.

Comparison with the Existing Methods
A comparison of the performance of our method (Combination2 )

against other existing methods on Lei dataset is illustrated in

Table 4, where better results are highlighted in bold. It is seen that

Combination2 achieves an overall accuracy of 77.8% (75.2%) for

single-localization proteins against 50.0% of SVM Ensemble [1],

against 66.5% of the GO-AA [21]. The measures Sn, Sp and MCC

reveal that Combination2 is far better than SVM Ensemble on all

subnuclear localizations, better than GO-AA on most subnuclear

localizations except Nuclear Speckles and Nuclear Lamina. Note that

SVM Ensemble and GO-AA did not give the results on the

measure Sp. The measures Sn, Sp and MCC reveal that

Combination2 is better than SpectrumKernel on most subnuclear

localizations except Nuclear Speckles and Nucleolus.

In order to make fair and reasonable comparison with the

SpectrumKernel method [2], we test our method using 5-fold cross

validation on Lei dataset. Its accuracies are 79.0% and 77.6%,

which are both obviously higher than 71.2% of the Spectrum-

Kernel method.

As shown in Table 4, Combination2 achieves better performance

on most small-size subnuclear localizations except Nuclear Speckles.

The performance of our method on large-size subnuclear

localizations Nucleolus is worse than SpectrumKernel; however it

also achieves 93.6% (91.3%) for Sn, which outperforms SVM

Ensemble (76.7%) and GO-AA (79.0%). Overall, the results show

that our method has good generalization abilities in predicting

subnuclear localizations regardless of the size of subnuclear

localizations.

In order to evaluate the performance of our method for multi-

localization proteins, we use the same criterion as in [1,21,66]. For

a protein with multi-localization, if one of the locations is predicted

true, then the entire prediction is considered correct. For the

independent set of multi-localization proteins, the overall accuracy

of Combination2 is 76.1% (71.7%), 11.1% (6.7) higher than SVM

Ensemble [1] and GO-AA [21]. The result reveals that

a combination of feature extraction methods integrates more

effectively information of the protein sequence to increase the

prediction accuracy.

Furthermore, comparing with GO-AA, our method only uses

information on amino acids of the protein sequence, and do not

use non-sequence information such as GO annotation, evolution-

ary information (e.g. PSI-BLAST profile), protein-protein in-

teraction and so on, which makes our method more general since

the PSI-BLAST profile is difficult to obtain and GO annotation

and protein-protein interaction may be missing for some proteins.

In addition, SpectrumKernel is based on kernel fusion, which is

computationally more intensive than sequence-based methods and

is also time consuming for training on a novel query sequence.

Furthermore, in order to make fair and reasonable comparison

with Nuc-Ploc [26], we test our method using leave-one-out cross

validation on SNL9 dataset. A web-server was designed in Nuc-

Ploc [26] by fusing PseAA composition and PsePSSM. The

detailed comparison results between our method and Nuc-Ploc are

listed in Table 5. As shown in Table 5, the overall accuracy of

prediction for 9 localizations is 72.1% in the leave-one-out cross

validation on SNL9 dataset, which is about 4.7% higher than the

overall accuracy obtained by Nuc-Ploc [26]. All MCCs of our

method are higher than Nuc-Ploc except for heterochromatin.

Analysis of Feature Contribution
In order to observe the contribution of the individual feature

extraction method to the overall prediction accuracy, we test some

possible combinations of feature extraction methods. Here, we

only report the second best combination for models using grid

search and GFO, respectively. For grid search, Combina-

tion1+HHT+DWT+PPDD is the second best combination, whose

OA are 75.00% and 64.6% on Lei dataset and the new

independent dataset. For GFO, Combination1+HHT +PPDD is

the second best combination, whose OA are 72.02% and 64.0%

on Lei dataset and the new independent dataset.

Moreover, the paired t-test is applied to the MCC values of

Combination2 and other individual methods to evaluate their

differences on the new independent dataset. The resulting P-

values are reported in Table 6. We can see that the P-values are

smaller than 0.05 for all individual methods, indicating that

Combination2 has made statistically significant improvements over

any other individual method for the subnuclear localization

prediction.

Comparison with Other Popular Classifiers
We will also compare our two-stage SVM with Random Forest

(RF) classifier [67] as well as traditional ‘‘one-stage’’ SVM [62].

RF consists of a number of unpruned decision trees and is widely

used for classification and regression, especially for so-called "small

n, large p" problems [67]. It has two advantages: interpretable

classification rules and measure information about the importance

of features. Here, we use a Matlab package for implementing the

RF algorithm [68]. Two parameters, number of trees to grow ntree

and number of variables randomly sampled as candidates at each

split mtry are optimized using a grid search approach. During the

grid search, the values of ntree = 500:500:2000 and mtry= (default

Table 3. Comparison of the overall prediction accuracy between different feature extraction methods.

Feature extraction method Grid search GFO

Ac(%) CPU time (hr) Ac(%) CPU time (hr)

Combination1 69.84 (59.76) 2.704 70.83 (62.50) 0.406

RQA 53.57 (45.12) 2.174 52.98 (44.82) 0.413

HHT 63.49 (60.37) 2.336 65.87 (64.63) 0.427

PPDD 56.55 (53.35) 2.213 58.53 (59.15) 0.414

DWT 57.54(52.74) 2.035 56.15 (50.91) 0.402

Combination2 77.78 (70.12) 11.056 75.20 (69.82) 2.303

Note: the values on the new independent dataset are shown in the parentheses.
doi:10.1371/journal.pone.0057225.t003
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value) are optimized based on 5-fold cross-validation on Lei

dataset. The new independent test set is used to test the final

model. For the traditional ‘‘one-stage’’ SVM, we use the same

optimization process as two-stage SVM with GFO. In order to

investigate the effects of weight strategy on the results, the RF and

traditional ‘‘one-stage’’ SVM are divided into two versions: with

weight and without weight. All results are illustrated in Table 7.

Overall, the traditional ‘‘one-stage’’ SVM is a little better than RF.

But, their results are all below 60%, which are much worse than

those of two-stage SVM. For individual methods, Combination1 and

HHT are still better than the others. All models using weight

strategy demonstrate better or similar results compared with those

without using weight strategy.

In order to evaluate the effectiveness of our two-stage SVM

method, we make comparison with another two-stage SVM

method used in [11] on Lei dataset and SNL9 dataset. Although

a few two-stage SVM methods [69–71] have been proposed, they

are designed specially for site prediction. In [11], each feature

extraction method is viewed as an individual module and each

amino acids sequence is transformed into a probability vector in

each individual module; the concatenation of these probability

vectors output from all modules in the first stage is the input of the

second stage. The overall accuracies are 54.17% and 58.12% in

the leave-one-out cross validation on Lei dataset and SNL9 dataset

respectively, which are obviously lower than corresponding

accuracies obtained by our method.

Assessment of the Reliability of Classification Models by
Permutation Analysis
In order to evaluate the effectiveness of two-step optimal feature

selection method, two kinds of randomization studies were

performed for each binary classification. The two kinds of

randomization studies are: given the number K, randomly select

K features from original features (case 1) or suboptimal features

Figure 2. The ROC curves for all binary classifications. The upper letters B, L, S, C, P and N correspond to six subnuclear locations, PML body,
nuclear lamina, nuclear speckles, chromatin, nucleoplasm and nucleolus, respectively.
doi:10.1371/journal.pone.0057225.g002
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(case 2) of the samples from two different subnuclear locations,

while keeping the class memberships unchanged. Then the newly

generated feature set is analyzed by using the same five-fold cross

validation as applied before to the original feature set. Here, the

given numbers of features K are set as one forth, half or all of the

number of optimal features. This procedure for case 1 is carried

out 50 rounds and the error rates (6standard deviation) over 50

permutations are shown in Figures 3, and compared with the

minimum error rates obtained from optimal features. For case 2,

similar results are obtained. In each case, the estimated error rate

obtained by optimal features is significantly lower than that

obtained by the randomization study. Especially, the misclassifi-

cation error rates obtained by using features selected randomly

from suboptimal features are also much lower than that estimated

by using those from the original features. If we do these two

randomization analysis on the whole original feature set 50 times,

overall error rates on average are 63.6% (64.6%) and 45.5%

(62.4%), which are both significantly higher than the error rate

21.2% obtained by optimal features. Therefore, it can be

concluded that two-step optimal feature selection method is

effective and reliable.

Since the relatively small sample size of some subdatasets in the

benchmark dataset, it is also important to evaluate the stability and

reliability of our classification model. In this paper, permutation

tests [72,73] are performed to compare the misclassification error

rates using our model with those from the randomization studies.

Initially, the class memberships of all the samples were permuted

while keeping features unchanged; then the newly generated

random dataset is analyzed by using the same cross validation

procedure applied before to the original dataset (SVM parameters

are the same as those chosen to obtain the minimum error rates for

original datasets). This procedure is also carried out 50 times and

the error rates (6standard deviation) over 50 permutations for all

binary classifications are shown in Figure 4 and compared with the

minimum error rates obtained from original datasets. As one can

Table 4. Performance comparison on Lei’s benchmark data set.

Subnuclear localization size

SVM
ensemble [1] Go-AA [21] SpectrumKernel [2]

Our
method

Sn MCC Sn MCC Sp Sn MCC Sp Sn MCC

PML Body 38 29.0 0.172 34.2 0.253 11.1 10.5 0.046 86.1
(85.3)

55.3 (52.6) 0.298
(0.273)

Nuclear Lamina 55 43.6 0.338 63.6 0.578 51.9 50.9 0.461 91.0 (91.9) 69.1 (70.9) 0.534
(0.572)

Nuclear Speckles 56 35.7 0.363 62.5 0.607 86.7 69.6 0.754 91.8 (91.1) 62.5 (53.6) 0.503
(0.460)

Chromatin 61 19.7 0.260 60.7 0.518 64.3 59.0 0.570 93.1
(93.1)

73.8 (65.6) 0.640
(0.572)

Nucleoplasm 75 22.7 0.206 56.0 0.504 52.6 54.7 0.465 90.8 (89.2) 64.0 (66.7) 0.526
(0.520)

Nucleolus 219 76.7 0.367 79.0 0.656 89.8 96.4 0.880 78.6 (75.9) 93.6 (91.3) 0.726
(0.570)

OA for single-localization 50.0 66.5 71.2 77.8
(75.2)

OA for multi-localization 65.2 65.2 - 76.1
(71.7)

Note: the values about models using GFO are shown in the parentheses.
doi:10.1371/journal.pone.0057225.t004

Table 5. Performance comparison on SNL9 benchmark data
set.

Subnuclear
localization Size MCC

Nuc-Ploc Our method

Chromatin 99 0.60 0.64

Heterochromatin 22 0.52 0.27

Nuclear envelope 61 0.53 0.58

Nuclear matrix 29 0.52 0.56

Nuclear pore
complex

79 0.70 0.70

Nuclear speckle 67 0.43 0.62

Nucleolus 307 0.57 0.69

Nucleoplasm 37 0.31 0.55

Nuclear PML body 13 0.32 0.43

Ac(%) 67.4% 72.1%

Note: MCCs and Ac about Nuc-Ploc are obtained directly from the original
paper [26].
doi:10.1371/journal.pone.0057225.t005

Table 6. Comparisons of Combination2 with the individual
method on the new independent dataset.

Methods Grid search GFO

P-values P-values

Combination1 0.022 0.028

RQA 4.461e24 3.494e24

HHT 0.037 0.025

PPDD 0.005 0.004

DWT 0.003 0.001

doi:10.1371/journal.pone.0057225.t006
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see, the estimated error rates obtained by our method for original

dataset are significantly lower than those from the randomization

studies. If we do the same permutation test on the whole original

dataset, overall error rate on average is 76.7% (66.1%), which is

much higher than the error rate 21.2% obtained by using optimal

features. In summary, classification information can be character-

ized by optimal features; otherwise, the estimated error rate

obtained from original dataset will be close to that calculated from

the shuffled dataset.

Conclusions
In this section, we will summarize our conclusions as follows.

1. From the results on three datasets, our ensemble method is

effective and valuable for predicting protein subnuclear

localizations compared with existing methods for the same

problem.

2. From contribution of features as shown in Table 3 and 6,

Combination1 and HHT make the most important contribu-

tion, DWT and PPDD the second, and RQA is worst.

3. The method GFO can effectively find the optimal RBF kernel

parameter and further speed up our method.

4. This problem cannot be solved by simply using popular

machine learning classifiers (such as SVM, RF).

5. The weight strategy is important for this problem (unbalanced

dataset).

6. Two-step optimal feature selection method is effective.

7. Effective classification for nuclear speckles and nucleolus is the

key factor.

Although our method obtain relatively satisfactory results, some

open problems need to be investigated in the future. Subnuclear

localization prediction can be considered multi-label, unbalanced

problem. Hence, popular methods for multi-label, unbalanced

problems may be applied to improve this work.

Table 7. Comparisons with other popular classifiers on the
new independent dataset.

Methods

Traditional
SVM (Ac(%))

Random
Forest (Ac(%))

weight
without
weight weight without weight

Combination1 59.45 57.62 58.54 57.32

RQA 45.73 45.73 45.73 44.82

HHT 59.76 56.10 57.93 56.10

PPDD 58.54 57.93 55.49 55.18

DWT 57.62 55.49 52.74 51.52

Combination2 66.16 64.63 64.02 63.11

doi:10.1371/journal.pone.0057225.t007

Figure 3. Comparisons of error rate (percentage of misclassified samples) over 50 runs of randomization analysis. Random 1:
selecting randomly features subsets from original features, whose size is one-forth of the number of optimal features; Random 2: one half of the
number of optimal features; Random 3: equal to the number of optimal features.
doi:10.1371/journal.pone.0057225.g003
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Methods

Feature Extraction Methods Based on Amino Acid
Classification
Suppose that 20 amino acids are divided into n groups, denoted

by A, according to certain classification method listed in Table 1.

Then, for a given protein sequence S of length N, we may obtain

a new sequence S
0
of n symbols with the same length as S, each

symbol corresponding to one group of amino acids.

Local amino acid composition (LAAC) and local dipeptide

composition (LDC). Protein targeting signals are fragments of

amino acid sequences, usually on N-terminal or C-terminal,

responsible for directing proteins to their target locations. They are

usually located at the N-terminal or C-terminal of a protein

sequence [74]. But they are difficult to detect and define signal

motifs. Here we compute local amino acid composition and local

dipeptide composition on the first 60 amino acids from the N-

terminal and 15 amino acids from the C-terminal of a protein

sequence to represent protein targeting signals, which is inspired

by [11]. Finally, 2|(nzn2) features are generated.

Global descriptor (GD). The global descriptor method was

proposed first by [34] for predicting protein folding classes and

later applied to predict human Pol II promoter sequences [75] and

distinguish coding from non-coding sequences in a prokaryote

complete genome [76] by our group. The global descriptor

contains three parts: composition (Comp), transition (Tran) and

distribution (Dist). Comp describes the overall composition of a given

symbol in the new symbol sequence. Tran characterizes the

percentage frequency that amino acids of a particular symbol are

followed by a different one. Dist measures the chain length within

which the first, 25, 50, 75 and 100% of the amino acids of

a particular symbol are located [34]. Overall, we get

6|nzn|(n{1)=2 features from the global descriptor for S
0
.

Lempel-Ziv complexity (LZC). The Lempel-Ziv (LZ) com-

plexity is one of the conditional complexity measures of symbol

sequences. It can reflect most adequately the repeated patterns

occurring in the symbol sequence and are also easily computed

[35]. The LZ complexity has been successfully employed to

construct phylogenetic tree [77] and predict protein structural

class [78]. Let S
0

i:j be the subsequence of S
0
between position i and

j. The LZ complexity of sequence S
0
, usually denoted by c(S

0
), is

defined as the minimal number of steps with which S0 is

synthesized from null sequence according to the rule that at each

step only two operations are allowed: either copying the longest

fragment from the part of S
0
that has already been synthesized or

generating an additional symbol. Suppose that the sequence S
0
is

decomposed into.

S
0
~S

0
1:i1

S
0
i1z1:i2

� � �S0
ikz1:N

This decomposition is also called the exhaustive history of S
0
,

denoted by H(S
0
). It is proved that every sequence has a unique

exhaustive history [35]. For example, for the sequence , its

exhaustive history is H(S)~A:E:F :FG:EFFGA:E, where ‘‘:’’ is

used to separate the decomposition components. So, c(S
0
)=6.

Figure 4. Comparisons of error rate (percentage of misclassified samples) over 50 runs of permutation analysis. The original class
memberships of all samples are randomly shuffled for 50 times and then used together with original optimal features for classification using the same
cross validation as applied before for original dataset.
doi:10.1371/journal.pone.0057225.g004
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Feature Extraction Methods Based on Physicochemical
Properties

Autocorrelation descriptors (AD). Three widely-used au-

tocorrelation descriptors are selected: normalized Moreau-Broto

autocorrelation descriptors, Moran autocorrelation descriptors

and Geary autocorrelation descriptors [36]. They are all defined

based on the value distributions of 30 physicochemical properties

of amino acids along a protein sequence (see Table 2). The

measurement values of these properties are first standardized to

have zero mean and unit standard deviation and then the three

autocorrelation descriptors are calculated. These descriptors are

also used for the classification of G-protein-coupled receptors by

Peng et al. [79].

The normalized Moreau-Broto autocorrelation descriptors are defined

as.

NMBA(l)~
NBA(l)

N{l
,l~1,2, � � � ,30,

where MBA(l)~
PN{l

i~1

P(AAi)P(AAizl), AAi and AAizl are the

amino acids at position i and izl along the protein sequence,

respectively. P(AAi) and P(AAizl) are standardized property

values of amino acid AAiand AAizl , respectively. The maximum

value of l is set at 30 as in [36].

The Moran autocorrelation descriptors are defined as.

MA(l)~

1
N{l

PN{l

i~1

(P(AAi){~PP)(P(AAizl){~PP)

1
N

PN
i~1

(P(AAi){~PP)2
, l~1,2, � � � ,30,

where ~PP is the mean value of the property under consideration

along the sequence.

The Geary autocorrelation descriptors are defined as.

GA(l)~

1
2(N{l)

PN{l

i~1

(P(AAi){P(AAizl))
2

1
N

PN
i~1

(P(AAi){~PP)2
, l~1,2, � � � ,30,

For each AD, we obtain 900 ( = 30630) features. In total, 2700

( = 90063) features are obtained to describe a protein sequence.

Sequence-order descriptors (SD). In order to derive the

sequence-order descriptors, we use two distance matrices for

amino acid pairs. One is called the Grantham chemical distance matrix

[36], and the other is called the Schneider-Wrede physicochemical

distance matrix [37]. Then, the jth-rank sequence-order coupling number is

defined as.

t(l)~
XN{l

i~1

(d(AAi,AAizl))
2, l~1,2, � � � ,30

where is d(AAi,AAizl) one of the above two distances between

two amino acids AAi and AAizl located at position i and position

izl, respectively.

The quasi-sequence-order descriptors are defined as.

QSO(i)~

fA(i)P20
i~1

fA(i)zv
P30
j~1

t(j)

, 1ƒiƒ20,

v:t(j)P20
i~1

fA(i)zv
P30
j~1

t(j)

, 21ƒiƒ50,

8>>>>>><
>>>>>>:

where fA(i) is the occurrence frequencies of 20 amino acids in

a protein sequence and v is a weighting factor (with default

v=0.1).

We end up with 60 ( = 3062) sequence-order-coupling numbers

and 100 ( = 5062) quasi-sequence-order descriptors. In total, there

are 160 features extracted from SD.

Auto covariance (AC). The autocovariance method is

a statistical tool proposed by Wold et al. [38] which can capture

local sequence-order information. It has been applied to many

fields of bioinformatics, such as functional discrimination of

membrane proteins [39], predicting protein submitochondria

locations [40], and so on.

The autocovariance method is defined as.

ACD(l)~
1

m{l

Xm{l

i~1

(P(AAi){~PP)(P(AAizl){~PP), l~1,2, � � � ,30:

The AC is computed on 531 physicochemical properties

mentioned earlier in Subsection Physicochemical properties.

Physicochemical property distribution descriptor

(PPDD). The physicochemical property distribution descriptor

is first proposed by [41] for remote homology detection. In this

descriptor, the protein sequence of length N is first transformed

from the 20 amino acid letter code to N-dimension numerical

vector associated with the index being used. The average across all

4-mers is taken to create a new N{3-dimensional numerical

vector. This new vector is then normalized to have the mean and

standard deviation of the theoretical values associated with the

index. This normalized numerical vector is transformed into

a discrete distribution of 18 frequency values, where each value

represents a range of 0.5, i.e., the first bin contains all values less

than24, the second bin contains all values between24 and23.5,

and so forth. So, for every physicochemical property, the

physicochemical property distribution descriptor generates 18

features.

Recurrence plot and recurrence quantification analysis

(RQA). Recurrence plot (RP) is a purely graphical tool originally

proposed by [80] to visualize patterns of recurrence in the data. A

time series x1,x2, . . . ,xNf g with length N can be embedded in the

space Rm with embedding dimension m and a time delay t
according to nonlinear dynamic theory [81]. Supposing that

~yyif gNm

1 represents a trajectory in the corresponding phase space,

we have.

~yyi~(xi,xizt,xiz2t, . . . ,xiz(m{1)t),i~1,2, . . . ,Nm,

where Nm~N{(m{1)t:Once a norm function has been selected

(e.g., the commonly chosen Euclidean norm [82]), we can

calculate the distance matrix (DM) from the above points Nm.

DM is an Nm|Nm square matrix whose elements are the

distances between any pair of points. DM can be transformed into

a rescaled distance matrix (RDM) through dividing each element

in the DM by the maximum value of DM [81]. After obtaining
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RDM, it can be further transformed into a recurrence matrix

(RM) whose elements are 0 or 1 by choosing a threshold e. The
elements of RM are calculated by the following equation:

Rij(e)~H(e{Dij), i,j~1,2, . . . ,Nm,

Where H is the Heaviside function

H(x)~
0, xv0,

1, x§0:

�

RP is obtained by visualizing RM using different colors for its

binary elements (e.g., plotting a black dot at the coordinates (i,j), if
Rij~1 and a white dot, if Rij~0). For any e, since

Rii~1(i~1,2, . . . ,Nm) by definition, the RP always has a black

main diagonal line. Furthermore, the RP is symmetric with respect

to the main diagonal as Rij~Rji(i~1,2, . . . ,Nm). An important

step is to choose the parameter e of RP. If e is not chosen

appropriately, we would not extract sufficient information about

the underlying system [83,84]. In this paper, we use an approach

similar to [85] to fix the embedding dimension m, time delay t and
radius e. Finally, we set the embedding dimension m= 4, time

delay t= 1, and the radius e= 20% of the mean Euclidian distance

between points.

In order to overcome physical limitation of RP, [42] proposed

a new nonlinear technique, namely the recurrence quantification

analysis (RQA), to quantify the information in the RP based on

diagonal structures and vertical structures. In recent years, RQA

has been successfully applied in many different fields

[39,42,82,84–88]. Now there are 14 recurrence variables de-

veloped to quantify RP [81,83]. The definitions of these 14

recurrence variables are omitted here due to the page limit. A

detailed description of these recurrence variables can be found in

[81,83] and the references therein.

Discrete wavelet transform (DWT). It is known that low-

frequency internal motions do exist in protein and DNA molecules

and indeed play a significant role in biological functions [89]. And

DWT can elucidate simultaneously both spectral and temporal

information and is particularly helpful in detecting subtle time

localized changes [43]. So, DWT can be used to reflect the order

effect of a protein sequence. DWT decomposes the signal into

coefficients at different scales. The coefficients of the DWT

contain the approximation coefficient, which represents the high-

scale and low-frequency components of the signal, and the detail

coefficient, which represents the low-scale and high-frequency

components of the signal [90]. We apply DWT on the converted

numerical signal of the protein sequence by using the selected 531

indices. Suppose that every signal is decomposed into w scales with

details from scale 1 to scale w and an approximation at scale w by

the DWT, and the wavelet coefficients of (w+1) scales are obtained
in total. To convert the wavelet coefficients into a feature vector

with fixed length better suited for machine learning’s algorithms,

the statistics over the set of wavelet coefficients are used as in [91].

The following statistical features extracted from the approximation

coefficients and detail coefficients are used: (i) maximum of the

wavelet coefficients at each scale, (ii) mean of the wavelet

coefficients at each scale, (iii) minimum of the wavelet coefficients

at each scale, and (iv) standard deviation of the wavelet coefficients

at each scale. So for every index, a protein sequence can be

represented as a 4(w+1) -dimensional feature vector. In this study,

the Bior3.1 wavelet function was selected as the appropriate

wavelet function and the decomposition level 5 was chosen [92].

Hilbert-Huang transform (HHT). The HHT consists of

two parts: empirical mode decomposition (EMD) and Hilbert

spectral analysis (HSA). EMD is a time-frequency analysis method

and was originally proposed by [44] for the study of ocean waves.

Similar to other time-frequency methods, such as Fourier analysis

and wavelet analysis, EMD adaptively decomposes a time series

into a definite set of intrinsic mode functions (IMFs) by means of

an algorithm called sifting process [44]. However, the base

functions of Fourier and wavelet analyses are pre-determined and

are not suitable for nonlinear systems [44]. The detailed

information about IMFs and sifting process can be found in

[44]. After sifting, the original signal can be reconstructed as.

x(t)~
Xk
i~1

ci(t)zrk(t),

where n is the number of IMF, rk(t) denotes the final residual, and
ci(t)(i~1,2, . . . ,k) is an IMF that is nearly orthogonal to each

other. The EMD method also has been used by our group to

simulate geomagnetic field data [93] and predict the subcellular

localizations of apoptosis proteins recently [86]. In order to

convert IMFs into a feature vector with fixed length better suited

for classifiers, we propose to use the following statistical features

extracted from IMFs: (i) maximum of every IMF, (ii) mean of every

IMF, (iii) minimum of every IMF and (iv) standard deviation of

every IMF.

After EMD, we apply the Hilbert transform to each IMF

component and obtain an analytic signal:

H(ci(t))~
1

p
PV

ð?
{?

ci(t)

t{t
dt

A(ci(t))~ci(t)zjH(ci(t))~ai(t)e
jhi (t),

where, PV indicates the principle value of the singular integral,

ai(t) is the instantaneous amplitude, and hi(t) is the phase

function:

ai(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i (t)zH2(ci(t))

q

hi(t)~ arctan
H(ci(t))

ci(t)

The instantaneous frequency can thus be calculated as.

vi(t)~
dhi(t)

dt

The marginal spectrum h(v) (or the Hilbert-Huang spectrum) can

be obtained by integrating with respect to the time variable:

h(v)~

ð
H(v,t)dt
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The marginal spectrum offers a measure of total amplitude

contribution from each frequency.If the Hilbert-Huang spectrum

is denoted as a function of frequency f instead of angle frequency

v, the marginal spectrum can be calculated for each IMF and then

normalized by.

ĥh(f )~
h(f )P
f

h(f )
:

(c.f. [45]). Then, applying the Shannon entropy theory to the

normalized marginal spectrum, the Hilbert-Huang spectral

entropy (HHSE) is obtained as.

H~{
X
f

ĥh(f ) log (ĥh(f )),

HHSE~H=log (N),

where N is the number of frequency components and the value of

HHSE varies between 0 (complete regularity) and 1 (maximum

irregularity).

For each physicochemical property index selected, 4|kz1
features are obtained in total in HHT.
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