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Abstract: We report the results of our in silico study of approved drugs as potential treatments for
COVID-19. The study is based on the analysis of normal modes of proteins. The drugs studied include
chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and α-difluoromethylornithine (DMFO).
We applied the tools we developed and standard tools used in the structural biology community.
Our results indicate that small molecules selectively bind to stable, kinetically active residues and
residues adjoining them on the surface of proteins and inside protein pockets, and that some prefer
hydrophobic sites over other active sites. Our approach is not restricted to viruses and can facilitate
rational drug design, as well as improve our understanding of molecular interactions, in general.

Keywords: COVID-19; proteins; normal-modes; protein–drug interactions; chloroquine; ivermectin;
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1. Introduction

The Coronaviridae positive-stranded RNA virus family includes a substantial number of members,
many of whom are known to cause a broad range of illnesses from the common cold to serious diseases
like severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) [1,2].
The latest worldwide rapidly spreading disease Coronavirus disease 2019 (COVID-19) is caused by
a new member of this virus family, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
The disease originally emerged in China in December 2019 with the most common symptoms being
fever and cough, as well as shortness of breath, sore throat, headache, muscle ache, nausea, and
diarrhea [1]. It can severely affect patients with immune systems weakened by pre-existing conditions,
such as hypertension, diabetes mellitus, or cardiovascular diseases [3]. In some cases, symptoms also
involve a still-unexplained loss of smell and taste [4]. It is assumed that the SARS-CoV-2 virus spreads
through respiratory droplets, directly via physical contact, or through contact with contaminated
objects. The virus spreads easier than SARS and MERS due to the high binding affinity between the
virus spike glycoprotein (S) and the host receptor [5–8], making it more lethal. The virus directly affects
the global economy by forcing countries to restrict access to work and slowing down supply lines,
which causes a significant decline in gross national products worldwide, not encountered since the
great depression.

There are a number of efforts and clinical trials underway to develop a vaccine and evaluate
potential drugs for COVID-19, but such investigations usually take many months or even years to
yield a successful treatment. Drug repurposing, on the other hand, may offer an immediate solution,
because it considers already approved compounds as potential treatments for COVID-19.

There are, in general, two paths toward a viral treatment. One path directly attacks the virus
and interrupts its replication machinery or its ability to attack host cells [9]. This path is often hard to
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implement due to the rapid emergence of new viral strains with acquired resistance to implemented
drugs. The second path should therefore aim to block the host–viral interactions on the host side
due to difficulties viral single point mutations should have in recovering the loss of host factors [10].
A recent study of human-virus protein–protein interactions (PPIs) detected 332 high-confidence
SARS-CoV-2-human PPIs [11]. The study showed that 40% of SARS-CoV-2 proteins interact with
endomembrane compartments or vesicle trafficking pathways and that viral proteins also interact with
multiple innate immune pathways, the host translation machinery, bromodomain proteins, enzymes
involved in ubiquitination regulation, and the cullin ubiquitin ligase complex. Importantly, it showed
that the SARS-CoV-2 human PPI map is very similar to the interaction maps of West Nile virus (WNV)
and Mycobacterium tuberculosis (Mtb). Among the human proteins involved in interactions with
viral proteins, the study detected 66 druggable human (host) proteins targeted by 69 compounds
(29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). It identified
two groups of compounds with noticeable antiviral activity: inhibitors of mRNA translation/protein
biogenesis (zotatifin, ternatin-4, PS3061, and plitidepsin), and predicted regulators of the sigma1
and sigma2 receptors (haloperidol, PB28, PD-144418, hydroxychloroquine, clemastine, cloperastine,
progesterone, and the clinical molecule siramesine). The first group of compounds directly affects the
viral cap-dependent mRNA translation because coronaviruses use the host translation machinery for
their own mRNA translation. The compounds affecting the second group of proteins are approved
and long-established human therapeutics [11]. As much as they are informative, such screening
associative studies rarely offer detailed insights into mechanisms of molecular interactions. Structural
studies [5–8,12], on the other hand, offer insights into residue and atom level physical contacts between
molecules, but cannot offer general principles of molecular interactions.

In silico studies are widely used to screen potential drug candidates against COVID-19. Recently,
Calligari et al. reported a molecular docking study of binding affinities between different viral proteins
and several inhibitors, originally developed for other viral infections (hepatitis C virus (HCV), human
immunodeficiency virus (HIV)) [13]. The examined drugs include simeprevir, saquinavir, indinavir,
tipranavir, faldaprevir, ritonavir, lopinavir, asunaprevir, atazanavir, nelfinavir, amprenavir, darunavir,
and fosamprenavir. Calligari et al. docked them with the 3C-like protease from SARS–CoV-2, the spike
S SARS-CoV-2 protein, SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), and nucleocapsid
protein from SARS-CoV-2, and reported the corresponding binding free energies. The authors were
able to select 5 of the 13 as potential inhibitors of SARS-CoV-2 protease. The three drugs tested with
the spike S protein showed promise, and one presumably binds between the two monomers and
interrupts transition between opened and closed states. A.A. Elfiky used molecular modeling, docking,
and dynamics simulations to build a model for the viral RdRp protein and test its binding affinity
to some clinically approved drugs and drug candidates [14]. The author concludes that sofosbuvir,
ribavirin, galidesivir, remdesivir, favipiravir, cefuroxime, tenofovir, and hydroxychloroquine can
tightly bind to the RdRp active site and can be good candidates for clinical trials. The author also
noticed that the compounds setrobuvir, YAK, and IDX-184 can tightly wrap to the SARS-CoV-2
RdRp, and thus interrupt its function. That study also showed that the IDX-184-derived compounds
(3,5-dihydroxyphenyl)oxidanyl and (3-hydroxyphenyl)oxidanyl can be effectively used to target
SARS-CoV-2 RdRp. Yu et al. used AutoDock Vina software to screen potential drugs by estimating
their binding free energies to the COVID-19 structural and non-structural protein sites [15]. They tested
ribavirin, remdesivir, chloroquine, and luteolin, a compound present in honeysuckle. In traditional
Chinese medicine, honeysuckle is generally believed to have antiviral effects. In this study, luteolin
(the main flavonoid in honeysuckle) was found to bind with a high affinity to the same sites of the
main protease of SARS-CoV-2 as the control molecule. De Oliveira et al. tested 9091 drug candidates
by molecular docking against equilibrated SARS-CoV-2 spike S protein [16]. A total of 24 best-scored
ligands, ivermectin among them, exhibited binding energies below −8.1 kcal/mol and were thus
suggested as potential candidates. Interestingly, 14 of them are traditional herbal isolates and 10
are approved drugs. O. Santos-Filho used molecular docking to test HIV protease inhibitors against
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COVID-19 main protease [17]. The author showed that two non-natural compounds, danoprevir
and lopinavir, and one herbal compound, corilagin, produced strong interactions with the inhibitor
binding site of SARS-CoV-2 main protease. A modeling study by Pachetti et al. recognized a number
of COVID-19 RdRp mutations that can affect drug treatments against COVID-19 [18]. B. R Beck et al.
used a pre-trained deep neural network to identify commercially available drugs that could be used
as treatments against SARS-CoV-2 [19]. They showed that atazanavir, an antiretroviral medication
used to treat and prevent the human immunodeficiency virus (HIV), is the best compound against the
SARS-CoV-2 3C-like proteinase, followed by remdesivir, efavirenz, ritonavir, dolutegravir, lopinavir,
and darunavir.

To facilitate the drug screening, we undertook a comparative in-silico study of binding modes
in proteins targeted by six antiviral candidate drugs. We analyzed compounds that bind to parasitic
and to human proteins. The drugs we have studied so far include (hydroxyl)chloroquine, ivermectin,
remdesivir, sofosbuvir, boceprevir, and α-difluoromethylornithine (DMFO) (see Table 1).

Chloroquine [20] and its less toxic derivative hydroxychloroquine [21] are drugs used to prevent
and treat acute attacks of malaria. They are also used to treat discoid or systemic lupus erythematosus
(SLE) and rheumatoid arthritis in patients whose symptoms have not improved with other treatments.
These drugs are subject to several clinical trials worldwide as a potential treatment for COVID-19 [22,23].
Chloroquine has two potential modes of action against COVID-19, making it functional at both entry,
and at post-entry stages of the COVID-19 infection [24]. It is known that it inhibits terminal glycosylation
of the angiotensin-converting enzyme 2 receptor (ACE2) [25], that both SARS-CoV and SARS-CoV-2 use
for cell entry [26,27]. ACE2 in non-glycosylated state may less strongly interact with the SARS-CoV-2
spike glycoprotein [26]. The second potential mode of action of chloroquine is based on the change of
pH values in cell organelles, lysosome in particular [24,26]. Chloroquine passively diffuses through
the cell in a lipophilic unprotonated state and in such state enters cell organelles [28]. Once it is inside
the acidic environment of the lysosome, it becomes protonated and gets trapped within the vesicle.
This raises the pH value and likely prohibits subsequent virus entry, fusion, or exit [26,28]. Interestingly,
the above-mentioned study [11] indicates that PB28 is maybe ~20 times more potent viral inhibitor
than hydroxychloroquine.

Ivermectin is a medication used to treat many various types of parasite infestations [29]. They
include but are not limited to, head lice, scabies, river blindness (onchocerciasis), strongyloidiasis,
trichuriasis, ascariasis, and lymphatic filariasis. Depending on the kind of treatment, the drug is taken
by mouth or applied to the skin for external infestations. The molecular structure of ivermectin
is rather complex and made of a set of macrocyclic lactone isomers. It binds to glutamate-gated
chloride channels and increases the permeability of chloride ions [30]. Ion channels are attractive
antiviral targets for two reasons. First, viruses can also have ion channels, active in viral assembly,
morphogenesis, and viral release (e.g., E-protein in SARS-CoV [31]). Additionally, the inhibition of host
(human) ion channels can be detrimental to viral replication, hepatitis C virus (HCV) in particular [32].
Ivermectin itself was shown to be able to inhibit the replication of SARS-CoV-2 in vitro [33]. All this
indicates that ivermectin, as a modulator of chloride channel permeability, is a potential anti-viral drug.
It is, therefore, currently the subject of clinical trials as a potential COVID-19 treatment [34].

Remdesivir is a nucleoside analog RdRp inhibitor initially developed to treat Ebola and Marburg
virus diseases [9,35]. The drug decreases the viral RNA production by affecting the function of RdRp
and proofreading by viral exoribonuclease (ExoN). Remdesivir is a subject of clinical trials as a potential
COVID-19 treatment [36], as it was shown to reduce the lung viral load and improve pulmonary
function with SARS infection [9].

Sofosbuvir is a medication used to treat HCV mono-infection and HCV/HIV-1 coinfection as
a component of a combination antiviral regimen [37]. Sofosbuvir is a nucleotide prodrug that
metabolically gets modified to the active uridine analog triphosphate, an inhibitor of HCV NS5B
RNA-dependent polymerase. The inhibition of HCV NS5B RNA-dependent polymerase in turn
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suppresses viral replication. A. Sadeghi presented tentative results on the effectiveness of sofosbuvir
and daclatasvir against COVID-19 [38].

Boceprevir is a medication used to treat chronic hepatitis C in untreated people or who do not
react to ribavirin and peginterferon alfa alone [39]. It is used in combination with ribavirin (Copegus,
Rebetol) and peginterferon alfa (Pegasys). It was shown to inhibit the COVID-19 (SARS-CoV-2)
replication by inhibiting the virus’s main protease [40].

α-difluoromethylornithine (DMFO) (eflornithine), is a medication primarily used to treat
African trypanosomiasis (sleeping sickness) and excessive facial hair in women [41]. Specifically,
it is used for the second stage of sleeping sickness caused by Trypanosoma brucei gambiense and may
be used in combination with nifurtimox [42]. It is used by injection or applied to the skin. The drug
prevents the binding of the natural product ornithine to the active site of ornithine decarboxylase.
We did not find any record of this drug ever being tried, to date, for COVID-19. However, since it is a
halogenated organic molecule with somehow similar active sites as chloroquine, we decided to study
it towards the treatment of COVID-19.

Here we report our research findings based on the method which we implemented to recognize
protein–protein binding patterns, the self-adjustable Gaussian network model (SAGNM) [43].
The method predicts binding areas without any information on the binding partner’s properties,
position, or orientation.

The SAGNM method is based on the Gaussian network model (GNM) formalism [44–49].
The GNM produces a set of vibrational modes via the eigenvalues and eigenvectors of the protein
Kirchhoff contact matrix Γ. The fastest modes (with largest eigenvalues λ) are more localized and have
steeper energy walls with a larger decrease in entropy and they are, therefore, referred to as kinetically
hot residues [43].

The connection between kinetically hot residues and interfacial residues involved in
protein–protein interactions has already been established [50]. The methodology introduced in [43],
and used here, is based on a self-adjusting approach. It can effectively determine binding pockets and
areas for peptides and small, drug-like molecules. It can pinpoint a segment on the surface of the
protein where small ligands should bind. In most cases that area is one-tenth of the whole accessible
surface area in the protein.

The term “kinetically hot residues” is linguistically close, but does not carry the same meaning as
the term “hot spots” that is often used in protein science. Hot spots are residues that often appear in
structurally preserved interfaces (in more than 50% of cases). They are important because they are
general contributors to the binding free energy. They are defined as spots where alanine mutation
increases the binding free energy at least 2.0 kcal/mol [51–57].
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Table 1. Comparison of existing drugs currently being tested for the antiviral treatment and prevention of COVID-19 through drug repurposing.

Precautions in Patients with ComplicationsDrug Indication
Dosage in Individuals

Aged ≥ 12 Years Effectiveness Side Effects Cardio-Pulmonary Renal Hepatic Retinal

Chloroquine Treatment
Prevention 500–600 mg weekly Malaria, Amebiasis,

Porphyria Cutanea Tarda Serious Yes Yes Yes Yes

Ivermectin Treatment
Prevention 3–15 mg once Parasitic infestations Mild/Serious No Yes Yes No

Remdesivir Treatment 100–200 mg daily Ebola, Marburg virus
diseases Mild No Yes No No

Sofosbuvir Treatment 400 mg daily Hepatitis-C, HIV Mild/Moderate Yes Yes Yes Yes
Boceprevir Treatment 200 mg daily Hepatitis-C Mild/Serious Yes No Yes Yes

α-DifluoromethylornithineTreatment 300–400 mg/kg/day,
cream

Trypanosomiasis,
reduction of facial hair in

women
Mild/Serious No No Yes No
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2. Methods and Materials

To predict binding residues in proteins, we applied our self-adjustable interpretation of the
Gaussian network model (SAGNM) [43]. The structure alignment, hydrophobicity calculation,
visualization and analyses were performed with the programs Chimera [58] and Visual Molecular
Dynamics (VMD) [59].

The self-adjustable Gaussian network model software is composed of several different programs.
The first program calculates contact maps and the corresponding eigenvectors and eigenvalues [60] for
each protein chain that forms a protein complex (given as a PDB file). Therefore, the code predicts
binding residues without any knowledge of the position or orientation of the potential binding
partners. In this case, the algorithm only analyzes the protein and does not analyze, nor use in any
way, small ligands bound to it. The approach is based on the assumption that a protein preserves
its conformation upon ligand attachment, which is often the case if the binding spot on the protein’s
surface is hydrophobic [61].

The software first calculates the Kirchhoff contact matrix Γ for each protein. The matrix Γ

calculation is based on the distances between Cα atoms only, and those distances have to be lesser or
equal to 7 Å to consider two residues to be in contact [44–47]. The code then calculates and sorts Γ

matrix eigenvalues and eigenvectors. The eigenvectors are sorted according to their corresponding
eigenvalues. Those eigenvalues and eigenvectors are used in the second part that (iteratively) calculates
the weighted sum of modes [47] as

〈
(∆Ri)

2
〉

k1−k2
= (3kBT/γ)

k2∑
k1

λ−1
k [uk]

2
i

/ k2∑
k1

λ−1
k (1)

where λk are eigenvalues and uk are eigenvectors. See the Supplementary Materials in [43] and
references therein for details on the phantom network theory and GNM.

The product of this equation divided by (3kBT/γ) and normalized to produce mean square
fluctuations of each residue for a given set of modes (k1 to k2). The equation produces an estimate
of a kinetic contribution of each residue for that set of modes. The above equation is very similar to
the singular value decomposition method [62] used in the linear least-squares optimization method.
An additional code extracts contact and first layer residues. Finally, the third set of routines extracts
neighboring residues and their distances for each residue per protein chain. That information is later
used in the spatial spreading of the influence of kinetically hot residues.

The first step in the SAGNM analysis is the calculation of the weighted sum (Equation (1)).
The procedure starts with a number of modes that correspond to the top 10% of the eigenvalues range
of the analyzed protein. With normalized sum, only residues with an amplitude higher than 0.05
are perceived as hot residues. The number of hot residues is usually smaller than the number of
potential contact or first layer residues (not contact residues with a spatial atom-atom distance of less
than 4.5 Å from contact residues) to account for the fact that the influence of hot residues is spread to
their sequential neighbors using the sequence information obtained from protein structure PDB files
(to account for possible missing residues). The influence of hot residues is first spread to sequential
neighbors only because proteins are polymer chains with physically connected residues. That implies
that sequentially neighboring residues should exhibit correlated behavior. For chains longer than
100 amino acids (aa), hot residues, and eight their sequential neighbors upstream and downstream are
labeled as predictions (four upstream, four downstream). For shorter chains, the influence is spread to
six neighboring residues.

The prediction is then expanded to spatial neighbors. This approach is much closer to the true
nature of the GNM algorithm that uses only spatial distances between Cα atoms and disregards any
sequential/connectivity information. To apply this approach, the maximum cutoff Cα–Cα distance
from the center of a hot residue was introduced to which its influence can be spread. The cutoff distance
of 6 Å is applied with shorter protein chains (for sequence lengths shorter than 250 aa) and the cutoff of
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8 Å with longer protein chains. All residues with Cα atoms within the sphere centered at the Cα atom
of the hot residue and within the assigned cutoff distance are considered to be predictions. The two
cutoff values were estimated empirically [43]. To extract spatial neighbors, distances between residues
(Cα–Cα distances) were calculated for each particular protein and sorted in ascending order.

The self-adjustment GNM scheme is performed as follows:

Step 1: Calculate the number of fast modes that correspond to the top 10% of the eigenvalues range.
Step 2: Calculate the weighted sum (Equation (1)) and spread the influence of hot residues to

sequential and spatial neighbors.
Step 3a: If the overall percent of predictions is larger than a previously set value (for example, if

the percent of predictions is larger than 30% of the total number of residues), the SAGNM
procedure reduces the number of fast modes by one and goes to Step 2.

Step 3b: If the percent of predictions is too small (e.g., less than 15% of all residues), the SAGNM
procedure increases the number of fast modes by one and goes to Step 2.

The self-adjustable procedure repeats Steps 2 and 3 until the percent of predictions fits between
the maximum and minimum expected percentages for a given chain. To avoid infinite loops, only one
increase followed by a decrease is allowed, and vice versa. Multiple consecutive increases or decreases
are allowed. This approach ensures that longer proteins have enough predictions and that shorter ones
are not saturated with too many false positives.

We focused our study on pdb structures with the listed drugs present as ligands. For chloroquine,
we analyzed two structures, malarial parasite Plasmodium Falciparum lactate dehydrogenase (pdb id
1cet [63]) and human lysosomal protein saposin B (pdb id 4v2o [64]). The presence of saposin B
in human lysosome makes it a logical target to analyze considering experimental evidence that
the presence of chloroquine in lysosome inhibits coronavirus progression [24,26,28], and increased
levels of lactate dehydrogenase have been shown to predict COVID-19 severity and mortality [65].
For ivermectin, we analyzed the binding pattern of the drug to the human glycine receptor alpha-3
(the glutamate-gated chloride channels (GluCls), pdb id 5vdh [66]) and C. elegans glycine receptor (pdb
id 3rif [30]). For remdesivir, we analyzed its binding patterns in the recently released structure (pdb id
7bv2 [12]). We also performed the analysis of the binding pattern of the drug sofosbuvir to the hepatitis
C virus (HCV) RdRp (pdb id 4wtg [67]) and compared them to the COVID-19 RdRp predictions (pdb
id 6m71 [68]). Sofosbuvir was already analyzed in light of similarities between HCV and SARS-CoV-2
RdRp and similarities between remdesivir and sofosbuvir [68]. For boceprevir, we analyzed the
structure SARS-Cov-2 main protease bound to the drug (pdb id 6wnp). For α-difluoromethylornithine,
we analyzed a structure of Trypanosoma brucei ornithine decarboxylase (ODC) with D-ornithine bound
to it (pdb id 1njj [69]). α-difluoromethylornithine binds to the active site of ODC and inhibits ornithine
binding to it. We performed the comparative analysis of the binding patterns between the ACE2
human receptor and the spike glycoproteins from SARS (pdb id 6cs2 [70]) and SARS-CoV-2 (pdb id
6m0j [7]). We also analyzed the binding patterns between the SARS RBD with S230 human neutralizing
antibody, and between SARS receptor-binding domain (RBD) and glycan shield (pdb id 6nb6 [71]).

3. Results

3.1. Chloroquine

The analysis of chloroquine binding patterns to Plasmodium falciparum lactate dehydrogenase (pdb
id 1cet [63]) and human lysosomal protein saposin B (pdb id 4v2o [64]) reveals that chloroquine binds to
kinetically active sites recognized by the SAGNM algorithm which are mostly hydrophobic (Figure 1).



Biomolecules 2020, 10, 1346 8 of 26
Biomolecules 2020, 10, x FOR PEER REVIEW 7 of 24 

 

Figure 1. Chloroquine and its target proteins. Images on the left depict chloroquine bound to the 

cofactor binding site of Plasmodium falciparum lactate dehydrogenase (pdb id 1cet). Images on the right 

depict chloroquine bound to saposin B (pdb id 4v2o). (a) Lactate dehydrogenase is depicted as a blue 

ribbon, self-adjustable Gaussian network model (SAGNM) predictions are yellow and chloroquine 

green atoms. (b) Lactate dehydrogenase is depicted as a transparent hydrophobic surface (chain is 

visible as ribbon inside surface). SAGNM predictions are depicted as yellow atoms and chloroquine 

as green atoms. (c) Lactate dehydrogenase is depicted as an opaque hydrophobic surface and 

chloroquine as green balls and sticks. (d) The inset shows chloroquine within the hydrophobic pocket. 

(e) Saposin B chains are depicted as blue (chain A), pink (chain B), and red (chain C) ribbons. SAGNM 

predictions are depicted as blue, pink, and red atoms. Chloroquine molecules are shown as green 

atoms. (f) Saposin B is depicted as a transparent hydrophobic surface. SAGNM predictions are 

depicted as yellow atoms and chloroquine green atoms. (g) Saposin B is depicted as an opaque 

hydrophobic surface and chloroquine as green balls and sticks. (h) The two insets show chloroquine 

molecules within the hydrophobic pockets on the surface of the saposin B trimer. The figure is 

produced with the UCSF Chimera program [44]. 

Chloroquine binds selectively and competitively to the nicotinamide adenine dinucleotide 

(NADH) binding pocket of the lactate dehydrogenase enzyme and occupies a position similar to that 

of the adenyl ring of the cofactor. It is thus a competitive inhibitor for this critical glycolytic enzyme 

of malaria [63]. The SAGNM algorithm recognizes residues Val-24, Leu-25, Val-48, Leu-51, Ala-63, 

Figure 1. Chloroquine and its target proteins. Images on the left depict chloroquine bound to the
cofactor binding site of Plasmodium falciparum lactate dehydrogenase (pdb id 1cet). Images on the right
depict chloroquine bound to saposin B (pdb id 4v2o). (a) Lactate dehydrogenase is depicted as a blue
ribbon, self-adjustable Gaussian network model (SAGNM) predictions are yellow and chloroquine
green atoms. (b) Lactate dehydrogenase is depicted as a transparent hydrophobic surface (chain is
visible as ribbon inside surface). SAGNM predictions are depicted as yellow atoms and chloroquine as
green atoms. (c) Lactate dehydrogenase is depicted as an opaque hydrophobic surface and chloroquine
as green balls and sticks. (d) The inset shows chloroquine within the hydrophobic pocket. (e) Saposin B
chains are depicted as blue (chain A), pink (chain B), and red (chain C) ribbons. SAGNM predictions are
depicted as blue, pink, and red atoms. Chloroquine molecules are shown as green atoms. (f) Saposin
B is depicted as a transparent hydrophobic surface. SAGNM predictions are depicted as yellow
atoms and chloroquine green atoms. (g) Saposin B is depicted as an opaque hydrophobic surface
and chloroquine as green balls and sticks. (h) The two insets show chloroquine molecules within the
hydrophobic pockets on the surface of the saposin B trimer. The figure is produced with the UCSF
Chimera program [58].

Chloroquine binds selectively and competitively to the nicotinamide adenine dinucleotide (NADH)
binding pocket of the lactate dehydrogenase enzyme and occupies a position similar to that of the
adenyl ring of the cofactor. It is thus a competitive inhibitor for this critical glycolytic enzyme of
malaria [63]. The SAGNM algorithm recognizes residues Val-24, Leu-25, Val-48, Leu-51, Ala-63, and
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Val-94 as hot. Their influence is spread to the residues Lys-20, Ala-21, Lys-22, Ile-23, Val-24, Leu-25,
Val-26, Gly-27, Ser-28, Gly-29, Gly-32, Ala-37, Ile-40, Asn-44, Leu-45, Gly-46, Asp-47, Val-48, Val-49,
Leu-51, Phe-52, Asp-53, Ile-54, Val-55, Pro-59, His-60, Gly-61, Lys-62, Ala-63, Leu-64, Asp-65, Thr-66,
Ser-67, Cys-76, Lys-77, Val-78, Ser-79, Gly-80, Ser-81, Asp-87, Leu-88, Gly-90, Ser-91, Asp-92, Val-93,
Val-94, Ile-95, Val-96, Thr-97, Ala-98, Ala-133, Phe-134, Ile-135, and Ile-136. See Figure 1a–d and
Figure S1a in the Supplementary Materials. The drug interacts with residues Val-26, Gly-27, Phe-52,
Asp-53, Ile-54, Tyr-85, Ala-98, Phe-100, Ile-119, and Glu-122, and the SAGNM algorithm correctly
recognized residues 26, 27, 52, 53, 54, and 98. Other sites although exposed to solvent are not binding
targets. The chloroquine molecule binds preferentially to hydrophobic sites (see Figure 1c,d) and
avoids neutral and hydrophilic areas.

The lysosomal protein saposin B is a trimer formed by chains A, B, and C. It selectively degrades
lipids and is one of the most studied members of the saposin protein family [64]. Its deficiency or
malfunctioning leads to the accumulation of lipids in the lysosome and results in the lysosomal storage
disease metachromatic leukodystrophy (see [64] and references therein). The SAGNM algorithm
recognizes the residues Ile-8 and Cys-71 in chain A, Ile-8, and Cys-71 in chain B and Cys-71 in chain C
as hot. Their influence is spread to the residues Gln-5, Asp-6, Cys-7, Ile-8, Gln-9, Met-10, Val-11, Pro-67,
Lys-68, Glu-69, Ile-70, Cys-71, Ala-72, Leu-73, Val-74, Phe-76, and Cys-77 in chain A; to the residues
Gln-5, Asp-6, Cys-7, Ile-8, Gln-9, Met-10, Val-11, Pro-67, Lys-68, Glu-69, Ile-70, Cys-71, Ala-72, Leu-73,
Val-74, Phe-76 and Cys-77 in chain B; and to the residues Lys-68, Glu-69, Ile-70, Cys-71, Ala-72, Leu-73,
Val-74, Phe-76 and Cys-77 in chain C. See Figure 1e–h and Figure S1b in the Supplementary Materials.
The SAGNM recognizes that the chloroquine molecules interact with residues Glu-69 and Leu-73
from chain B, out of residues Ala-58, Met-61, Met-65, Glu-69, and Leu-73. With chain C, it recognizes
residues Glu-69 and Leu-73, out of residues Met-61, His-64, Met-65, Glu-69, and Leu-73. With chain
A, it does not emphasize the residue Arg-38, but it recognizes the binding patch with the chain C
(see Figure 1e).

With both chloroquine examples, the expected number of predictions for the SAGNM algorithm
was set to be between 10% and 15%, and this corresponds to the fastest normal mode for each chain.
Our results suggest that chloroquine’s binding to COVID-19 proteins should follow the same patterns
as with lactate dehydrogenase and saposin B. Namely, it should attach to residues which are both
hydrophobic and kinetically active (or very close to kinetically active sites).

The analysis of chloroquine’s nondiscriminatory binding to human and parasitic proteins may
explain its efficiency against parasitic infections as well as offer a glimpse into its toxicity.

3.2. Ivermectin

The drug ivermectin binds glutamate-gated chloride channels and thus increases their permeability
to chloride ions. We analyzed the ivermectin’s binding to the human glycine receptor alpha-3 (pdb
id 5vdh [66]). This structure, besides ivermectin, also has glycine and the potentiator AM-3607 (7c6)
bound to the glycine receptor. The comparison of the crystal structure used in this research to previously
determined structures revealed that the ivermectin binding expands the ion channel pore [66].

The receptor is a pentamer, so we only analyzed the binding to its chain A (Figure 2). The SAGNM
algorithm recognized the residues Glu-157, Ser-158, Phe-168, Phe-207, Thr-208, Cys-209, Ile-210,
Glu-211, Ser-238, Gly-256, Thr-259, Val-260, Val-294, and Leu-298 as kinetically hot. For the list of
residues, their influence is spread to see the list below Figure S2 in the Supplementary Materials.
The expected number of predictions for the SAGNM algorithm was set to be between 25% and 30%,
and this corresponds to the three fastest modes. The larger size of alpha-3 chains required the increase
in the expected number of predictions in comparison to the chloroquine. The three compounds
bind to the residues Arg-27, Ile-28, Arg-29, Phe-32, Phe-159, Gly-160, Tyr-161, Asp-165, Tyr-202,
Thr-204, Phe-207, Ser-267, Ser-268, Ser-278, Val-280, Asp-284, Ala-288, Leu-291, Leu-292 and Phe-295.
The SAGNM algorithm recognized residues Phe-159, Gly-160, Tyr-161, Asp-165, Tyr-204, Phe-207,
Leu-291, Leu-292 and Phe-295. The analysis (Figure 2) reveals that all three compounds (ivermectin,
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glycine, and AM-3607 (7c6)) bind to kinetically active and residues adjoining them [43], some of which
are highly hydrophobic, with ivermectin binding almost exclusively hydrophobic residues. This means
that this drug seeks similar sites on the surface of the COVID-19 proteins.
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Figure 2. Ivermectin and its target protein, human glycine receptor alpha-3 (pdb id 5vdh). (a) Five
pentamer chains (A to E) are represented as ribbons. Ivermectin is represented via green atoms. Glycine
molecules are brown and represented as atoms, and 7C6 molecules are represented as purple atoms.
(b) Chain A from human glycine receptor Alpha-3 is represented as a blue ribbon. SAGNM predictions
are depicted as yellow atoms. Ivermectin is represented via green atoms. The glycine molecule is brown
and represented as spherical atoms. The 7C6 molecule is represented as purple atoms. (c) Chain A from
human glycine receptor alpha-3 is depicted as a transparent hydrophobic surface. SAGNM predictions
are yellow, glycine molecule is represented as brown, 7C6 molecule as purple, and ivermectin as green
atoms. (d) Chain A from human glycine receptor alpha-3 is depicted as an opaque hydrophobic surface.
The glycine molecule is represented as brown balls and sticks, the 7C6 molecule is represented as
purple, and ivermectin as green balls and sticks. (e) The three insets show glycine, 7C6, and ivermectin
molecules inside the hydrophobic pockets on the surface of the chain A of human glycine receptor
alpha-3. The figure is produced with the VMD and UCSF Chimera programs [58,59].
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The SAGNM analysis of the C. elegans glycine receptor (pdb id 3rif, chain B) is given in the
Supplementary Materials (Figure S3). As with human glycine receptor, the small ligands are bound to
residues in chain B of 3rif protein complex recognized by the SAGNM algorithm, which indicates that
the binding process follows a similar pattern in both proteins. A drug to bind the chloride channel
should probably bind to such residues.

3.3. Remdesivir

We used the recently cryo-EM determined structure of SARS-CoV-2 RdRp with double-stranded
template-primer RNA and remdesivir (pdb id 7bv2 [12]) to analyze the RNA and drug binding
to residues in RdRp. The structure reveals that the double-stranded RNA is inserted into RdRp’s
central channel and that the active triphosphate form of remdesivir is covalently bound to the primer
strand at the first replicated base, which effectively terminated the chain elongation (the prodrug
form of remdesivir does not have any inhibitory effect on the polymerization activity of the purified
enzyme [12]). The SAGNM algorithm recognized the residues Gly-503, Thr-538, Ile-539, Thr-540,
Gln-541, Ala-558, Val-560, Ser-561, Val-609, His-613, Glu-665, Met-666, Val-667, Met-668, Ala-702,
Ala-706, Phe-753, Cys-765, and Asn-767 in chain A as hot; the residues Asp-161 and Ile-185 in chain B
as hot; and the residues Lys-7, Ser-10, His-36, Ile-39, Ala-48 and Lys-51 in chain C as hot—see Figure 3.
For the predictions, see the list below Figure S4 in the Supplementary Materials.
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Figure 3. Remdesivir bound to the primer RNA inside the central channel of SARS-CoV-2
RNA-dependent RNA polymerase (RdRp), NSP12 (pdb id 7bv2 described in [12]). (a) Three RNA
polymerase chains, NSP 12, NSP7, and NSP8, are represented as blue, cyan, and dark cyan ribbons.
Remdesivir is represented as green atoms and pyrophosphate as dark green atoms. The dashed lines
represent protein segments missing from the deposited structure. (b) The same structure rotated
approximately 180◦ around the vertical axis. (c) Remdesivir and pyrophosphate inside the binding
pocket, surrounded by the yellow SAGNM predictions (left), and inside the pocket with contact residues
colored by hydrophobicity.
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Our analysis reveals that the residues recognized via the fastest two normal modes (for the
expected number of predictions between 10% and 15%) delineate the central channel (Figure 3a,b).
The enzymatically important residues Lys-500, Ser-501, Lys-545, and Arg-555 are all recognized by
the SAGNM algorithm using just the fastest normal mode, while the residue Asp-761 of the catalytic
center (out of residues Ser-759, Asp-760, and Asp-761 that form the catalytic center) is also emphasized
with the two fastest modes. Residues Lys545 and Arg-555 are important because they stabilize the
incoming nucleotide in the correct position for catalysis. The crystal structure shows that the catalytic
center of RdRp, NSP12 protein (Non-Structural Protein 12), does not have any contacts with base pairs
of RNA emphasizing RdRp’s sequence-agnostic polymerization ability [12]. This is in concordance
with our coarse-grained analysis, based on the positions of C-α atoms only, that shows that stable,
kinetically active residues outline the enzyme’s central channel.

3.4. Sofosbuvir

We performed a comparative analysis of the hepatitis C virus (HCV) RdRp (chain A in pdb id
4wtg [67]; the structure is given with the drug sofosbuvir bound to it) and the COVID-19 RdRp (chain A
in pdb id 6m71 [68]). We followed the steps of Y. Gao and collaborators [68] and attempted to compare
predictions of the binding residues in HCV RdRp to sofosbuvir, to binding residues predictions in
SARS-CoV-2 RdRp. The binding residues in HCV are buried deep inside the polymerase catalytic
core. Our analysis shows that they are generally delineated by the SAGNM predicted residues and
are thus stable. They are recognized by the fastest two normal modes (for the expected number of
predictions set to be between 15% and 20% of all residues) (Figure 4a), but they are not explicitly
hydrophobic (Figure 4b,c). The SAGNM algorithm recognized the residues Met-139, Ala-157, Met-266,
Asn-268, Cys-279, Lys-298, Phe-339, and Met-343 of the HCV RdRp (pdb id 4wtg) as hot. The algorithm
recognized the residues Met-139, Ala-157, Met-266, Asn-268, Cys-279, Lys-298, Phe-339, and Met-343
of the main enzymatic unit of COVID-19 RdRp (pdb id 6m71) as hot. For the full list of hot residues
and predictions for HCV RdRp, see Figure S5 in the Supplementary Materials and the list below it,
and for COVID-19 RdRp, see Figure S6 and the list below it.

The structural alignment of HCV and COVID-19 RdRp (Figure 4e) using the Chimera program [58]
shows that they share the structure of the binding pocket, and also reveals that the catalytic cores
in both proteins are bounded by the SAGNM predictions, but the overall distribution of residues is
only partially similar between the two proteins (Figure 4f). In both cases, the expected number of
targets is between 15% and 20%. With HCV RdRp, this corresponds to the two fastest modes, and with
COVID-19 RdRp and the main catalytic unit NSP12, it corresponds to the seven fastest modes. The
similarities suggest that the interior of the RdRp in coronaviruses are attractive binding spots for small
compounds in general.

The main enzymatic unit of COVID-19 RdRp, NSP12, mostly keeps its conformation between
RNA free and RNA bound structures [12]. Figure 5 shows that cofactors NSP7 and NSP8 seek patches
with kinetically active residues on the surface of NSP12, but they are also in contact with kinetically
less active areas. This should be analyzed in light of the fact that SARS-CoV-2 RdRp (NSP12) cannot
perform its function without NSP7 and NSP8 [12]. The distribution of kinetically very active and
kinetically dormant residues may be important for the overall stability of NSP12. Such distribution
can also act as a stochastic oscillator/transformer that translates random fluctuations of solvent and
proteins into regular vibrations that produce a regular rhythm of translation (i.e., act as a chemical
clock/oscillator).
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Figure 4. Comparative analysis of hepatitis C virus (HCV) (pdb id 4wtg, chain A, left) bound to
sofosbuvir, and COVID-19 RNA directed RNA polymerase (RdRp, pdb id 6m71, chain A, right).
(a) HCV RNA-directed RNA polymerase is depicted as a blue ribbon, RNA is purple, and sofosbuvir is
a green molecule (full atom representation). (b) HCV RdRp is represented as a transparent hydrophobic
surface, SAGNM predictions are yellow and sofosbuvir is represented via green atoms. (c) HCV
RdRp is represented as an opaque hydrophobic surface, and sofosbuvir is represented via green sticks.
(d) The inset shows sofosbuvir inside the polymerase catalytic core. (e) HCV RdRp (blue ribbon)
structurally aligned with COVID-19 RdRp (light blue ribbon). Sofosbuvir is a green molecule inside
the HCV RdRp catalytic core. (f) COVID-19 RdRp as a light blue ribbon. SAGNM predictions are
dark yellow atoms. Sofosbuvir is a green molecule inside the catalytic core. The position stems from
the structurally aligned HCV RdRp. (g) COVID-19 RdRp as hydrophobically colored atoms (residues
hydrophobicities). Sofosbuvir is a green molecule inside the catalytic core. The position stems from the
structurally aligned HCV RdRp. With COVID-19 RNA polymerase, sofosbuvir’s position corresponds
to the position it has when bound to HCV RNA polymerase.
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Figure 5. COVID-19 RNA directed RNA polymerase with cofactors NSP7 and NSP8 (pdb id 6m71).
The NSP 12 chain is cyan, and its SAGNM predictions are yellow. The NSP 7 chain is pink and its
SAGNM predictions are purple. The NSP 8 chain is orange and SAGNM predictions are dark red. The
dashed lines represent segments missing from the coordinates file.
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3.5. Boceprevir

We analyzed the binding modes in SARS-CoV-2 main protease with boceprevir bound to it
(pdb id 6wnp). With the expected number of targets set between 15% and 20% of the total number
of residues, which corresponds to the fastest normal mode, the SAGNM algorithm recognized the
residues Val-20, Asn-28, and Cys-38 as kinetically hot in the SARS-Cov-2 main protease (pdb id 6wnp).
This corresponds to the predictions of Cys-16, Met-17, Val-18, Gln-19, Val-20, Thr-21, Cys-22, Gly-23,
Thr-24, Thr-25, Thr-26, Leu-27, Asn-28, Gly-29, Leu-30, Trp-31, Leu-32, Asp-34, Val-35, Val-36, Tyr-37,
Cys-38, Pro-39, Arg-40, His-41, Val-42, Phe-66, Leu-67, Val-68, Gln-69, Val-86, Leu-87, Lys-88, Cys-117,
Tyr-118, Asn-119, Gly-120, Gly-143, Ser-144, Cys-145, Gly-146, Ser-147 and Met-162. Of all the residues
in contact with boceprevir, the SAGNM algorithm recognized the residues Thr-25, Thr-26, Leu-27,
His-41, Gly-143, Ser-144, and Cys-145—see Figure 6. See also Figure S7 in the Supplementary Materials
for the distribution of hot and predicted residues.
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Figure 6. Boceprevir and its target protein COVID-19 (SARS-CoV-2) main protease (pdb id 6wnp).
(a) COVID-19 Main protease is depicted as a blue ribbon, SAGNM predictions are yellow, and boceprevir
as green atoms. (b) COVID-19 main protease is depicted as a transparent hydrophobic surface, SAGNM
predictions are yellow, and chloroquine is a green molecule. (c) COVID-19 main protease is depicted as
an opaque hydrophobic surface, and chloroquine is depicted via green balls and sticks. (d) The inset
shows boceprevir inside the binding pocket.

3.6. Eflornithine

The drug α-difluoromethylornithine (DMFO, eflornithine) prohibits binding of the natural
non-coded amino acid ornithine to the active site on the surface of Trypanosoma brucei ornithine
decarboxylase (ODC, pdb id 1njj [69]). The binding of this drug should follow the binding patterns of
ornithine. Figure 7 shows that the SAGNM algorithm accurately detects binding sites for both ornithine
and G418 (geneticin), an aminoglycoside antibiotic. In contrast to chloroquine and ivermectin, both
compounds bind preferably to the hydrophilic sites on the surface of ODC (Figure 10b–d). If applied to
treat COVID-19, the drug eflornithine should bind to similar sites on the surface of COVID-19 proteins
(hydrophobic and kinetically active, i.e., stable).

With the expected number of targets between 10% and 15% of the total number of residues,
which corresponds to the fastest normal mode, the SAGNM algorithm recognized the residues Asp-44,
Ala-281, and Phe-284 of the chain A of 1njj as kinetically hot. The corresponding predictions are Thr-21,
Phe-40, Phe-41, Val-42, Ala-43, Asp-44, Leu-45, Gly-46, Asp-47, Ile-48, Gly-240, Thr-241, Arg-277,
Tyr-278, Tyr-279, Val-280, Ala-281, Ser-282, Ala-283, Phe-284, Thr-285, Leu-286, Ala-287, Val-288,
Glu-384, Asp-385, Met-386, Gly-387, Ala-388, Tyr-407, Val-408, Val-409, and Ser-410. See Figure S8 in
the Supplementary Materials for their distribution.
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Figure 7. D-ornithine and its target protein Trypanosoma brucei ornithine decarboxylase (pdb id 1njj).
(a) Ornithine decarboxylase chains A (red) and B (blue) are depicted as ribbons, with D-ornithine and
G-418 as green and dark green molecules, respectively. (b) Ornithine decarboxylase chains A and B are
depicted as hydrophobicity surface, with D-ornithine and G-418 as green and dark green molecules,
respectively. (c) Ornithine decarboxylase chain A depicted as a transparent hydrophobicity surface,
with SAGNM predictions are yellow atoms, and with D-ornithine and G-418 as green and dark green
molecules. (d) D-ornithine and G-418 molecules depicted as colored bonds and sticks, correspondingly
to the atom type and inside pockets on the surface of ornithine decarboxylase.



Biomolecules 2020, 10, 1346 16 of 26

3.7. Spike Glycoproteins and Their Interactions

3.7.1. ACE2 Binding Patterns to SARS and COVID-19 Spike Glycoproteins

The analysis of the contact patterns between the ACE2 receptor and the spike glycoprotein
receptor binding domains (RBD) in SARS (pdb id 6cs2 [70]) and SARS-CoV-2 (pdb id 6m0j [7]) reveals
a difference in the distribution of kinetically active residues important for binding between RBD and
ACE2 (Figure 8). The conformationally stable SARS-RBD has a smaller number of kinetically active
and adjoining residues (SAGNM predictions) in direct contact with ACE2 (Figure 8a–c), while SAGNM
predictions in COVID-19 RBD are directly oriented and are in contact with the active residues in ACE2
(Figure 8d–f). In SARS, active residues are mostly perpendicular to the interfacial plane (compare
the distributions of Cα atoms in Figure 8a,d). This should make the binding affinity between the
COVID-19-RBD and the ACE2 receptor stronger than between the SARS-RBD and the ACE2 receptor.
In both cases, the predicted residues are recognized via the fastest vibrational mode [43]. For 6cs2,
the expected number of targets was between 22% and 25%, and this corresponds to the first, fastest
mode for SARS spike glycoprotein (chain B), and the fastest six modes for ACE2 (chain D). For 6m0j,
the expected number of targets was between 20% and 22%, and this also corresponds to the first, fastest
mode for the COVID-19 spike glycoprotein receptor-binding domain (chain E), and the fastest six
modes for ACE2 (chain A). For the full list of hot residues and predictions for both cases, see Figure S9
in the Supplementary Materials and the list below it.

3.7.2. SARS-CoV Spike Glycoprotein and Glycans

The analysis of kinetically active and adjoining residues in the SARS-CoV spike glycoprotein
monomer (pdb id 6nb6) reveals that they are attractive binding spots for glycans (Figure 9). Glycans
form the glycan shield, which was already suggested to assist in immune evasion similarly to the HIV-1
envelope trimer [72]. The kinetically active residues recognized by the SAGNM algorithm [43] can be
used as target areas for drugs aimed at removing/disrupting the viral glycan shield. Those residues
are not particularly hydrophobic and should be targeted by drugs that bind to hydrophilic patches,
and have complementary charges.

3.7.3. SARS Spike Glycoprotein RBD and Human Antibody Fragment

We also analyzed the distribution of SAGNM recognized residues in the structure formed by
the SARS spike glycoprotein RBD and the human neutralizing S230 antigen-binding fragment (FAB)
(pdb id 6nb6). The analysis reveals that the S230 antibody binds to kinetically active residues in SARS
RBD, while heavy and light chains in S230 communicate via kinetically active residues (see Figure 10).
The binding residues are mostly neutral to hydrophilic; thus, any potential drug should be able to
bind to similar surfaces (neutral/hydrophilic and stable). For the list of hot residues and predictions,
see Figure S10 in the Supplementary Materials and the list below it.
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Figure 8. SARS spike glycoprotein chain B RBD bound to the angiotensin-converting enzyme 2 (ACE2)
receptor (pdb id 6cs2) in comparison to COVID-19 spike glycoprotein chain A RBD bound to the ACE2
receptor (pdb id 6m0j). (a) The ACE2 receptor is represented via blue atoms and its SAGM predictions
are yellow atoms. SARS spike glycoprotein is represented via red atoms, and its SAGNM predictions
and green atoms. (b) The ACE2 receptor is represented as a blue ribbon, and its SAGM predictions
are yellow atoms. SARS spike glycoprotein is the red ribbon, and its SAGNM predictions and green
atoms. (c) Contact areas for both chains are represented as hydrophobicity surfaces. The contact chains
in each case are shown as ribbons, and predictions are represented via Cα atoms only. (d) The ACE2
receptor is represented via blue atoms, and its SAGM predictions are yellow atoms. COVID-19 spike
glycoprotein is represented via red atoms, and its SAGNM predictions and green atoms. (e) The ACE2
receptor is represented as a blue ribbon, and its SAGM predictions are yellow atoms. COVID-19 spike
glycoprotein is the red ribbon, and its SAGNM predictions are green atoms. (f) Contact areas for both
chains are represented as hydrophobic surfaces. The contact chains in each case are shown as ribbons,
and predictions are represented via Cα atoms only.
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Figure 9. SARS-CoV spike glycoprotein (Chain B, pdb id 6nb6) with glycans (NAG, BMA, MAN)
bound to it. (a) Ribbon-like representation of SARS spike glycoprotein. The SAGNM predictions are
yellow atoms. BMA molecules are represented via purple atoms. MAN molecules are represented
via orange atoms. NAG molecules are represented via green atoms. Cyan bars represent missing
glycoprotein segments. Circles represent areas where the SAGNM predictions recognize real binding
spots. (b) SARS spike glycoprotein is depicted via hydrophobicity colored atoms. Glycans (NAG,
BMA, MAN) are represented via colored bonds (same colors as above). (c) SARS spike glycoprotein is
depicted via transparent hydrophobicity colored atoms. Glycans (NAG, BMA, MAN) are represented
via colored bonds (same colors as above). The SAGNM predictions are yellow atoms. Glycans (NAG,
BMA, MAN) are represented via colored atoms.
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Figure 10. Receptor binding domain (RBD) of SARS-CoV spike glycoprotein (chain A, pdb id 6nb6)
with the human neutralizing S230 antibody FAB fragment. (a) SARS-CoV RBD (blue, chain A) with
heavy (green, H, and I) and light (red, L, and M) chains. Predictions are cyan (SARS), yellow (S230
light), and light green (S230 heavy). (b) Hydrophobic surface of SARS RBD bound to S230 (chains H
and L). (c) Transparent hydrophobic surface of SARS RBD and S230 (chains H and L) with predictions.

4. Discussion and Conclusions

COVID-19 is the first modern, severe global pandemic caused by a coronavirus, and there are
no guarantees that it will be the last. Our society needs not only to develop an effective and efficient
treatment for the current disease but also has to have a set of protocols and standards to promptly
address all future, similar pandemics. In this manuscript, we presented our strategy to recognize
potential drug-binding residues in human and viral proteins. We analyzed six currently approved
drugs (chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and eflornithine). Our results
indicate that small, drug-like compounds preferentially bind to kinetically active and adjoining residues,
and thus seek stable residues characterized by fast normal modes with small amplitude fluctuations [43].
Some of the drugs we analyzed preferentially seek active patches that are hydrophobic (chloroquine,
ivermectin), while others prefer hydrophilic surfaces (remdesivir, sofosbuvir, eflornithine). We can
postulate that in a water environment, drugs that bind to hydrophilic patches will be more stable,
as their removal will lead to the reduction in structural entropy, but a full account of this proposition will
require calculations of binding free energy differences using, for instance, still numerically expensive
molecular dynamics simulations [73–76]. We can also propose that the drugs/small molecules that
bind to deep pockets will be more stable, and thus more effective. Our algorithm accurately recognizes
such pockets as binding spots for drugs (Figure 1a, Figure 3, and Figure 10), and small peptides (see,
in particular, Figure 6a in [43]).

Multidrug cocktails are frequently used to treat viral diseases [77]. Our analysis shows that in
designing antiviral drug cocktails, the binding affinity between drugs and kinetically active (stable)
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sites should be combined with the information on their hydrophobic and hydrophilic properties in an
attempt to avoid binding competition, increase drug cocktail efficiency, and reduce toxicity and other
unwanted side effects.

Our results are concordant with full atom docking and simulations studies [13–19] that emphasized
sofosbuvir, remdesivir, hydroxychloroquine, and ivermectin, compounds that we also analyzed.
This indicates that protein–ligand docking is a multistep process, guided both by coarse-grained
properties of a bigger binding partner, and detailed, atomic-scale properties of the binding pocket and
a small ligand.

In our analysis, we used both viral–parasitic, as well as human proteins. The analysis shows
that kinetically active residues exist in both human and non-human proteins/enzymes and that drugs
bind indiscriminately to them regardless of their origin. The compounds that bind to human proteins
potentially offer longer-lasting treatments as host cells and tissues have less chance of developing drug
resistance through single point mutations.

The procedure we described here is fast and effective and can analyze a protein structure
much faster than computationally more demanding docking or molecular dynamics simulations,
with complex multistep pipelines [78–81]. It is based on the assumption that proteins do not experience
significant conformational changes upon ligand binding, which is often the case when binding spots are
hydrophobic [61]. Its advantage is not in its efficiency, but also in its ability to suggest general binding
patterns between proteins and drugs or small peptides. It can be used to filter binding areas on protein
surfaces and thus facilitate preclinical stages in drug design. Binding spots in various proteins can be
very effectively predicted with our SAGNM approach and accessed with other bioinformatics tools
for charge and shape complementarity, exposed surface area, binding affinity, atomic mass, and other
properties as well. However, the SAGNM algorithm has its limitations. It predicts binding areas
in relatively broad strokes. Additional tools able to filter out residues with relatively small surface
accessible areas, and/or with incompatible charge and hydrophobic properties to the ligands of interest
could improve the prediction. Additionally, the SAGNM algorithm cannot determine binding free
energies or binding orientations of small molecules. For that aim, other docking tools or molecular
dynamics studies should be applied, as explained above.

The SAGNM procedure is often not effective with homodimers or with protein complexes formed
of similarly sized protein chains [43]. When two molecules of different sizes form a complex, the larger
partner, i.e., the protein, does not have to significantly change its conformation during binding to
accommodate smaller ligand [61]. This preserves its contact map (matrix Γ) and the distribution of fast
modes and hot residues. However, when two proteins of similar sizes interact, they may rearrange
their conformations simply through their sheer size, and thus interrupt their contact maps (Γ matrices).
See Figure 1, Figure 4, Figure 5, and Figure 6c in [43] for the analysis and statistics of cases where the
SAGNM fails. Therefore, the SAGNM approach is primarily aimed at binding residues recognition
in cases where the binding partner is a small compound or small peptide. Its effectiveness can be
improved by combining its output with other tools. Therefore, it can be used as a step in complex
docking and simulation pipelines.

We envision the SAGNM procedure as the first step in a ligand docking and free energy simulation
pipeline. It can suggest an area on the surface of the target protein where potential drugs should bind.
The next steps will limit their calculation to that area only. If the area suggested by the SAGNM is a
tenth of the protein’s surface area, this means that all subsequent computational costs are reduced
accordingly. The cost of SAGNM and surface area calculations is negligible in comparison. Therefore,
the approach based on the SAGNM algorithm offers an effective and efficient method to speed up
preclinical in silico stages in structural drug design.

Recent advances in machine learning helped advance our ability to predict and design protein
structures [82], but the full theoretical foundations for protein folding and binding is still lacking.
The quality of the machine learning protocol directly depends on the quality and size of training
datasets and, thus, in many ways follows classical methods based on statistical potentials and homology
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modeling [83,84]. Our results can also help in that respect as they offer interpretation on how residue
packing inside protein segments guides their assemblage.

The results depicted here show that in proteins that interact with small, drug-like molecules
contacting scaffolds are defined by kinetically hot and residues surrounding them, regardless of
the nature of the small ligand, assuming that the protein structure does not change significantly
after binding. A similar conclusion related to protein–protein interactions was given in [43]. As we
showed above, the full binding behavior cannot be accessed through the analysis of kinetically active
residues and their neighbors only. The full atom analysis is still required for the detailed assessment of
protein–drug binding. The coarse-grained analysis (SAGNM algorithm) thus perceives only the outline
of the binding funnel, while a full atom analysis (docking and binding free energy studies) grasps finer
patterns inside that outline. This approach should in principle be similar to the current improvements
in deep neural network (DNN) architectures aimed at image recognition and classification (Brendel
and Bethge [85]). The improvement is based on splitting images into small local image features
(e.g., outlines) without taking into account their spatial ordering, a strategy closely related to the pre
deep-learning bag-of-features (BoF) models [86]. The image classification improvement stems from the
observation that standard DNN architectures perceive images primarily through textures, as opposed
to human perception, which is primarily based on the outlines and shapes of objects [87]. If we translate
this to the problem of protein–ligand binding, we can say that the outline is determined primarily by
the protein and the packing of its residues, and fine binding features (“binding textures”) stem from
the joint properties of the smaller binding partner and the binding pocket of the protein. In this sense,
the SAGNM approach is similar to human vision, and molecular docking and dynamics studies to the
machine, DNN-based vision. This observation opens a space for further work, where the molecular
binding will be treated as a two-step process where the coarse-grained shape of a binding funnel will
be determined by the larger partner in the first step, and the final binding position and orientation by
the multiple and detailed features of the binding funnel and a smaller partner inside that funnel.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/9/1346/s1,
Figure S1: Hot residues and contact predictions for Lactate Dehydrogenase and Saposin B, determined by SAGNM,
Figure S2: Ivermectin and its target protein, human glycine receptor Alpha-3 (pdb id 5vdh) with hot 24 residues
and contact predictions determined by SAGNM, Figure S3: Ivermectin and its target protein, C. elegans glycine
receptor Alpha-3 (pdb id 3rif), Figure S4: Remdesivir bound to the primer RNA inside the central channel of
SARS-COV-2 RNA 83 dependent RNA polymerase (RdRp), NSP12) (pdb id 7bv2), Figure S5: Sofosbuvir and
its target protein Hepatitis C virus (HCV) RdRp (chain A in pdb id 4wtg) 117 with hot residues and contact
predictions determined by SAGNM, Figure S6: Covid-19 RNA directed RNA polymerase with cofactors NSP7
and NSP8 (pdb id 6m71), Figure S7: Hot residues and predictions for the SARS-Cov-2 main protease bound to
boceprevir (pdb id 6wnp), Figure S8: Hot residues and predictions for ornithine decarboxylase (pdb id 1njj) chain
A, Figure S9: Hot residues and predictions for the ACE2 receptor with SARS-COV Spike glycoprotein (pdb id
6cs2, left) and the ACE2 receptor with Covid-19 Spike glycoprotein (pdb id 6m0j, right), Figure S10: Hot residues
and predictions for the receptor binding domain (RBD) of SARS-COV spike glycoprotein (Chain A, pdb id 6nb6)
with human neutralizing S230 antibody FAB fragment.
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