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Abstract

The human receptor for advanced glycation endproducts (RAGE) is a multiligand cell surface protein belonging to the
immunoglobulin superfamily, and is involved in inflammatory and immune responses. Most importantly, RAGE is considered
a receptor for HMGB1 and several S100 proteins, which are Damage-Associated Molecular Pattern molecules (DAMPs)
released during tissue damage. In this study we show that the Ager gene coding for RAGE first appeared in mammals, and is
closely related to other genes coding for cell adhesion molecules (CAMs) such as ALCAM, BCAM and MCAM that appeared
earlier during metazoan evolution. RAGE is expressed at very low levels in most cells, but when expressed at high levels, it
mediates cell adhesion to extracellular matrix components and to other cells through homophilic interactions. Our results
suggest that RAGE evolved from a family of CAMs, and might still act as an adhesion molecule, in particular in the lung
where it is highly expressed or under pathological conditions characterized by an increase of its protein levels.
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Introduction

The receptor of advanced glycation endproducts (RAGE) is a

transmembrane protein belonging to the immunoglobulin (Ig)

superfamily, and after signal peptide cleavage is composed of an

extracellular domain containing three Ig-like domains, a single

transmembrane helix and a cytoplasmic tail [1]. RAGE acts as a

pattern recognition receptor (PRR) involved in inflammation

resolution leading to tissue repair or alternatively in its perpetu-

ation leading to chronic inflammation [2]. RAGE binds a large

variety of molecules, including the so called advanced glycation

endproducts (AGEs) that give it its name. RAGE is also a receptor

for Damaged-Associated Molecular Pattern molecules that orig-

inate from damaged cells and alert the immune system to tissue

trauma [3]. In particular, RAGE interacts with high mobility

group box 1 (HMGB1), the prototypical DAMP, and S100

proteins [4]. How RAGE can interact with a diverse variety of

molecules has been discussed by one of us in a recent review [5].

RAGE appears to be involved in many different disease states,

including cancer [6], retinal disease [7], atherosclerosis and

cardiovascular disease [8], Alzheimer’s disease [9], respiratory

disorders [10], liver disease [11], and diabetic nephropathy [12].

Mice lacking RAGE are viable and apparently healthy, and

appear to be resistant to many of the disease states listed above

[13] [14]. This suggests that RAGE might be an effective and safe

target to treat many different diseases. Yet, RAGE has several

characteristics that set it apart from other receptors. RAGE

appears to be multimerized before ligand binding [15]. Moreover,

its best characterized interactor on the intracellular side is

Diapahanous-1 (Dia-1), a cytoskeletal protein [1]. Finally, RAGE

is expressed at very low levels in a number of cell types [16], as

would be expected from a receptor, but is expressed at extremely

high levels in normal lung [17], and specifically in alveolar type I

(AT-I) cells [18], implying the possibility that RAGE might have a

function in lung that is different from its function in other cells.

To better understand the function(s) of RAGE, we analyzed its

evolutionary origin. Our data indicate that RAGE first appeared

in mammals, and is closely related to adhesion molecules

considering amino acid sequence and 3D structure. Indeed, when

RAGE is forcibly expressed in cells that exhibit no expression, it

endows them with the ability to adhere to components of the

extracellular matrix and to other cells through homophilic

interactions. Our results suggest that RAGE derived from an

adhesion molecule, and might still have this function in the lung

and possibly in pathological contexts.
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Materials and Methods

Sequence Analysis
All protein sequence analyses have been performed using:

protein-protein BLAST (BLASTp: http://www.ncbi.nlm.nih.gov/

BLAST, [19]; the CLUSTALW multiple sequence alignment

program (http://www.ebi.ac.uk/Tools/msa/clustalo/, [20]). Ge-

nome sequence analyses have been performed using the University

of California Santa Cruz (UCSC) BLAT Search Genome (http://

genome.ucsc.edu, [21]). EggNOG v. 3.0 [22] has been used in

order to assign the origin of the genes. EggNOG database (http://

eggnog.embl.de) contains orthologous groups constructed from

more than one thousand organisms. For each orthologous group a

phylogenetic tree is also provided; manual inspection of the trees

allows us to assign the origin of the analysed genes to the most

ancient node in the tree.

Database Search
The search for proteins with high structural similarity to RAGE

was performed using the DALI server [23]. The coordinates of the

Ig domains of RAGE single V (residues 23–119), C1 domain

(residues 120–236), C2 domain (residues 228–323) (pdb code

2ENS), and tandem Ig domain V-C1 (residues 23–232) (pdb codes

3CJJ, 3O3U) [24,25] were used as query protein structures. For

each set of coordinates the first 500 structural neighbours

computed by DALI were inspected. DALI generated multiple

sequence alignments were read into Clustal X [26,27] to generate

a phylogentic tree, which was analyzed using TreeView [28].

Model Generation and Comparison
A model for the two N-terminal Ig domains of human MCAM

was derived from the 3D modeling Server I-TASSER [29,30]. A

3D model for the two N-terminal Ig domains of human ALCAM

was created with the software MODELLER [31,32] using the

structures of RAGE V-C1 domains as template. Figures were

prepared using PyMol [33].

Recombinant Soluble RAGE Production and Surface
Plasmon Resonance

Human recombinant sRAGE (aa 23–327) was expressed and

purified as described previously [34]. sRAGE was cloned into

vector pET15b and expressed in Escherichia coli BL21(DE3)

Origami B with an N-terminal His6-tag. Cells were grown in

shaking culture in DYT medium supplemented with 50 mM

sodium phosphate, 0.2% glucose, and 100 mg/ml ampicillin at

37uC to an OD600 nm = 0.6. Then the temperature was shifted to

23uC and expression was induced by the addition of 0.5 mM

IPTG at OD600 nm = 1. The culture was grown for 12 h, then

chilled on ice and cells were harvested by centrifugation.

Typically, 10 g wet weight cells were resuspended in 20 ml of

50 mM sodium phosphate, 30 mM imidazole, pH 7.4, containing

protease inhibitors (Complete; Roche) and were ruptured by two

passages through a French pressure cell. The cell lysate was

subjected to ultracentrifugation at 100,000 g for 1 h and the

supernatant was diluted 5-fold in 50 mM sodium phosphate,

300 mM NaCl, 30 mM imidazole, pH 7.4 and applied to Ni-

Sepharose Fast Flow column (GE-Healthcare, UK) equilibrated in

Figure 1. Phylogenetic analysis of the Agpat1–Gpsm3 locus including Ager. (A) The panel represents the structures of the Agpat1-Rnf5-Ager-
Pbx2-Gpsm3 genes. The locus spans more than 1 Mbp in human chr 6. Ager (receptor for advanced glycation endproducts); Agpa1 (1-acylglycerol-3-
phosphate O-acyltransferase 1); Gpsm3 (G-protein signaling modulator 3); Pbx2 (pre-B-cell leukemia homeobox 2); Rnf5 (ring finger protein 5). (B) A
schematic phylogenetic tree with the main nodes. The presence of a gene is depicted by a green box, while the absence of the box indicates that the
gene is not found in the specific phylogenetic group.
doi:10.1371/journal.pone.0086903.g001
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the same buffer. Proteins without His6-tag were washed out with

the same buffer and bound sRAGE was eluted in a linear gradient

over five column volumes with 50 mM sodium phosphate,

300 mM NaCl, 500 mM imidazole, pH 7.4. sRAGE was

concentrated by ultrafiltration and applied to Superdex 75 column

(26/600, GE Healthcare) equilibrated in 20 mM HEPES,

300 mM NaCl, pH 7.5 and eluted in the same buffer. sRAGE

without His6-tag was obtained by thrombin (GE Healthcare)

cleavage. Prior cleavage the protein was dialyzed against 20 mM

Tris–HCl, 300 mMNaCl, 2 mM CaCl2, pH 8.0. Thrombin was

added (0.2 U per mg of protein) and sRAGE was incubated at

room temperature for 1–2 hr. Protein still containing the His6-tag

was removed by a separation on a MonoS column (GE

Healthcare) equilibrated in 20 mM sodium acetate, pH 5.0,

applying a linear gradient of 20 mM sodium acetate, 1 M NaCl,

pH 5.0 over 20 column volumes.

Figure 2. Comparison of the RAGE, ALCAM, BCAM and MCAM protein sequences. The multiple alignment was performed with CLUSTALW.
Exons encoding a portion of the corresponding protein are highlighted alternatively in yellow and grey. Asterisks indicate conserved exon-intron
boundaries; if conservation is among all four proteins, the asterisks are red, if conservation is between RAGE and at least one of the others the colour
is blue. RAGE (receptor for advanced glycation endproducts); ALCAM (activated leukocyte cell adhesion molecule); BCAM (basal cell adhesion
molecule); MCAM (melanoma cell adhesion molecule).
doi:10.1371/journal.pone.0086903.g002
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Surface plasmon resonance protein-protein interaction analysis

was performed on a Biacore X instrument. sRAGE carrying a

His6-tag at the N-terminus was added to a final concentration of

150 nM to the running buffer (in 20 mM HEPES, 150 mM NaCl,

0.005% P20, pH 7.6) and immobilized on Ni-NTA-chip at a flow

rate of 10 ml/min for 1 min. Typically 1500–2000 RU of protein

was immobilized on the sensor chip. sRAGE carrying no His6-tag

was diluted in running buffer and the binding was analyzed at

298 K. Data were fitted using BIAevaluation software version 4.1

(BIACORE - GE Healthcare).

Generation of RAGE Expression Plasmids
In order to construct pcDNA-neo-FL-RAGE or p-LXSN-neo-

FL-RAGE vectors, the human FL-RAGE cDNA (GenBank2

accession no. NM001136) was excised from a pre-existing vector

by using EcoRI and XhoI restriction endonucleases (New England

Biolabs, MA, USA) and inserted into pcDNA-3 or pLXSN

(Clontech, CA, USA) digested with same enzymes. To generate

pCAGS-IRES-GFP-FL-RAGE, human FL-RAGE cDNA was

excised with XhoI, filled-in to create blunt ends, and subsequen-

tially digested with EcoRI. The purified cDNA was then inserted

in pCAGS-IRES-GFP (kindly provided by Vania Broccoli) cut

with EcoRI and SmaI (Promega, USA).

Figure 3. Phylogenetic tree derived from 3D structural alignments. The phylogenetic tree is based on the analysis of the closest 500 matches
resulting from a search of the protein structure database using the structure of RAGE Ig domains V-C1 as a query. After filtering the results for a
minimum length of alignment and removal of duplicates 27 different proteins were retrieved. Twenty four out of these 27 are cell adhesion
molecules, only 2 belong to the T-cell receptor family and one protein represents the light chain of an antibody. RAGE V-C1 Ig domains group very
closely with cell adhesion molecules BCAM and CD80. OCAM (olfactory cell adhesion molecule; pdb code 2jll); CEACAM-1 (Carcinoembryonic antigen-
related cell adhesion molecule 1, CD 66a; pdb code 3R4D); PD-L1 (programmed death1 inhibitory receptor; pdb code 3BIS); CD80 (cluster of
differentiation 80; pdb code 1DR9); RAGE (receptor for advanced glycation endproducts; pdb code 3CJJ); BCAM (Lutheran glycoprotein; basal cell
adhesion molecule; pdb code 2PET); NECTIN-1 (pdb code 4FMF); NECTIN-2 (pdb code 4FMK); NECTIN-4 (pdb code 4FRW); CD155 (cluster of
differentiation 155, poliovirus receptor; pdb code 3URO); CD2 (cluster of differentiation 2; pdb code 1HNG); MADCAM-1 (mucosal vascular addressin
cell adhesion molecule 1; pdb code 1GSM); VCAM (vascular cell adhesion molecule; pdb code 1VSC); ICAM-1 (intercellular adhesion protein 1, pdb
code 1IC1); ICAM-2 (intercellular adhesion protein 2; pdb code 1ZXQ); TCR-alpha (T-cell receptor a chain; pdb code 1NFD); TCR-gamma (T-cell
receptor g chain; pdb code 1HXM); Fab-LC (antibody Fab fragment light chain; pdb code 3QNX); Neuroplastin (pdb code 2WV3); MUSK (pdb code
2IEP); NCAM-Ig-1–2 (neural cell adhesion molecule Ig domains 1 and 2; pdb code 1EPF); NCAM-Ig-2–3 (neural cell adhesion molecule Ig domains 1
and 2; pdb code 1QZ1); DSCAM (Down syndrom cell adhesion molecule; pdb code 3DMK); Hemolin (pdb code 1BIH); ROBO (Roundabout; pdb code
2VRA); ROBO-1 (Roundabout homolog 1; pdb code 2V9R); Contactin (protein tyrosine phosphatase z (PTPRZ); pdb code 3JXA); TAG-1 (axonin, pdb
code 1CS6).
doi:10.1371/journal.pone.0086903.g003
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Cell Culture, Transfection and Generation of Stable Lines
Expressing RAGE

Murine preB 300.19 cells were grown in RPMI 1640 medium

supplemented with 10% fetal calf serum (FCS), 1% penicillin/

streptomycin and 50 mM b-mercaptoethanol. HEK293 and R3/1

(kindly provided by Roland Koslowski and Michael Kasper) cells

were grown in Dulbecco modified Eagle medium (DMEM)

supplemented with 10% FCS and 1% penicillin/streptomycin.

PreB 300.19 cells were transfected with pCAGS-IRES-GFP or

pCAGS-IRES-GFP-FL-RAGE vectors to generate preB/CAGS

or preB/FL-RAGE respectively, using Lipofectamine according to

the manufacturer’s instructions (Invitrogen, Carsbad, CA, USA).

Transfectants were sorted using GFP as marker and positive cells

were grown. Photographs were taken at 206 magnification in

phase contrast (Leica DM IRB). To generate HEK-pcDNA or

HEK/FL-RAGE cells, HEK293 cells were transfected with

Figure 4. Comparison of RAGE V-C1 structure with homophilic cell adhesion molecules BCAM, ALCAM andMCAM. (A) The Ig domains
V and C1 of RAGE which reside most distal from the cytoplasmic membrane (shown in blue) adopt a slightly bent structure. This spatial arrangement
is very well conserved in the Ig domains 1 and 2 of its close homologue BCAM (red). Structural models of the corresponding Ig domains of ALCAM
(green) and MCAM (magenta) suggest that these adopt as well a very similar structure that might be required for homophilic interaction. RAGE
(receptor for advanced glycation endproducts); ALCAM (activated leukocyte cell adhesion molecule); BCAM (basal cell adhesion molecule); MCAM
(melanoma cell adhesion molecule). (B) Model for RAGE-RAGE homophilic interaction mediating cell adhesion (derived from pdb code 4LP5) [44]. Left
hand side: as observed in the crystal structure of sRAGE the extracellular domain adopts an extended conformation; alongside a cartoon
representation is shown. Right hand side: in the crystal the V-domains (dark blue) form a large contact in trans orientation. This mode of interaction is
conserved among different crystal structures suggesting that RAGE homophlic interaction occurs via the V-domain.
doi:10.1371/journal.pone.0086903.g004
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pcDNA-neo or pcDNA-neo-FL-RAGE using Fugene 6 (Roche

Molecular Biochemicals, Mannheim, Germany) according to the

manufacturer’s instructions. Cells were selected with 500 mg/ml

G418 (Invitrogen). To generate R3/1-pLXSN or R3/1-FL-RAGE

clones, R3/1 cells were infected with retrovirus carrying p-LXSN-

neo or p-LXSN-neo-FL-RAGE retro-vectors. Clones were select-

ed with 500 mg/ml G418 (Invitrogen).

Western Blot (WB)
Cells were analyzed for human FL-RAGE expression by WB as

already described [35] using a goat polyclonal antibody against the

extracellular domain of human RAGE (a-RAGE N-term1, 1 mg/

ml; cat. AF1145, R&D Systems, Minneapolis, MN, USA) that

recognizes rat RAGE as well. For detection of RAGE in rat lung

and R3/1 cells lysates two additional different rabbit polyclonal

antibodies against the extracellular (a-RAGE N-term2, 0.4 mg/ml;

cat. sc-5563, Santa Cruz Biotechnology, California, USA) and the

intracellular (a-RAGE C-term, 1 mg/ml; cat. ab3611, Abcam,

Cambridge, UK) domains of human RAGE were used. Both

antibodies recognize rat RAGE as well.

The membranes were blocked in TBST (10 mM Tris, pH 7.4;

0.5 mM NaCl; 0.1% Tween 20) containing 5% powdered

skimmed milk for 1 hour (h) at rt. The blots were first probed

with the indicated primary antibodies diluted in TBST with 5%

powdered skimmed milk over night at 4uC, and then with

horseradish peroxidase-conjugated anti-rabbit (1:5000; cat.

NA9340V, GE Healthcare) or anti-goat (1:5000; cat. sc-2020,

Santa Cruz Biotechnology) secondary antibodies. Proteins were

visualized by an enhanced chemiluminescence (ECL) detection

system (cat. RPN2106, GE Healthcare). An antibody agaist

GAPDH (0.4 mg/ml; cat. sc-25778, Santa Cruz Biotechnology)

Figure 5. RAGE expression enhances cell-matrix adhesion. (A) Western blot analysis on rat lung lysate and R3/1 cells using three different
antibodies recognizing RAGE extracellular (anti-RAGE N-term1 and anti-RAGE N-term2) or intracellular (anti-RAGE C-term) domains. Asterisk (*)
indicates nonspecific bands. Forty mg of cell lysate were loaded and detection of GAPDH was used as loading control. (B) Western blot analysis on R3/
1-pLXSN and R3/1-FL-RAGE cells using anti-RAGE N-term1 antibody. Forty mg of cell lysate were loaded and detection of GAPDH was used as loading
control. (C, D) Cell-matrix adhesion assay. Adhesion of R3/1-pLXSN or R3/1-FL-RAGE cells onto culture dishes coated with 10 mg/ml ECM proteins.
Adhesion to PBS, collagen I (Coll I), Fibronectin (FN), or Laminin (Lam) was assayed for 15 minutes (C) or 45 minutes (D). One representative
experiment out of three is shown. Results from triplicate wells are displayed as means6SEM (ns, not significant; *, P,0.05; **, P,0.01).
doi:10.1371/journal.pone.0086903.g005
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was used on the same membranes after stripping and served as

loading control.

Cell-cell, Cell-matrix Adhesion and Cell Spreading Assays
Cell-matrix adhesion and cell spreading. The assays were

performed as described previously with following modifications

[17]. Tissue culture plates were coated for 2 hours at 37uC with

10 mg/ml collagen I (C7661), laminin (L2020), fibronectin (all

from Sigma, St. Louis, MO, USA) or PBS. For cell adhesion assay,

after saturation of wells with DMEM +1% BSA, R3/1-pLXSN or

R3/1-FL-RAGE cells (56104) were resuspended in DMEM +10%

FCS and seeded on coated 96-well plates in triplicate for 15 or 45

minutes at 37uC under 5% CO2. Cells were extensively washed

with PBS, fixed with 4% paraformaldehyde, stained with crystal

violet for 10 min, lysed with 2% SDS and read on an ELISA plate

reader at 550 nm. For cell spreading assay, R3/1-pLXSN or R3/

1-FL-RAGE cells (56104) were resuspended in DMEM +10%

FCS and seeded on 12-well coated plates in triplicate for 90

minutes at 37uC under 5% CO2. Cells were then washed with PBS

and fixed with 4% paraformaldehyde. Photographs were taken at

406magnification in phase contrast (Leica DM IRB). Cell surface

area (mm2, 25–50 cells) was quantified using Axiovision Soft-

wareTM Rel 4.7 (Zeiss).

Cell-cell adhesion. HEK-pcDNA or HEK/FL-RAGE cells

were grown in six-well plates (Costar, Milan, Italy) for 24 hours.

Confluent monolayers were washed with PBS and mechanically

dissociated by pipetting 30 times as previously described [36].

Cells were photographed at 406magnification in phase contrast

(Leica DM IRB), and the number of particles (cell clusters) was

determined (Np). An aliquot of the same cell suspension was

trypsinized, and the number of single cells was determined (Nc).

The dissociation index was expressed as Np/Nc.

Cell aggregation assay. PreB/pCAGS or preB/FL-RAGE

cells were seeded and cultured for the indicated hours before being

photographed at 206 magnification in phase contrast with an

Apotome microscope (Zeiss, Germany). Aggregates area of 3

different fields was measured with Axiovision SoftwareTM Rel 4.7

(Zeiss). For ‘‘mixed’’ aggregation assays, a double colored assay

was performed as already described with same modifications

[37,38]. Briefly, preB cells or preB/FL-RAGE (that express GFP)

were labelled fluorescent red with 5 mM of CellTrackerTM Orange

CMTMR (5-)and-6)-(((4-chloromethyl)benzoyl)amino) tetra-

methylrhodamine (Invitrogen) in RPMI 1640 medium for

Figure 6. RAGE expression enhances cell spreading. Cell spreading assay. (A) Spreading of R3/1-pLXSN or R3/1-FL-RAGE cells onto culture
dishes coated with 10 mg/ml of ECM proteins (Coll I, FN, or Lam) or PBS was assessed at 90 minutes after seeding. Photographs were taken in phase
contrast at 406magnification. Bar corresponds to 20 mm. (B) Quantification of cell spreading based on cell surface area. Results are displayed as
means6SEM (ns, not significant; *, P,0.05; **, P,0.01; ***, P,0.001).
doi:10.1371/journal.pone.0086903.g006
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Figure 7. RAGE expression contributes to cell-cell adhesion. (A) Western blot analysis on control HEK cells (HEK/pcDNA) or expressing FL-
RAGE (HEK/FL-RAGE) using anti-RAGE N-term1 antibody. Forty mg of cell lysate were loaded and detection of GAPDH was used as loading control. (B)
A dissociation assay was performed by applying mechanical force on monolayers of HEK/pcDNA or HEK/FL-RAGE cells. Photographs were taken at
406magnification in phase contrast. Bar corresponds to 50 mm. The dissociation index is the means6SEM of three independent experiments (**,
P,0.01). (C) Localization of FL-RAGE on HEK/pcDNA, HEK/FL-RAGE or a mix of both cell lines (orange). Nuclei are stained in blue. Red arrows indicate
HEK/pcDNA cells in contact with HEK/FL-RAGE. Green arrows indicate HEK/FL-RAGE cells in contact with each other. Bar corresponds to 10 mm. (D)
Localization of FL-RAGE on R3/1-pLXSN, R3/1-FL-RAGE or a mix of both cell lines (orange). Nuclei are stained in blue. Red arrows indicate R3/1-pLXSN
cells in contact with R3/1-FL-RAGE. Green arrows indicates R3/1-FL-RAGE cells in contact with each other. Red arrows indicate cells not expressing
RAGE in contact with cells expressing RAGE. Bar corresponds to 10 mm.
doi:10.1371/journal.pone.0086903.g007
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45 min at 37uC. After extensive washing, cell lines were cultured

as single cell suspensions or mixed in equal number (56104) as

indicated and allowed to aggregate in growth medium for 24 h at

37uC under 5% CO2. Images were taken using an Apotome

microscope (Zeiss, Germany) with a 206objective and Axiovision

SoftwareTM Rel 4.7 (Zeiss).

Immunofluorescence (IF)
For IF analysis, HEK-pcDNA, HEK/FL-RAGE cells or a mix

of equal number of both cell types (16105 total number) were

seeded on glass coverslips and after two days of culturing, fixed in

4% paraformaldehyde at room temperature (RT) for 30 min. Cells

were then washed by PBS followed with 1 h blocking in PBS+5%

donkey serum (Sigma). After washing 3 times with 1% donkey

serum plus 0.1% Triton (DST), cells were incubated for 1 h at rt

with goat anti-human RAGE antibody (4 mg/ml; cat. AF1145,

R&D Systems) in DST buffer. Cells were then incubated for 1 h at

rt with donkey anti-goat conjugated with Alexa Fluor 546 (1:1000;

Invitrogen, USA). Nuclei were couterstained with Hoechst 33342

(1:2000; Invitrogen) for 10 min at RT. Coverslips were mounted

with Dako Fluorescent mounting medium (DAKO, CA, USA).

Images were taken using an Apotome microscope (Zeiss,

Germany) with a 206 objective and Axiovision SoftwareTM Rel

4.7 (Zeiss). A similar analysis was performed on R3/1-pLXSN or

R3/1-FL-RAGE cells avoiding addition of 0.1% Triton during

washes.

Statistical Analysis
Data were analyzed by two-tailed Student’s t-test and differ-

ences were considered statistically significant when P#0.05.

Results and Discussion

Phylogenetic Analysis of the Ager Gene
In order to identify Ager genes in other Eukaryotes, we

performed a BLASTp search using the human RAGE protein

sequence as query. Ager genes are present in Primates, Glires and

Laurasiatheria, while we found no orthologous genes in genomes

of other eukaryotic model organisms. Moreover, using BLAT

Search Genome analyses, we scanned the complete genomes of

model organisms for each clade and we did not find any sequence

matching with the human AGER.

To exclude the possibility that this could be due to incomplete

sequencing or lacking of annotation information of the genomes,

we repeated the searches using the genomic locus containing Ager

plus two genes on the telomeric side, Agpat1 and Rnf5, and two on

the centromeric side, Pbx2 and Gpsm3 (Fig. 1A). In order to date

the appearance in evolution of the genes in the genomic locus, we

used the application EggNOG v3.0. A schematic representation of

the results obtained is shown in Fig. 1B. The analyses reveal that

Laurasiatheria, Glires and Primates show perfect synteny of the

investigated genes; earlier in evolution, a syntenic locus containing

putative Agpat1, Rnf5, Pbx2 and Gpsm3 genes, but not Ager, was

found in Metazoans. Gpsm3 appears with Metazoans, and is

present in Mammalia, but it is absent in Frogs and Chordata,

possibly because of secondary loss.

These results suggest that Ager first appeared in the genomic

region between the Rnf5 and Pbx2 genes during the radiation of

mammals, and the syntenic locus itself first appeared with

Eukaryotes. Apparently, Ager was secondarily lost in Aves. The

Agpat–Gpsm3 locus lacks highly conserved intergenic sequences,

suggesting that genetic control elements are rare or are subject to

rapid evolution. In both cases, the de novo appearance of the Ager

gene in the locus could have been readily tolerated.

Ager, Alcam, Mcam, Bcam Genes Share a Common
Ancestor

In order to reconstruct the origin of the Ager gene, we looked for

proteins sharing sequence identities with the human RAGE. A

BLASTp search (restricted to H. sapiens) revealed a weak sequence

identity (E value = 8610214) to the Activated Leukocyte Cell

Adhesion Molecule (ALCAM/CD166). We then performed a

BLASTp search in the human proteome using the ALCAM

protein as query. In addition to RAGE, we identified two other

cell adhesion molecule proteins belonging to the Ig superfamily

with significant sequence identities: Lutheran blood group

antigen/Basal-Cell Adhesion Molecule (Lu/BCAM) (E val-

ue = 4610238) and Melanoma Cell Adhesion Molecule

(MCAM/CD146/MUC-18/gicerin) (E value = 10243).

We then compared the genomic organization of the four genes

coding for RAGE, ALCAM, BCAM and MCAM. Interestingly,

aligning the protein sequences and the exon-intron boundaries

(Fig. 2), we found several boundaries that are highly conserved at

least in three of them, suggesting that these genes probably

appeared due to duplication events of a common ancestor gene.

The conservation of the boundaries occurs particularly in those

gene segments encoding for extracellular Ig-like domains; RAGE

and ALCAM shared also the same genomic organization in the

gene fragment coding for the cytoplasmic domain.

RAGE is Structurally Closely Related to CAMs
A 3D structural search can often reveal evolutionary relation-

ships which are not or only barely detectable on the basis of

sequence information. We therefore subjected the Ig domains of

RAGE V, C1, and C2 as well as V-C1 tandem domains to protein

structure database search using the DALI server. Criteria for a

successful alignment are the RMSD of the aligned structures, the

length of the alignment and the match of secondary structure

elements. DALI additionally evaluates the similarity of two

structures by comparing intramolecular distances [39].

Searching the PDB database with the single V domain, C1

domain, or C2 domain of RAGE as query structures resulted in a

Figure 8. Direct RAGE-RAGE binding. Surface plasmon resonance
analysis of homophilic interaction between soluble sRAGE and sRAGE
immobilized on a Ni-NTA sensor chip. Soluble sRAGE was injected over
the sensor chip at a flow rate of 10 ml/min. The arrows indicate the start
and end of injections.
doi:10.1371/journal.pone.0086903.g008
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hit list with a wide range of different molecules. Such a result was

not unexpected since the fold of the different subsets of Ig domains

is very well conserved throughout the entire Ig superfamily

[40,41]. The vast majority of Ig domains similar to those of RAGE

derived from antibodies, which account for the largest group of Ig

molecules where structural information is available. Only 4 out of

500 similar structures were from cell adhesion molecules or cell

surface receptors. In stark contrast, when we analysed the results of

a database search with RAGE V-C1 tandem domain, we found a

number of hits from cell adhesion molecules which mediate

homophilic cell-cell contacts. After removal of duplicates and short

alignments with less than 150 residues pairs, we obtained 24

different homologous cell adhesion molecules, 2 cell surface

receptors, and only one antibody light chain as closest structural

homologues among the 500 best hits. The two cell surface

receptors related are T-cell receptor ab type and T-cell receptor

Figure 9. RAGE expression mediates cell aggregation through homophilic interactions. (A) Western blot analysis on control preB 300.19
cells (preB/pCAGS) or expressing FL-RAGE (preB/FL-RAGE) using aRAGE N-term1 antibody. Forty mg of cell lysate were loaded and detection of
GAPDH was used as loading control. (B) Cell aggregation assay. preB/pCAGS or preB/FL-RAGE cells were cultured for 2, 6 or 24 hours before being
photographed at 206magnification in phase contrast (left panel). Bar corresponds to 50 mm. Quantification of cell aggregates area (right panel).
Results are displayed as means6SEM (*, P,0.05; **, P,0.01; ***, P,0.0001). (C) Mixed cell aggregation assay. Red preB (Red-preB) or preB/FL-RAGE
(expressing GFP; preB/FL-RAGE-GFP) cells were grown as single cell line suspension or mixed in equal number for 24 hours. Red-preB/FL-RAGE-GFP
were mixed with preB/FL-RAGE-GFP for the same time. Bar corresponds to 50 mm.
doi:10.1371/journal.pone.0086903.g009
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dc type. By far the best structural alignment was observed between

the two N-terminal domains of human BCAM (pdb code 2PET)

[42] and RAGE V-C1. The alignment of 194 residues showing an

RMSD of 3.3 Å and the high DALI Z-score of 16.7 document

very well the high similarity between both structures. Low RMSDs

ranging from 2.7 to 5.4 Å were observed throughout in structural

alignments of RAGE with the different cell adhesion molecules.

The results suggest that the spatial arrangement of V and C1 in

RAGE is very well conserved and resembles closely those of other

CAMs. In line with these results our previous analysis of the

RAGE ectodomain structure by NMR and X-ray crystallography

revealed that V and C1 form an integrated structural unit where

both Ig domains form a bent elongated structure with an angle of

145 degrees between the two Ig domains [5,43]. Inspection of the

cell adhesion molecules retrieved from the DALI database search

showed that the corresponding Ig domains exhibit a similar curved

structure.

In order to classify RAGE further, we used the DALI search

results to generate a structure-based multiple sequence alignment

that was basis for a phylogenetic tree (Fig. 3). In this tree RAGE

clusters closely with BCAM and CD80 (pdb code 1DR9) as well as

with a branch that comprises the Nectins (pdb codes 4FMF,

4FMK, 4FRW, CD155 (pdb code 3URO). A further cluster is

formed by the cell adhesion molecules JAM (junctional adehsion

molecule; pdb code 1NBQ), MADCAM-1 (mucosal vascular

addressin cell adhesion molecule 1; pdb code 1GSM), VCAM

(vascular cell adhesion molecule; pdb code 1VSC), ICAM-1

(intercellular adhesion protein 1, pdb code 1IC1), ICAM-2

(intercellular adhesion protein 2, pdb code 1ZXQ). The branch

most distant from RAGE contains cell adhesion molecules from

non-mammalian species, such as hemolin (pdb code 1BIH) from

Hyalophora cecropia (moth), ROBO (pdb code 2VRA) from

Drosophila, and TAG-1 (pdb code 1CS6) from Gallus gallus, but

also the mammalian ortholog to ROBO, the so-called ROBO-1

(pdb code 2VR9). Interestingly, despite the large phylogenetic

distances between these species, the basic structural features

required for homophilic or heterophilic interaction are well

conserved. The observed arrangement of the Ig domains might

represent a core structure that is favourable for intermolecular

interactions but varied and fine-tuned for each specific case.

In order to illustrate the structural similarity between the

phylogenetically related RAGE, BCAM, ALCAM and MCAM we

prepared structural models for ALCAM and MCAM depicted in

Fig. 4A. The models for ALCAM and MCAM exhibit like RAGE

V-C1 or BCAM Ig-1–2 that the two Ig domains adopt a slightly

bent structure as a characteristic feature.

In summary, the DALI search results show clearly that RAGE is

classified structurally as a cell adhesion molecule mediating homo-

or/and heterophilic interactions. The similarity of RAGE V-C1 to

BCAM Ig-1–2 is striking, and structural modelling suggests that

this similarity is conserved as well in ALCAM and MCAM Ig

domains 1 and 2.

Putative Mode of Homophilic Interaction
Recent X-ray crystallographic studies strongly support homo-

philic interaction of RAGE and suggest that binding occurs via the

V-domain. A trans-orientated interaction of RAGE (Fig. 4B) is

inferred from the arrangement of sRAGE or RAGE VC1 domains

in different crystal structures where the V-domains from both

molecules form a large hydrophobic contact. This arrangement

appears to be highly conserved among the different crystal

structures and is observed for single VC1 (pdb code 3CJJ, 4LP4)

[24,44] or sRAGE (pdb code 4LP5) [44] or for VC1 in complex

with heparan sulfate (pdb code 4IM8) [45] or with DNA (pdb

codes 3S58, 3S59) [46]. Virtually no structural change is observed

in this dimeric assembly between unbound RAGE or RAGE

engaged with heparan sulfate or DNA as ligand suggesting that

this interaction is rather stable already in the absence of a ligand

corroborating the proposed function as a cell adhesion molecule.

RAGE Enhances Cell-matrix and Cell-cell Adhesion
In order to address the question whether RAGE has adhesive

properties and to experimentally verify the phylogenetic and

structural predictions, we performed several adhesion assays.

RAGE has already been shown to promote adherence and induce

cell spreading to extracellular matrix (ECM) components in HEK

and A549 cells [17,47] and to AGE-modified components of the

ECM of prostate cancer cells [34]. RAGE is expressed at very low

levels in most tissues, but at high levels in the lung [17,48,49]

where it mainly localizes at the basal cell membrane of alveolar

type I (ATI) cells and appears to be responsible for the flat

morphology required for gas exchange [17,18,50]. Thus, we

decided to test RAGE interactions with cell matrix components

using the rat alveolar type I-like cell line R3/1, that displays

several phenotypical features of alveolar epithelial type I cells [51].

By WB using three different antibodies we were not able to detect

endogenous RAGE in R3/1 cells (Fig. 5A). Conversely, in rat lung

tissue, three major RAGE isoforms were present; in particular, the

lowest band represents soluble RAGE not detectable by the

aRAGE C-term antibody (Fig. 5A). We generated stable clones of

R3/1 cells expressing full-length RAGE cDNA (R3/1/FL-RAGE)

or the empty vector (R3/1-pLXSN) as control (Fig. 5B). The

adhesive capacity of R3/1 clones was time- and extracellular

matrix (ECM) component-dependent, however, compared to R3/

1-pLXSN, R3/1-FL-RAGE cells adhered faster and to a higher

percentage to all tested ECM molecules, with the major difference

observed for collagen I (Fig. 5C,D). Accordingly, the expression of

RAGE enhanced spreading of adherent cells in a similar manner

(Fig. 6). Thus, our results confirm previous studies that demon-

strate heterophilic interactions between RAGE and ECM

components.

To assess the ability of RAGE to mediate cell-cell adhesion we

performed a dissociation assay [36] using HEK293 cells stably

expressing FL-RAGE (HEK/FL-RAGE) or the corresponding

empty vector (HEK/pcDNA) (Fig. 7A). In contrast to R3/1 cells,

HEK293 cells are able to form a compact monolayer that can be

detached from culture dishes by repeated pipetting avoiding the

use of trypsin. As shown in Fig. 7B (left panel), when applying

mechanical force to confluent monolayer of these cells, HEK/FL-

RAGE formed large clusters while HEK/pcDNA were completely

dissociated. This effect was quantified by counting the number of

particles (Np) observed and the total number of cells (Nc) (Fig. 7B,

right panel). The ratio Np/Nc is a measure of dissociation, and

varies between 1, complete dissociation of cells, and 0, no

dissociation [36].

We then tested the localization of RAGE by IF on confluent

cultures of HEK/pcDNA, HEK/FL-RAGE or a mix of both cell

lines (HEK/pcDNA/FL-RAGE). HEK/pcDNA cells displayed

only diffused background staining for RAGE (Fig. 7C). HEK/FL-

RAGE cells exhibited a prominent ER-Golgi staining, in addition

to plasma membrane labelling. In particular, these cells displayed

an intercellular zone of intense fluorescence for RAGE when

contact each other (Fig. 7C). When HEK/pcDNA and HEK/FL-

RAGE were mixed and grown together, intense RAGE staining

was observed mostly at cell-cell contacts of adjacent HEK/FL-

RAGE cells (green arrows), while low or even no staining appeared

when HEK/FL-RAGE where in contact with HEK/pcDNA cells
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(red arrows) (Fig. 7C). Similar results were obtained for R3/1 cells

(Fig. 7D).

All together these data show that RAGE is highly enriched in

zones mediating cell-cell contacts of adjacent cells. Moreover, the

occurrence of RAGE in this areas suggests that it regulates cell-cell

adhesion through homophilic interaction.

RAGE Displays High Affinity Homophilic Interaction
in vitro

In order to further characterize RAGE homophilic interaction

we performed surface plasmon resonance experiments. Direct

RAGE-RAGE binding was observed using recombinant isolated

proteins. The high affinity interaction of sRAGE of the mobile

phase with sRAGE immobilized on the chip (Fig. 8) displayed a

Kd = 0.4760.07 mM. This value is in the range of affinities

reported for homophilic interactions between other Ig-type cell

adhesion molecules. Surface plasmon measurements revealed that

CEACAM1 interaction is about 16-fold weaker with a

Kd = 7.65 mM [52] whereas NCAM exhibits an almost 20-fold

higher affinity with Kd = 0.025 mM [53].

RAGE Mediates Homophilic Cell-cell Adhesion
To determine whether cellular expression of RAGE is able to

promote homophilic interaction, we performed a cell aggregation

for which cells growing in suspension are elective. We used the

PreB 300.19 cell line transfected with an empty vector (preB/

pCAGS) or stably expressing FL-RAGE (preB/FL-RAGE)

(Fig. 9A). As shown in Fig. 9 B, during culturing preB/pCAGS

grow as a suspensions of single cells, while preB/FL-RAGE cells

clump together forming aggregates whose area increases in a time-

dependent manner. To test whether the aggregation depends on

homophilic interaction of RAGE molecules, we performed a

‘‘mixed’’ aggregation assay [37,38] using green preB/FL-RAGE

cells expressing GFP protein (preB/FL-RAGE-GFP), and preB

300.19 cells (that display same features of preB/pCAGS but do

not express GFP) that fluoresce red. Thus, the two cell populations

could be distinguished after mixing. As shown in Fig. 9C, preB

300.19 cells neither aggregate together nor with cells expressing

RAGE, demonstrating that the presence of RAGE on two

adjacent cells is necessary to adhere with one another. Indeed,

when preB/FL-RAGE were labelled red (preB/FL-RAGE-GFP-

red) and mixed with unlabelled preB/FL-RAGE-GFP, the two cell

populations clumped together forming mixed aggregates (Fig. 9C).

Altogether, these data indicate that membrane expression of

RAGE contributes to cell-cell adhesion through homophilic

interactions.

Conclusion

Our analysis indicates that RAGE belongs to a group

comprising ALCAM, BCAM and MCAM proteins, which are

all cell adhesion molecules. In particular:

1) The Ager, Alcam, Bcam, Mcam genes share a similar genomic

organization suggesting that they evolved from a common

ancestor gene. Ager, the gene coding for RAGE, first appeared

with Mammalia, and is part of a locus that originates earlier in

evolution with Metazoans. In human, this locus belongs to the

major histocompatibility complex (MHC) Class III region on

chromosome 6p21.31 [54], which contains genes involved in

the innate immune system, inflammation and regulation of

immunity [55].

2) RAGE is very closely related to the adhesion proteins

ALCAM, BCAM and MCAM as shown by structural

alignments and further suggested by structural models and

shares key structural features with these molecules.

3) RAGE shows properties expected of an adhesion molecule. In

particular, cells expressing RAGE adhere to ECM compo-

nents and to each other through homophilic interactions. On

the other hand, mouse embryonic fibroblasts (MEFs) derived

from Rage2/2 mice exhibit reduced capability to adhere to

ECM proteins compared to wild type cells (not shown).

Structural models also suggest the RAGE-RAGE homophilic

interactions in trans occur via the V-domain.

Notably, RAGE expression was previously shown to be induced

on activated endothelial and epithelial cells, in particular after

injury [56,57], and to bind the CD11b/Mac-1 protein on

leukocytes, aiding their extravasation [57,58]. These activities

suggest that RAGE can act as an Ig-cell adhesion molecule (Ig-

CAM) [59] in the context of leukocyte extravasation. Furthermore,

as it occurs for other CAMs [60], RAGE is cleaved by ADAM10

[35] and the shedding might influence its adhesive properties by

regulating membrane expression. A common feature of many

adhesion molecules is their tendency to form clusters to facilitate

cell-cell contacts [61]. It has been proposed that RAGE assembles

into constitutive oligomers within the plasma membrane [15] that

after stabilization by ligands binding are able to activate RAGE-

dependent signaling pathways [24,62]. Thus, RAGE oligomeri-

zation in cis and in trans may play a crucial role in RAGE-mediated

cell-cell or cell-matrix adhesion as well.

In conclusion, we suggest that RAGE was ancestrally a CAM,

and only secondarily became a sensor involved in inflammation.

Given its basal high expression in alveolar cells, RAGE might still

serve as a cell adhesion protein in lung as well as in other cells/

tissues when its expression is up-regulated in response to trauma-

induced inflammation. This interpretation of RAGE’s functions

might help in understanding its roles in pathologic conditions.
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