
micromachines

Article

A Kalman Filter-Based Kernelized Correlation Filter Algorithm
for Pose Measurement of a Micro-Robot

Heng Zhang, Hongwu Zhan * , Libin Zhang, Fang Xu and Xinbin Ding

����������
�������

Citation: Zhang, H.; Zhan, H.;

Zhang, L.; Xu, F.; Ding, X. A Kalman

Filter-Based Kernelized Correlation

Filter Algorithm for Pose

Measurement of a Micro-Robot.

Micromachines 2021, 12, 774. https://

doi.org/10.3390/mi12070774

Academic Editors: Jose

Luis Sanchez-Rojas and Sukho Park

Received: 12 May 2021

Accepted: 28 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mechanical Engineering College, Zhejiang University of Technology, Hangzhou 310023, China;
hengz067@zjut.edu.cn (H.Z.); lbz@zjut.edu.cn (L.Z.); fangx@zjut.edu.cn (F.X.); 15658092668@163.com (X.D.)
* Correspondence: waltzhan@hotmail.com; Tel.:+86-0431-13758266571

Abstract: This paper proposes a moving-target tracking algorithm that measures the pose of a
micro-robot with high precision and high speed using the Kalman filter-based kernelized correlation
filter (K2CF) algorithm. The adaptive Kalman filter can predict the state of linearly and nonlinearly
fast-moving targets. The kernelized correlation filter algorithm then accurately detects the positions
of the moving targets and uses the detection results to modify the moving states of the targets. This
paper verifies the performance of the algorithm on a monocular vision measurement platform and
using a pose measurement method. The K2CF algorithm was embedded in the micro-robot’s attitude
measurement system, and the tracking performances of three different trackers were compared
under different motion conditions. Our tracker improved the positioning accuracy and maintained
real-time operation. In a comparison study of K2CF and many other algorithms on Object Tracking
Benchmark-50 and Object Tracking Benchmark-100 video sequences, the K2CF algorithm achieved
the highest accuracy. In the 400 mm × 300 mm field of view, when the target radius is about 3 mm
and the inter-frame acceleration displacement does not exceed 5.6 mm, the root-mean-square error of
position and attitude angle can satisfy the precision requirements of the system.

Keywords: Kalman filter; kernelized correlation filter; target tracking; machine vision; pose measurement

1. Introduction

Technological developments in information, electronics and mechatronics have ad-
vanced the use of micro-robots in precision operation fields, such as complex assembly [1,2],
advanced machining [3,4], intelligent manufacturing [5], automatic monitoring [6,7], non-
destructive testing [8,9] and digital printing [10,11]. To accomplish a wide range of accurate
operations, micro-robots such as miniature assembly robots and micro-robots for large-
format digital printing must plan their motion trajectories and determine if there is a
deviation in the path that requires accurate pose measurements in real-time [12–14]. It is
important to measure the pose change of these robots for their trajectory planning and
control effect detection. Pose measurement technologies of micro-robots are broadly di-
visible into relative localization and absolute localization [15–17]. Kelly and Martinoli
located the relative position of a robot among a crowd of micro-mobile machines using
an infrared transmitter and an infrared receiver. The positioning accuracy of their system
was 40 cm within a measurement range of 3 m, and the maximum error in their attitude
angle was 17.4◦ [18,19]. However, estimating the range from the amplitude of an incoming
infrared signal is intrinsically limited to low-precision measurements. Qazizada designed
an inertial navigation system with a gyroscope and an accelerometer. Although this system
determines a robot’s current pose, it is unsuitable for long-term high-precision position-
ing [20]. Absolute localization usually requires beacons and global vision positioning.
Diederichs detected, classified, located and tracked micro-mobile robots by a micro-camera,
which achieves nanometer-level manipulation but requires the size and speed of the tar-
get [21]. Equipped with a target tracking algorithm, vision measurement is widely used for
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tracking and locating micro-robots with high precision and high speed under no-contact
conditions [22,23].

With respect to the moving target tracking algorithms, they are generally divided into
production model methods and discriminative model methods. The production model
methods conduct modeling for the target region in the current frame and detect the most
similar region in the next frame [24–26]. The classical algorithms mainly contain the par-
ticle filter tracking algorithm [27], mean shift algorithm [28] and optical flow algorithm
based on feature point [29,30]. Production model tracking algorithms detect the target
region by dense or sparse search of each frame image. Nevertheless, they are not suit-
able for fast detecting in large pixel images due to the high computation load. For the
discriminative model methods, the target regions are used as positive samples and the
background areas are regarded as negative samples, which are used to train the classi-
fier [31–33]. Kalal proposed a tracking-learning-detection (TLD) algorithm for long time
tracking, and performed adaptive processing for various scales, attitudes and illumination
changes by offline learning [34]. For the tracking speed, detection accuracy and tracking
success rate, the TLD algorithm is lower than the correlation filter tracking algorithm.
Due to the high computational efficiency and cyclic dense sampling, the correlation filter
tracking algorithm can realize high precision and high-speed tracking. Bolme developed an
adaptive correlation filter to achieve visual object tracking, which could reach hundreds of
frames per second [35]. Henriques presented a circulant structure of tracking-by-detection
with kernels [36]. It adopted a cyclic matrix to achieve a dense sample and transformed
computation into the frequency domain by Fourier transform. Then, using the histogram
of oriented gradient (HOG) as a sample feature [37], the kernelized correlation filter (KCF)
tracking algorithm is proposed [38]. Lim constructed a series of image sequence data
with real geographical location and range to analyze the performance of various tracking
algorithms and obtained the performance of each algorithm under the same evaluation
criteria [39]. According to their results, the KCF tracking algorithm has no requirement
for tracking objects. It can update the classifier and recognize the target by self-learning.
Within a certain error threshold and overlapping threshold, it can perform fast detection
for moving targets.

However, the KCF is very sensitive to occlusion, scale changes and fast motions. To
overcome these difficulties, Li replaced the fixed-size template in the KCF tracker with an
effective scale-adaptive KCF tracker [40]. In an experimental evaluation, the scale-adaptive
tracker showed a promising ability to change the scale of a target. By integrating a Kalman
filer with KCF, Huynh developed a new tracking method that overcomes occlusion and
human-crossing [41]. The KCF in their method estimates the target position based on the
Kalman filter prediction and updates the kernel model accordingly. When the tracker
encounters an occlusion, the Kalman filter omits the observed values of the KCF and
updates the state based on the previous state. This tracker properly handles occlusion and
human-crossing tasks, but its Kalman filter cannot effectively predict the target information
of fast-moving objects. When the target moves near or over the boundary, the object
information will be filtered out.

Apparently, the boundary effect is the main problem in KCF tracking algorithms, as it
risks error fluctuations and tracking loss, especially for fast-moving targets. To correct the
boundary effect in the KCF tracking algorithm, this paper proposes an adaptive kernelized
correlation filter (K2CF) algorithm that integrates the adaptive Kalman filter and can
effectively predict the position of the target in different moving states. The predicted
position is then refined to a precise precision by the KCF algorithm, and the moving state
of the target is corrected based on the detection results. The K2CF algorithm reduces
the kernel response value of the KCF algorithm and improves its detection accuracy and
tracking stability. The least-square method and morphology processing method are used to
extract the feature points of the tracking area, which further improves the tracking accuracy.
The image coordinates and motion coordinates are transformed by the camera calibration
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principle to complete the pose measurement of the target. The method can measure the
pose of the tiny moving target quickly and effectively, and the detection accuracy is high.

2. Pose Measurement Principle for a Micro-Mobile Robot

The pose of a micro-mobile robot in two-dimensional space is measured from the
position information and direction angle in a moving plane. To meet the detection accuracy
requirements of a mobile robot, we first design a high-precision visual detection platform
(see Figure 1). Applying the principle of camera calibration, we then establish the mapping
relationship between the moving plane and the image plane. Finally, we extract the feature
points of the micro-robot in the field of view and acquire the position and direction angle
of the moving target.
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2.1. High-Precision Vision Measurement Platform

When a target moves at speeds below 0.4 m/s in a 400 mm × 300 mm range, the
trajectory plan of a micro-mobile robot must resolve the motion to within 0.1 mm. That
is, the precision of the vision detection platform must be at least 0.1 mm, and the moving
speed of the target cannot exceed 0.4 m/s.

The camera in our system is an IO-Flare series 12M125C with a CMOS global shutter
(Figure 1). The pixel size of the images is 4096 × 3072, and the frame rate is 124 fps. The
acquisition card (AS-FBD-2XCLD-2PE8) meets the requisite high-rate acquisition through
a camera-link serial bus. The uniform light source of the LED strip lamp is flanked on both
sides. The required illumination is obtained by an external trigger control that ensures
a target displacement not exceeding one pixel while imaging [42–44]. An X–Y–θ triaxial
mobile platform, which simulates random movements in the two-dimensional plane, is
used for verifying the accuracy of the detection algorithm and adjusting the field of view.

2.2. Visual Platform Calibration

The visual detection system is calibrated using various external and internal parame-
ters. The internal parameters are the intrinsic parameters of the camera, which provide the
conversion relationship between the camera and image coordinate systems [45–47]. The
external parameters provide the relative position and attitude relationships between the
camera and motion coordinate systems. The camera imaging model of the visual platform
calibration is shown in Figure 2.
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The image coordinates are converted to world coordinates as follows:
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where (u, v) are the image coordinate, (XW , YW , ZW) are the word coordinate, f is the focal
length of the camera, dx and dy are the pixel sizes in the x and y directions, respectively,
and (u0, v0) are the optical-center camera coordinates, R1 and T are the rotation and moving
matrices, respectively, Zc is the distance between the camera lens and the target, M1 and
M2 are matrices of the internal and external parameters, respectively:

M1 =

 f
dx 0 u0 0
0 f

dy v0 0
0 0 1 0

M2 =

(
R1 T
0 1

)
(2)

The camera calibration is mainly required for solving the perspective projections of
M1 and M2 between the imaging and target planes. Therefore, if M1 and M2 are obtained,
the world coordinates can be determined from the known image coordinates. For a mobile
micro robot in a two-dimensional plane, we construct an XCOCYC coordinate system with
origin placed at the starting point of the mobile robot.

As shown in Figure 3, we choose P00 and P10 as the feature points of mobile robot,
and (x, y, θ) indicates the pose of mobile robot and the pose (x, y, θ) of the mobile robot is
calculated as follows: 

x = x11+x10
2 − x01+x00

2
y = y11+y10

2 − y01+y00
2

θ = tan−1 y11−y10
x11−x10

− tan−1 y01−y00
x01−x00

(3)

where (x00, y00) and (x10, y10) are the initial coordinates of P00 and P10, respectively,
(x01, y01) and (x11, y11) are the coordinates of the corresponding feature points P01 and P11,
respectively (see Figure 3).
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3. Tracking Algorithm for the Moving Target

To track a fast-moving target with small geometric size, the tracking algorithm requires
a fast tracking rate and high detection precision. Because of the circular correlation, the
KCF algorithm can expand limited training data by implicitly including all shifted samples
of given patches [48,49]. Moreover, the computational effort of training and detection
is significantly reduced in the Fourier domain. Owing to these advantages, the KCF
is especially suitable for micro-target tracking. However, the periodicity of the circular
correlation of KCF produces unwanted boundary effects, which severely limit the target-
search region at the detection step. To resolve these inherent problems, we propose the
K2CF algorithm for moving target tracking. The K2CF includes a Kalman predictor that
efficiently predicts the positions of the detection samples before the KCF detection. The
effect of incomplete negative training samples is weakened by a Gaussian model.

3.1. Analysis of the KCF Tracking Algorithm
3.1.1. Training and Detection

The KCF tracking algorithm attempts to train a function f(z) = wTz that minimizes
the squared error over the samples xi and their regression labels yi. The optimal solution
of the optimization problem can be expressed as:

min∑
i
(f(xi)− yi)

2 + λ‖ w ‖2 (4)

where λ is a regularization parameter that controls overfitting (the state vector machine
uses a similar parameter). Equation (4) is a linear least-squares problem. To map the
inputs of a liner problem to a nonlinear feature space ϕ(x), define the correlation function
as: k(x, x′) = ϕT(x)ϕ(x′), we apply the kernel trick and express the solution of w as a

linear combination of samples: w =
n
∑

i=1
αi ϕ(xi) [50,51]. The function f(z) = wTz is then

represented as

f(z) = wTz =
n

∑
i=1

αik(z, xi) (5)

where z and x denote the candidates detection patches and the training samples, respec-
tively. Consequently, Equation (4) is solved as

α = (K + λI)−1y (6)

where K is a n× n kernel matrix with elements Kij = k(xi, xj), y is the regression output of
all samples, I is the identity matrix. α is a parameter matrix needs to be optimized.

By Theorem 1 in [38], the cyclic matrix K can be transformed into a diagonal matrix
by the discrete Fourier transform (DFT) [52,53]. Accordingly, Equation (6) is solved in the
Fourier domain as

α̂ =
ŷ

k̂XX
+ λ

(7)

The quantities kxx, expressing the kernel correlations of each x with itself, occupy the
first row of the kernel matrix K; the hat symbol ˆ denotes the DFT of a matrix.

The parameter α of the classifier function f(z) is obtained through the training samples
x. Using the learned function f(z), we evaluate the classification scores of all cyclic shifts
of a candidate detection sample:

f(z) = k̂xz � α̂ (8)

where� is a dot product of the matrix. The quantities kxz, expressing the kernel correlations
between z and x, occupy the first row of the kernel matrix Kz. The position of the shifted
samples that maximizes the classification score is the target location.



Micromachines 2021, 12, 774 6 of 24

After locating the target by Equation (8), we obtain a training sample xk around the
target position. The parameter αk of the classifier function f(z) at the current time is
computed by Equation (7). The algorithm is updated by the following strategy:{

α′k = βαk + (1− β)αk−1
xk = βxk + (1− β)xk−1

(9)

where β is the learning factor.

3.1.2. Boundary Effect of KCF

The KCF formulation trains the parameter α of the classifier function f(z) in Equation (7)
on the training sample x and its shifted samples. At the detection step (8), the detection
samples are also shifted by the base candidate sample z.

As shown in Figure 4, shifting the base training sample (a) obtains a set of negative
training samples (b). However, these negative training samples fail to capture the true
image content, because the periodicity of the shift samples introduces a boundary effect
that reduces the discriminative power of the learned classifier. To ensure the integrity of
the shift samples, we preprocess the target region through a cosine window filter.
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Figure 5 is the result of extending the target region and smoothing the edges through
the cosine window filter. A circular shift of the base sample then acquires complete negative
training samples. However, if the center of the shift target is near the boundary, some
incomplete negative samples are also generated. In the detection step, when a fast-moving
target is near the boundary of the detection region, the cosine window filter will filter out
the target information (see Figure 6).
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The above-mentioned limitations of the KCF hamper the tracking performance in
several ways. First, KCF-based trackers cannot easily detect fast target motions, as their
search regions are limited. Second, any incomplete negative training patches will affect
the accuracy of the learned model. Third, the training and detection limitations reduce the
re-detection potential of the tracker after interruption by an occlusion.

3.2. Framework of K2CF Tracking Algorithm

To resolve the problems caused by the circular shift and cosine window filter, we
define the importance of negative training samples by a Gaussian function, and predict the
position of the detection target by a Kalman filter [54–56].

3.2.1. Training and Prediction

To solve Equation (4) in the KCF, we train the classifier f(z) on a set of training samples
{(xi, yi)}t

i=1. Each training sample xi consists of a C-channel HOG feature map. The desired
output value yi is the label for each sample xi. We define the base sample extracted from
the image region as the positive sample and the shift samples as negative samples. To
discriminate the incomplete and complete training samples, we calculate the value of
the label yi, which represents the importance of the training samples, by the following
Gaussian function:

G(a, b) =
1

2πσ2
1

e
−(a2+b2)

2σ2
1 (10)

where a and b are the shifted distances of the negative samples along the row and column,
respectively. The Gaussian model assigns low importance to shift samples away from
the base sample. Incomplete samples, which reduce the discriminant of the classifier
model [57–59], also receive lower weights. The unequal weights significantly mitigate the
emphasis of these shift samples in the learned classifier.

The kernel correlation kxx in Equation (7) is computed with Gaussian kernels k(x, x′) =
exp(− 1

σ2
2
‖ x− x′ ‖2) as follows:

kxx′ = exp

(
− 1

σ2
2

(
‖x‖2 + ‖x′‖2 − 2 f−1

(
∑
C

x̂ ∗ �x̂′
)))

(11)

where kxx′ expresses the kernel correlation of x with x′. The Gaussian kernel is less
interfered by noise than the linear and polynomial kernels. Using Equations (7), (9),
and (10), we can train the parameter α of the classifier function f(z).

The classification scores of all cyclic shifts of test sample z in Equation (8) are evaluated
by a learned classifier. The detection base sample z is extracted from the image region that
is the target location in the previous frame of the KCF formulation. Therefore, the target
can move only within a limited region.
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To solve the above problem, we estimate the position of the test region by a predictor.
The target state is denoted by a vector S= {x, y, vx, vy}, where x and y are the coordinates
of the tracking object center, and vx and vy are the velocity components along the x and y
axes, respectively. Following the basic principle of the Kalman filter, the state equation of
the discrete dynamic system is recursively obtained as{

sk|k−1 = Ask−1|k−1 + Buk−1
pk|k−1 = Apk−1|k−1AT + Qk−1

(12)

where sk|k−1 is the estimated state of the tracking object at time k, sk−1|k−1 is the predicted
state of the tracking object at time k− 1, A and B are constant matrices describing the state
transition and state control of the object, respectively, uk−1 is the control vector, pk|k−1 is
the estimated covariance matrix at time k, pk−1|k−1 is the predicted covariance at time k−1,
and Qk−1 is the error matrix in the state transition process.

3.2.2. Detection of KCF

To resolve the boundary effect, we predict the location of the detection region by a
Kalman filter, which ensures that the candidate detection sample is within the predicted
boundary of the region. The candidate test patch z is then extracted at the prediction
position sk|k−1. Exploiting the cyclic property, a set of detection samples is obtained as

{Puz | u= 0, 1, · · · , n−1} (13)

where u denotes a shift element. Each sample z is periodically obtained after n shifts.
In Equation (8), the kernel matrix Kz denotes the correlation between all training

samples X and all candidate patches Z. The samples and patches are cyclic shifts of the
base sample x and base patch, respectively. The KCF algorithm processes the kernel matrix
Kz as a circulant, defined as

Kz= C(kxz) (14)

where kxz (occupying the first row of the kernel matrix) denotes the kernel correlation
between x and z, and C denotes that Kz is generated by shifting kxz.

This cyclic matrix property means that Kz can be diagonalized by the DFT as

Kz = Fdiag(
∧

kxz)FT (15)

where F is the DFT matrix. Here, the hat symbol ˆ and T denote the DFT and conjugate
transpose of a matrix, respectively [60,61].

From Equation (5), the correlation values of all detection patches are computed as

f (z) = (Kz)Tα (16)

where f (z) contains the classification scores of all cyclic shifts of z. Equation (16) can be
efficiently calculated by diagonalizing Equation (16) in the DFT domain (Equation (15)).
Accordingly, the location of maximum in f(Z) is the target position in the current frame.

3.2.3. Adaptive Optimization of the Position Predictor

Equation (11) gives a preliminary estimate of the state. The target state is then opti-
mized by the real observed value
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k−1, which corrects the estimating error. In the discrete
dynamic system, the target state is corrected as

Kk = pk|k−1HT(Hpk|k−1HT + R)
−1

sk|k = sk|k−1 + Kk(
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k−1 −Hsk−1|k−1)

pk|k = (I−KkH)pk|k−1

(17)
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where Kk is the state gain matrix, H is the observation transfer matrix, pk|k is the covari-
ance matrix after correcting the target state, I is the identity matrix, and R denotes the
observation error in the system. Because the imaging system is low-noise, R is set as a
constant matrix. Equation (12) corrects the estimated state using the observation error at
the previous time. Here, sk|k denotes the predicted position of the detection region in the
current frame.

First, the target position is predicted by a Kalman filter. The testing samples around
the prediction location are then extracted, and the target in the current frame is located
by the KCF tracker. Finally, the predicted target position is refined by the detected value.
The authors of [41] selected the position of an occluded target using a threshold value σ. If
the detected value of the KCF tracker is less than σ, the Kalman filter is updated using the
detected value, and the result is set as the target location. Otherwise, the detected value is
ignored and the predicted value of the Kalman filter is set as the target location. However,
this tracker is unsuitable for fast-moving targets.

Many fast-motion targets follow nonlinear dynamics. If the target position of a
nonlinearly moving object is predicted by a conventional Kalman filter, the predicted state
will deviate from the actual state. As the acceleration of the tracked object varies over time,
the conversion error matrix Qk−1 varies throughout the transition process. The error matrix
Qk−1 must then be updated by analyzing the target acceleration.

In this system, the mobility of the target is not high, so Qk−1 can be updated using the
frequency δ and variance σ2 of the acceleration:

The frequency of acceleration α is computed from three adjacent frames as

Qk−1 = 2δσ2I (18)

δ =

∣∣∣∣ ak−1|k−1 + ak−3|k−3 − 2ak−2|k−2

T

∣∣∣∣ (19)

where ak−1|k−1, ak−2|k−2, ak−3|k−3 indicate the accelerations at three adjacent moments k−1,
k−2, and k−3, respectively. The sample interval T is usually set to 1.0 [62,63]. When the
target is moving at uniform speed, the frequency of the acceleration δ is unchanged, which
conforms to actual situations.

The maximum value of f (z) given by Equation (16) is the highest classification score of
the cyclic shift samples, which is assigned to the target location in the current frame. In the
detection step, the correlation filter detects the candidate patch extracted from the image
region at the prediction position. If the predicted position is exactly at the target center,
the highest detection score is allocated to the 0-element shift. However, if the predicted
position deviates from the target center, the location of the highest detection score is an
n-element shift. The n-element shift denotes the distance between the predicted position
and the actual target position. In fact, the predicted and actual target positions usually
deviate when the acceleration is variable, indicating that the prediction error is caused by
an acceleration disturbance:

n = S1(k/k−1)− S1(k) (20)

In Equation (20), S1(k/k−1) denotes the predicted position at time k from time k−1,
and S1(k) is the actual detection location at time k. Within the sampling period T, the error
between the predicted and detected positions is related to the acceleration variation ∆a as

S1(k/k−1)− S1(k) =
T2

2
∆a (21)

The acceleration covariance is linearly related to the absolute value of the accelera-
tion variation. In turn, the acceleration variation is linearly related to the position error
as follows:

σ2 = η

∣∣∣∣2(S1(k/k−1)− S1(k))
T2

∣∣∣∣ (22)
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where η is the linear factor. Using Equation (22), we can adaptively adjust the acceleration covariance.
Because the acceleration defines a velocity change, we can update the predictor state

and modify the predictor velocity with the prediction error n, which is related to the
acceleration variation ∆a. {

sk|k.vx = sk−1|k−1.vx + n.x× T
sk|k.vy = sk−1|k−1.vy + n.y× T

(23)

where n denotes the shift distance between the predicted and actual positions. Therefore,
the actual location of the target in the current frame is determined as
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k = sk|k + n (24)

In the K2CF, the weights of all shift training samples are determined by the Gaussian
model. By assigning lower labels to incomplete samples affected by the boundary, we
can reduce the influence of the incomplete samples on the learned classifier model. Prior
to detection, the test region is identified by the Kalman filter. At the predicted position,
the candidate base patch is extracted from the image region, which ensures that the
target lies within the boundary. During the detection step, the location of the maximum
f (z) determines the prediction error of the predictor. Knowing the detected position,
we can promptly correct the state transfer error and update the target state to optimize
the predictor.

4. Feature Points for High-Precision Tracking

As mentioned in Section 1, the pose measurement of a micro-robot requires two
feature points. However, when the target moves outside the boundary, the extracted
target is incomplete. Therefore, rather than taking the center of the tracking object, we
select the center of the extracted circular features as the feature points on the micro-robot
(see Figure 7).
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4.1. Contour Extraction of a Tracked Object

To extract the contour of a tracked circular object, we first separate the circular object
by the region-growth method. As shown in Figure 8a, one point in the circular object is
randomly selected as a seed. The region around the seed grows by judging the similarity
of the gray value of the neighborhood points. The growth continues until the circular
object is completely segmented. After segmenting the circular object, the contour points
are extracted by the Canny operator. The result is shown in Figure 9.
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4.2. Optimization of the Tracked Object Contour

The segmented circular contour is roughened by “burr points” among the extracted
contour points. Removing these points will improve the accuracy of the circle fitting. The
curvature at the midpoint of three adjacent contour points Q1(x1, y1), Q2(x2, y2), Q3(x3, y3)
on the contour is calculated as

k =
1
r
=

1√
(x0 − x2)

2 + (y0 − y2)
2

. (25)

where ( x0, y0) is the center of the circle determined by the three adjacent points. When the
curvature at a contour point exceeds some given threshold, that point is considered as a
“burr point” and is rejected. The optimized contour points are drawn in Figure 10.
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4.3. Roundness Fitting to the Optimization Contour Points

The optimized contour points are fitted to a circle by the least-squares method. The
fitting-circle equation is given by

(x− xc)
2 + (y− yc)

2 = R2 (26)
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where (xc, yc) is the center of the fitting circle (the required feature point), and R is the
radius of the fitting circle. The least-squares method minimizes the quadratic sum of the
distance from the contour points to the circle center. This optimization problem is given by

f =
n

∑
j=0

(√(
xj − xc

)2
+
(
yj − yc

)2 − R
)2

(27)

To acquire the extremum of (27), we set the partial derivatives equal to 0.

∂ f
∂xc

= 0 ,
∂ f
∂yc

= 0 (28)

The fitting circle obtained by Equation (28), and its center, are shown in Figure 11.
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The high-precision feature points are extracted by the region-growth method and
the Canny operator as the contour points of the tracked object. These contour points are
then optimized by calculating the contour point curvatures. Finally, the optimized contour
points are fitted to a circle by the least-squares method, which extracts the precise center of
the circle as a feature point.

5. Numerical Results and Discussion
5.1. Implementation Details

The proposed K2CF algorithm was competed against the KCF algorithm and the
Kalman filter- based tracking algorithms in several numerical instances. The present
trackers were implemented using OpenCV library. In the Kalman filter, the initial motion
state was set as s = {0, 0, 0, 0} and the transition matrix A was set as

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (29)

The conversion error matrix Qk−1 follows a metabolic transition process. Its initial
value was set as

Qk−1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (30)

The observation transfer matrix H was set as a constant matrix.
The performance of our tracker was compared with those of the KCF and Kalman

filter-based tracking. All trackers were implemented in the OpenCV library and C++ on
Windows 10 running on a computer with an i7 CPU and 16 GB RAM.

To compare the performance of each method in micro target estimation, we con-
structed numerical motion models under different circumstances in 3D-Max software.
These models obtained the actual target position in each frame by detecting a mark along
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the coordinate axis. Next, we varied the motion states and target speeds in the simulation
models. To test the adaptive ability of K2CF, the initial states of predictor should also be
varied. For a fair comparison, all trackers were given the same sample size and frame
sequence. For an intuitive demonstration of the tracking effect, the tracking error was de-

noted as4ε =
√
(x′ − x)2 + (y′ − y)2, where (x, y) and (x′, y′) are the true and detected

coordinates, respectively.

5.2. Tracking Experiment of a Uniformly Moving Target

In the uniform-speed models, we varied the amplitude of the speed in each frame
sequence. Because the sampling time between two frames was equal, the moving speed
of the target was represented by the displacement of the target between two frames. The
detection results are shown in Figures 12 and 13.
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Figure 12 shows the output value of the kernel correlation detection. The values
were almost unchanged across the frame sequence, confirming a constant displacement
between pairs of frames. These results reflect the actual motion state. The output value of
K2CF rapidly converged to 0, confirming that the Kalman predictor in K2CF adjusted the
initial prediction speed to the actual speed using the kernel correlation filter. In contrast,
the output value of the Kalman tracker converged to a nonzero value, indicating that the
Kalman predictor alone cannot adjust the prediction state. Meanwhile, the KCF tracker
has a fixed detection range, so its kernel response value was almost constant at some value
above 0.

Figure 13 shows the detection error of the three trackers. The mean errors in the KCF,
Kalman and K2CF trackers were ∆1 = 0.9597 pixels, ∆2 = 0.9290 pixels, and ∆3 = 0.9074
pixels, respectively. Apparently, K2CF achieved a higher detection precision than the
other trackers.
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Next, the tracking effects of the three trackers were tested on a fast-moving target. For this
purpose, a target of radius 3 mm was moved at speeds of {v1, 2v1, 3v1, 4v1, 5v1, 6v1, 7v1 · · ·},
where v1 =

√
v2

x + v2
y, vx = 1 mm/s, vy = 0.5 mm/s. The average detection errors of the

KCF, Kalman, and K2CF trackers were obtained and reported at each speed.
When the velocity exceeded 3v, the tracking error of KCF increased sharply and

the tracking failed (Figure 14a). The graduations of the velocity axis is clearly seen in
Figure 14b. The Kalman tracker exhibited similar behavior. In contrast, the average error
of the K2CF tracker was less than 2 pixels at any target speed, and even the fastest-moving
object was stably tracked. This result confirms that the K2CF tracker perfectly combined the
Kalman predictor with the kernel correlation detector, and hence diminished the boundary
effect during fast tracking.
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5.3. Tracking Experiment with a Uniformly Accelerating Target

In the uniform acceleration model, the accelerated speed was set to ax = 0.21, ay = −0.1,
the initial velocity was vx = 0.1, vy = −0.4, and the target radius was 3 mm. The detection
results of the three filters are shown in Figures 15 and 16.

The moving distance of the target between two frames increased with velocity. As
shown in Figure 15, the output values of the KCF and Kalman trackers initially increased,
but (as explained in Section 2), the boundary effect of the KCF causes target loss when the
target moves outside the detection range. After frame 42, the KCF tracker lost the target
because the object was moving too quickly. The Kalman tracker also lost the target, because
its predicted speed cannot adaptively adjust. However, the output value of the K2CF
tracker was always close to 0, demonstrating that the Kalman filter effectively resolved the
boundary effect of kernel correlation detection.
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The detection errors of the KCF and Kalman trackers increased steeply at frame 42, and
the target was lost shortly afterward. However, the K2CF tracker maintained continuous
tracking with an average error of 0.7956.

To verify the adaptive effect of the K2CF tracker, we then changed the initial state of
the predictor. By observing the predictor speed throughout the tracking process, we can
certify the correction effect.

In Figure 17, for different initial velocities, the Kalman predictor in the K2CF tracker
can automatically correct the error between the setting velocity and actual velocity. Never-
theless, the correction range is related to the detection range of the kernel correlation filter
according to Equation (23). If the initial error exceeds the target sample size, the Kalman
predictor will lose efficacy.
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As shown in Figure 17, the Kalman predictor in the K2CF tracker automatically cor-
rected the error between the set and actual velocities, regardless of the velocity magnitude.
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Nevertheless, the correction range was related to the detection range of the kernel correla-
tion filter, as dictated by Equation (23). If the initial error exceeds the correction range, the
Kalman predictor will lose its efficacy.

5.4. Tracking Experiment of a Nonuniformly Accelerating Target

Actual objects do not move with an ideal uniform speed or acceleration because they
are interfered with by system noise. Actual accelerations are nonuniform and affected
by different disturbances. Therefore, the tracking performances of KCF and K2CF were
tested in a helix motion model with constantly changing accelerations and velocities.
(See Figure 18).
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Changing the target speed changed the displacement of the target between two con-
secutive frames. The output values of these trackers varied accordingly (Figures 18 and 19).
When the target moved too quickly, it escaped the detection boundary of the kernel cor-
relation filter, and the KCF tracking failed. Meanwhile, the Kalman tracker could not
correct the predictive state in response to the motion variations. Therefore, it easily lost
the nonlinearly moving target. Conversely, the Kalman predictor in the K2CF tracker con-
stantly corrected the predicted moving state, and the kernel correlation detection correctly
predicted the target position. Therefore, the target remained within the boundary of the
detection region and was continuously tracked. The mean tracking accuracy of the K2CF
tracker was 1.0704 pixels.
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5.5. Baseline Comparison

The performances of K2CF and various state-of-the-art methods were compared on
OTB-50 and OTB-100 video sequences extracted from the OTB-2013 dataset. These videos
present different tracking challenges, such as illumination variation, rotation, scale change,
motion blurring, occlusion and fast motion. Figure 20 shows the location precision curves
of K2CF and the existing trackers: KCF, visual tracking decomposition (VTD) [64], visual
tracking by sampling (VTS) [65], cyclic kernel tracking detection (CSK) [36], structured out-
put tracking with kernels (Struck) [66], the sparsity-based collaborative model (SCM) [67],
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local sparse and K-selection tracking (LSK) [68], adaptive structural local sparse appearance
(ASLA) [69] and online Ada boosting (OAB) [70].
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As shown in Figure 20, the K2CF achieved the highest mean precision score (0.706)
among the tested methods, followed by the KCF. This result confirms the high detection
precision of the kernelized correlation filter. Therefore, the KCF-based method can precisely
track the moving target.

Because the KCF tracker is sensitive to fast motion, occlusion and scale change, the
performance of K2CF was tested in these scenarios. As the test sample, we extracted the
“Jogging” and “RedTeam” sequences from the OTB-100 sequences. Our tracker coped well
with both occlusion (Figure 21) and scale changes (Figure 22).
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Figure 22. Tracking object for scale change case.

As the K2CF tracker delivers its best performance on fast-moving smaller objects,
further analysis is required. Using the visual platform designed in Section 2, we collected
pictures of the moving micro-robot at a sampling frame rate of 1.0 frame/s.

The KCF tracker, the minimum output sum of squared error (MOSSE) tracker, and the
improved KCF tracker proposed in paper [41] could not track the micro-object correctly,
whereas our tracker successfully tracked all frames (Figure 23). The established trackers
coped poorly with the fast motions of the micro-object.
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Our tracker markedly outperformed the KCF, MOSSE and the existing improved
KCF tracker, particularly when tracking fast-moving micro-objects. We then positioned
the micro-robot with the X–Y–θ triaxial mobile platform and obtained the ground truth
location of the small object. The tracking speeds (average frame rates) and mean precisions
of the four trackers are listed in Table 1.

Table 1. Average precision and frame fps of 4 trackers.

Mean of
Precision (%)

Standard
Deviation of
Precision (%)

Mean of fps Standard
Deviation of fps

K2CF tracker 96.45 6.7 118 110.67
Improved KCF 78.35 17.5 125 111.76

KCF 80.28 33.67 135 125.64
MOSSE 65.17 36.89 254 207.4
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As shown in Table 1, K2CF achieved the highest precision and a mean speed of
110.67 fps. Although KCF operated at 125.64 fps, our tracker is suitable for real-time
applications while also improving location precision.

6. High-Precision Pose Measurement Experiments
6.1. Calibration of the Experimental Platform

The effectiveness of the proposed K2CF algorithm was checked on an experimen-
tal calibration platform. Following the observation method in [71], we employed a
(63 × 63 × 6) mm3 ceramic checkerboard with a precision of 2 µm as the calibration plate.
The calibration plate was photographed from different viewpoints relative to the camera
(Figure 24).
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From the calibration operation, we obtained the inner parameter matrix M1, the outer
parametric rotation matrix R1, and the translation vector T:

M1 =

 10313.8 0 2006.7
0 10313.9 1565.8
0 0 1


R1 =

 0.0003 0.9997 −0.0217
0.9975 −0.0018 −0.0694
−0.0694 −0.0217 −0.9974


T = [−24.3039 −18.7007 467.3700 ]

(31)

Using the rotation matrix R and the translation vector T, we then established the
mapping relationship between the image and motion coordinate planes. Because the actual
coordinates of the chessboard were known, we extracted the image coordinates of the
corner points and calculated them in the moving plane. Comparing the calculated and
actual coordinates, we finally obtained the coordinate conversion error. From Figure 25, the
average errors in the coordinate transformation were determined as error_x = 0.044 mm
and error_y = 0.037 mm.
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6.2. Pose Measurement Precision Experiment

To test the precision of the pose measurement system, we should also obtain the
ground-truth location of the micro-robot. The X–Y–θ triaxial mobile platform locates the
micro-robot with a position precision of 10 µm and a rotation precision of 0.1◦. There-
fore, we can monitor the ground truth pose of the micro-robot as it moves. Compar-
ing the ground-truth pose with the measured pose, we can obtain the precision of the
pose measurements.

Because the Kalman predictor corrects the predicted motion error in any state, the ker-
nel correlation filter can adapt to different moving states of the target. The correction ability
of the Kalman predictor is related to the range of kernel correlation detection. Acceleration
interference increases the displacement between the frames, so the tracking target will be
lost when the increment of the acceleration displacement exceeds the detection boundary.

In the pose-measurement experiment, we varied the inter-frame acceleration displace-
ment s between the images. Here, s =

√
x2 + y2, where x = xi − xi−1, y = yi − yi−1

are the acceleration displacements in the x and y directions, respectively. The target was
tracked by the K2CF algorithm, and the error e of the system pose measurement was calcu-

lated as e =
√
(4x)2 + (4y)2, where4x and4y are the errors in the x and y directions,

respectively. The acceleration displacement between the frames was then calculated.
As shown in Figure 26, the target was lost when the acceleration displacement between

two frames exceeded 5.6 mm. However, at such large acceleration displacements, the
maximum inter-frame displacement of the target can reach 8 mm. The pose measurement
platform satisfies the moving speed requirements of the micro-robot.

Micromachines 2021, 12, x  22 of 26 

 

 

 

Figure 25. Error distribution of coordinate transformations. 

6.2. Pose Measurement Precision Experiment 
To test the precision of the pose measurement system, we should also obtain the 

ground-truth location of the micro-robot. The X–Y–θ triaxial mobile platform locates the 
micro-robot with a position precision of 10 μm and a rotation precision of 0.1°. Therefore, 
we can monitor the ground truth pose of the micro-robot as it moves. Comparing the 
ground-truth pose with the measured pose, we can obtain the precision of the pose meas-
urements. 

Because the Kalman predictor corrects the predicted motion error in any state, the 
kernel correlation filter can adapt to different moving states of the target. The correction 
ability of the Kalman predictor is related to the range of kernel correlation detection. Ac-
celeration interference increases the displacement between the frames, so the tracking tar-
get will be lost when the increment of the acceleration displacement exceeds the detection 
boundary. 

In the pose-measurement experiment, we varied the inter-frame acceleration dis-
placement s between the images. Here, 2 2s x y= + , where 1 1= ,i i i ix x x y y y− −− = − are 
the acceleration displacements in the x and y  directions, respectively. The target was 
tracked by the K2CF algorithm, and the error e  of the system pose measurement was 

calculated as ( ) ( )2 2e x y= +  , where x  and y  are the errors in the x  and y  di-
rections, respectively. The acceleration displacement between the frames was then calcu-
lated. 

As shown in Figure 26, the target was lost when the acceleration displacement be-
tween two frames exceeded 5.6 mm. However, at such large acceleration displacements, 
the maximum inter-frame displacement of the target can reach 8 mm. The pose measure-
ment platform satisfies the moving speed requirements of the micro-robot. 

 

Figure 26. Detection error versus acceleration displacement of the pose measurement system. Figure 26. Detection error versus acceleration displacement of the pose measurement system.

Figures 27 and 28 present the position error s and attitude error θ in the actual pose
measurements, respectively. The average accuracies of the position and angle measure-
ments were 0.0729 and 0.0824◦, respectively, satisfying the precision requirements of
the system.
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7. Conclusions

To mitigate the error fluctuations and tracking losses in high-precision pose measure-
ments of a moving target, we proposed the K2CF algorithm. By removing the boundary
effect of the KCF algorithm, K2CF accurately tracks a fast-moving micro-target. The pose
of a micro-robot in a two-dimensional plane was monitored on a visual test platform.
Referring to the research goals, the main conclusions are summarized below.

1. A mapping relationship between the moving and image coordinate systems was
constructed using the camera calibration principle. A kernel relation filter and a
Kalman filter were combined into an adaptive tracking model. The object features
were extracted by the region growth method.

2. The feature profile was extracted by the Canny operator, and the feature points were
precisely extracted by optimizing the edge points using the least-squares method.

3. The boundary effect of the KCF algorithm was resolved by a Kalman filter that
predicts the target position and ensures that the candidate samples lie within the
boundary. Comparative simulations confirmed that the proposed K2CF algorithm
adapts to different moving states of the target and corrects the initial velocity error.

4. The precision of the system was experimentally evaluated on a small target of radius
3 mm. For acceleration displacements lower than 5.6 mm, the average position and
angle accuracies were 0.0729 mm and 0.0824◦, respectively.

In summary, this paper provides an adaptive method for tracking a moving target.
The pose detection system lays a foundation for the trajectory planning of micro-mobile
robots. The fast target tracking algorithm achieves precise and stable tracking with a certain
versatility. However, stable and accurate tracking is difficult to achieve in the long term
because it is interfered with by target occlusion and scale change. Solving these problems
to maintain long-term stability and high-precision tracking is our future research goal.
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20. Qazizada, M.E.; Pivarčiová, E. Mobile Robot Controlling Possibilities of Inertial Navigation System. Procedia Eng. 2016, 149,

404–413. [CrossRef]
21. Chu, H.K.H.; Mills, J.K.; Cleghorn, W.L. Dynamic tracking of moving objects in microassembly through visual servoing. In

Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010; pp.
1738–1743.

22. Zhang, L.; Yuan, Z.; Tan, D.; Huang, Y. An Improved Abrasive Flow Processing Method for Complex Geometric Surfaces of
Titanium Alloy Artificial Joints. Appl. Sci. 2018, 8, 1037. [CrossRef]

23. Tan, D.-P.; Li, L.; Zhu, Y.-L.; Zheng, S.; Yin, Z.-C.; Li, D.-F. Critical penetration condition and Ekman suction-extraction mechanism
of a sink vortex. J. Zhejiang Univ. A 2019, 20, 61–72. [CrossRef]

24. Khan, A.; Imran, M.; Rashid, A. Aerial Camera Network for Observing Moving Targets. IEEE Sens. J. 2018, 18, 6847–6856.
[CrossRef]

25. Li, Y.; Tan, D.-P.; Wen, D.; Ji, S.; Cai, D. Parameters optimization of a novel 5-DOF gasbag polishing machine tool. Chin. J. Mech.
Eng. 2013, 26, 680–688. [CrossRef]

http://doi.org/10.1155/2018/4689710
http://doi.org/10.1049/el.2018.0609
http://doi.org/10.1007/s11431-010-4046-9
http://doi.org/10.1007/s00170-011-3621-y
http://doi.org/10.1007/s10845-016-1265-3
http://doi.org/10.1049/el.2016.3048
http://doi.org/10.1109/TIE.2012.2213559
http://doi.org/10.1016/j.neucom.2014.12.115
http://doi.org/10.1007/s00170-015-7392-8
http://doi.org/10.1177/1687814017718981
http://doi.org/10.1016/S1006-706X(17)30101-2
http://doi.org/10.1017/S0263574718000528
http://doi.org/10.1016/j.apenergy.2014.12.026
http://doi.org/10.1109/TASE.2017.2679485
http://doi.org/10.1109/TIE.2018.2811362
http://doi.org/10.1109/TE.2012.2212707
http://doi.org/10.1007/s10033-017-0071-y
http://doi.org/10.1108/02602280410525968
http://doi.org/10.1016/j.proeng.2016.06.685
http://doi.org/10.3390/app8071037
http://doi.org/10.1631/jzus.A1800260
http://doi.org/10.1109/JSEN.2018.2850856
http://doi.org/10.3901/CJME.2013.04.680


Micromachines 2021, 12, 774 23 of 24

26. Tan, D.-P.; Chen, S.-T.; Bao, G.-J.; Zhang, L.-B. An embedded lightweight GUI component library and ergonomics optimization
method for industry process monitoring. Front. Inf. Technol. Electron. Eng. 2018, 19, 604–625. [CrossRef]

27. Li, J.; Yu, H.; Zhou, L.; Liang, H.; Wang, L. An Adaptive Unscented Particle Filter Tracking Algorithm Based on Color Distribution
and Wavelet Moment. In Proceedings of the 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China,
23–25 May 2007; pp. 2218–2223.

28. Du, K.; Ju, Y.; Jin, Y. Mean shift tracking algorithm with adaptive block color sistogram. J. Wuhan Univ. Technol. 2012, 34,
2692–2695.

29. Liu, M.; Wu, C.; Zhang, Y. Multi-resolution optical flow tracking algorithm based on multi-scale Harris corner points feature. In
Proceedings of the 2008 Chinese Control and Decision Conference, Yantai, China, 2–4 July 2008; pp. 5287–5291.

30. Manasa, K.; Channappayya, S.S. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm. IEEE Trans. Image
Process. 2016, 25, 2480–2492. [CrossRef] [PubMed]

31. Chen, S.; Tan, D. A SA-ANN-Based Modeling Method for Human Cognition Mechanism and the PSACO Cognition Algorithm.
Complexity 2018, 2018, 6264124. [CrossRef]

32. Tan, D.-P.; Li, P.-Y.; Pan, X.-H. Application of Improved HMM Algorithm in Slag Detection System. J. Iron Steel Res. Int. 2009, 16,
1–6. [CrossRef]

33. Ji, S.; Weng, X.; Tan, D.P. Analytical method of softness abrasive two-phase flow field based on 2D model of LSM. ACTA Phys. Sin.
2012, 61, 010205.

34. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-Learning-Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1409–1422.
[CrossRef] [PubMed]

35. Bolme, D.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550.

36. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In
Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 702–715.

37. Dalal, N. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 886–893.

38. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef]

39. Wu, Y.; Lim, J.; Yang, M.-H. Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [CrossRef]
[PubMed]

40. Yang, L.; Zhu, J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration. In Proceedings of the European
Conference on Computer Vision, Zürich, Switzerland, 6–12 September 2014; pp. 254–265.

41. Huynh, X.-P.; Choi, I.-H.; Kim, Y.-G. Tracking a Human Fast and Reliably Against Occlusion and Human-Crossing; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 53, pp. 461–472.

42. Li, C.; Ji, S.-M.; Tan, D.-P. Multiple-Loop Digital Control Method for a 400-Hz Inverter System Based on Phase Feedback. IEEE
Trans. Power Electron. 2012, 28, 408–417. [CrossRef]

43. Tan, D.P.; Li, P.Y.; Pan, S.H. Intelligent industry monitoring network architecture UPnP based. Chin. J. Electron. 2008, 17, 607–610.
44. Tan, D.; Ji, S.; Li, P.; Pan, X. Development of vibration style ladle slag detection methods and the key technologies. Sci. China Ser.

E Technol. Sci. 2010, 53, 2378–2387. [CrossRef]
45. El Hazzat, S.; Merras, M.; El Akkad, N.; Saaidi, A.; Satori, K. 3D reconstruction system based on incremental structure from

motion using a camera with varying parameters. Vis. Comput. 2017, 34, 1443–1460. [CrossRef]
46. Zeng, X.; Ji, S.-M.; Jin, M.; Tan, D.-P.; Li, J.-H.; Zeng, W.-T. Investigation on machining characteristic of pneumatic wheel based on

softness consolidation abrasives. Int. J. Precis. Eng. Manuf. 2014, 15, 2031–2039. [CrossRef]
47. Li, L.; Qi, H.; Yin, Z.; Li, D.; Zhu, Z.; Tangwarodomnukun, V.; Tan, D. Investigation on the multiphase sink vortex Ekman

pumping effects by CFD-DEM coupling method. Powder Technol. 2020, 360, 462–480. [CrossRef]
48. Shahraki, F.F.; Pour Yazdanpanah, A.; Regentova, E.E.; Muthukumar, V. A Trajectory Based Method of Automatic Counting of

Cyclist in Traffic Video Data. Int. J. Artif. Intell. Tools 2017, 26. [CrossRef]
49. Pan, Y.; Ji, S.; Tan, D.; Cao, H. Cavitation-based soft abrasive flow processing method. Int. J. Adv. Manuf. Technol. 2020, 109,

2587–2602. [CrossRef]
50. Tan, D.-P.; Li, L.; Zhu, Y.-L.; Zheng, S.; Ruan, H.-J.; Jiang, X.-Y. An Embedded Cloud Database Service Method for Distributed

Industry Monitoring. IEEE Trans. Ind. Inform. 2017, 14, 2881–2893. [CrossRef]
51. Jeong, S.; Kim, G.; Lee, S. Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.

Sensors 2017, 17, 433. [CrossRef]
52. Phelan, C.E.; Marazzina, D.; Fusai, G.; Germano, G. Fluctuation identities with continuous monitoring and their application to

the pricing of barrier options. Eur. J. Oper. Res. 2018, 271, 210–223. [CrossRef]
53. Tan, D.-P.; Zhang, L.-B. A WP-based nonlinear vibration sensing method for invisible liquid steel slag detection. Sens. Actuators B

Chem. 2014, 202, 1257–1269. [CrossRef]
54. Ali, H.; Nasser; Hassan, G.M. Kalman filter tracking. Int. J. Comput. Appl. 2014, 89, 15–18.

http://doi.org/10.1631/FITEE.1601660
http://doi.org/10.1109/TIP.2016.2548247
http://www.ncbi.nlm.nih.gov/pubmed/27093720
http://doi.org/10.1155/2018/6264124
http://doi.org/10.1016/S1006-706X(09)60001-7
http://doi.org/10.1109/TPAMI.2011.239
http://www.ncbi.nlm.nih.gov/pubmed/22156098
http://doi.org/10.1109/TPAMI.2014.2345390
http://doi.org/10.1109/TPAMI.2014.2388226
http://www.ncbi.nlm.nih.gov/pubmed/26353130
http://doi.org/10.1109/TPEL.2012.2188043
http://doi.org/10.1007/s11431-010-4073-6
http://doi.org/10.1007/s00371-017-1451-0
http://doi.org/10.1007/s12541-014-0560-1
http://doi.org/10.1016/j.powtec.2019.06.036
http://doi.org/10.1142/S0218213017500154
http://doi.org/10.1007/s00170-020-05836-3
http://doi.org/10.1109/TII.2017.2773644
http://doi.org/10.3390/s17030433
http://doi.org/10.1016/j.ejor.2018.04.016
http://doi.org/10.1016/j.snb.2014.06.014


Micromachines 2021, 12, 774 24 of 24

55. Zhang, L.; Wang, J.-S.; Tan, D.-P.; Yuan, Z.-M. Gas compensation-based abrasive flow processing method for complex titanium
alloy surfaces. Int. J. Adv. Manuf. Technol. 2017, 92, 3385–3397. [CrossRef]

56. Zeng, X.; Ji, S.; Tan, D.; Jin, M.; Wen, D.; Zhang, L. Development of vibration style ladle slag detection method and the key
technologies consolidation abrasives material removal characteristic oriented to laser hardening surface. Int. J. Adv. Manuf.
Technol. 2010, 69, 2323–2332. [CrossRef]

57. Khan, F.A.; Khelifi, F.; Tahir, M.A.; Bouridane, A. Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten
Text-Independent Identification Using SIFT and RootSIFT Descriptors. IEEE Trans. Inf. Forensics Secur. 2019, 14, 289–303.
[CrossRef]

58. Mingge, W.; Congda, L.; Dapeng, T.; Tao, H.; Guohai, C.; Donghui, W. Effects of metal buffer layer for amorphous carbon film of
304 stainless steel bipolar plate. Thin Solid Films 2016, 616, 507–514. [CrossRef]

59. Da-Peng, T.; Tao, Y.; Jun, Z.; Shi-Ming, J. Free sink vortex Ekman suction-extraction evolution mechanism. Acta Phys. Sin. 2016,
65, 054701. [CrossRef]

60. Gao, Z. Reduced order Kalman filter for a continuous-time fractional-order system using fractional-order average derivative.
Appl. Math. Comput. 2018, 338, 72–86. [CrossRef]

61. Ge, J.-Q.; Ji, S.-M.; Tan, D.-P. A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing. Int. J.
Adv. Manuf. Technol. 2017, 95, 1069–1085. [CrossRef]

62. Weng, S.-K.; Kuo, C.-M.; Tu, S.-K. Video object tracking using adaptive Kalman filter. J. Vis. Commun. Image Represent. 2006, 17,
1190–1208. [CrossRef]

63. Tan, D.-P.; Ji, S.-M.; Fu, Y.-Z. An improved soft abrasive flow finishing method based on fluid collision theory. Int. J. Adv. Manuf.
Technol. 2016, 85, 1261–1274. [CrossRef]

64. Kwon, J.; Lee, K.M. Visual tracking decomposition. In Proceedings of the 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1269–1276.

65. Kwon, J.; Lee, K.M. Tracking by Sampling Trackers. In Proceedings of the 2011 International Conference on Computer Vision,
Barcelona, Spain, 6–13 November 2011; pp. 1195–1202.

66. Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.-M.; Hicks, S.L.; Torr, P.H.S. Struck: Structured Output Tracking with
Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2096–2109. [CrossRef] [PubMed]

67. Zhong, W.; Lu, H.; Yang, M.-H. Robust object tracking via sparsity-based collaborative model. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1838–1845.

68. Liu, B.; Huang, J.; Yang, L.; Kulikowsk, C. Robust tracking using local sparse appearance model and K-selection. In Proceedings
of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1313–1320.

69. Jia, X.; Lu, H.; Yang, M.-H. Visual tracking via adaptive structural local sparse appearance model. In Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1822–1829.

70. Grabner, H.; Bischof, H. Real-Time Tracking via On-line Boosting. In Proceedings of the British Machine Vision Conference 2006,
Edinburgh, UK, 4–7 September 2006; pp. 47–56.

71. Zhang, Z. Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 892–899. [CrossRef]

http://doi.org/10.1007/s00170-017-0400-4
http://doi.org/10.1007/s00170-013-4985-y
http://doi.org/10.1109/TIFS.2018.2850011
http://doi.org/10.1016/j.tsf.2016.07.043
http://doi.org/10.7498/aps.65.054701
http://doi.org/10.1016/j.amc.2018.06.006
http://doi.org/10.1007/s00170-017-1250-9
http://doi.org/10.1016/j.jvcir.2006.03.004
http://doi.org/10.1007/s00170-015-8044-8
http://doi.org/10.1109/TPAMI.2015.2509974
http://www.ncbi.nlm.nih.gov/pubmed/26700968
http://doi.org/10.1109/TPAMI.2004.21

	Introduction 
	Pose Measurement Principle for a Micro-Mobile Robot 
	High-Precision Vision Measurement Platform 
	Visual Platform Calibration 

	Tracking Algorithm for the Moving Target 
	Analysis of the KCF Tracking Algorithm 
	Training and Detection 
	Boundary Effect of KCF 

	Framework of K2CF Tracking Algorithm 
	Training and Prediction 
	Detection of KCF 
	Adaptive Optimization of the Position Predictor 


	Feature Points for High-Precision Tracking 
	Contour Extraction of a Tracked Object 
	Optimization of the Tracked Object Contour 
	Roundness Fitting to the Optimization Contour Points 

	Numerical Results and Discussion 
	Implementation Details 
	Tracking Experiment of a Uniformly Moving Target 
	Tracking Experiment with a Uniformly Accelerating Target 
	Tracking Experiment of a Nonuniformly Accelerating Target 
	Baseline Comparison 

	High-Precision Pose Measurement Experiments 
	Calibration of the Experimental Platform 
	Pose Measurement Precision Experiment 

	Conclusions 
	References

