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Fetal chronic hypoxia leads to intrauterine growth restriction (IUGR), which is likely to

reduce oxygen delivery to the brain and induce long-term neurological impairments.

These indicate a modulatory role for oxygen in cerebrovascular development. During

intrauterine hypoxia, the fetal circulation suffers marked adaptations in the fetal

cardiac output to maintain oxygen and nutrient delivery to vital organs, known as the

“brain-sparing phenotype.” This is a well-characterized response; however, little is known

about the postnatal course and outcomes of this fetal cerebrovascular adaptation. In

addition, several neurodevelopmental disorders have their origins during gestation. Still,

few studies have focused on how intrauterine fetal hypoxia modulates the normal brain

development of the blood-brain barrier (BBB) in the IUGR neonate. The BBB is a cellular

structure formed by the neurovascular unit (NVU) and is organized by a monolayer of

endothelial and mural cells. The BBB regulates the entry of plasma cells and molecules

from the systemic circulation to the brain. A highly selective permeability system achieves

this through integral membrane proteins in brain endothelial cells. BBB breakdown and

dysfunction in cerebrovascular diseases lead to leakage of blood components into the

brain parenchyma, contributing to neurological deficits. The fetal brain circulation is

particularly susceptible in IUGR and is proposed to be one of the main pathological

processes deriving BBB disruption. In the last decade, several epigenetic mechanisms

activated by IU hypoxia have been proposed to regulate the postnatal BBB permeability.

However, fewmechanistic studies about this topic are available, and little evidence shows

controversy. Therefore, in this mini-review, we analyze the BBB permeability-associated

epigenetic mechanisms in the brain exposed to chronic intrauterine hypoxia.

Keywords: chronic intrauterine hypoxia, brain endothelial dysfunction, cerebral circulation, fetal growth

restriction, BBB permeability

INTRODUCTION

Fetal growth restriction (FGR) is a severe condition during pregnancy, where the fetus does not
grow according to its potential as a result of an adverse uterine environment (Kingdom and Smith,
2000). Placental insufficiency is the predominant cause of FGR, leading to chronic fetal hypoxemia
and intrauterine growth restriction (IUGR) (Kesavan and Devaskar, 2019). In addition, several
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babies are exposed to chronic hypoxia and IUGR due to
pregnancy at a high altitude (Herrera et al., 2015). Intrauterine
hypoxia induces an adaptive fetal redistribution of cardiac
output, favoring vital organs such as the brain, known as
the brain sparing effect (Giussani, 2016). In this scenario, the
cerebral and heart circulations vasodilate, with a concomitant
pronounced peripheral vasoconstriction (Villas-Bôas et al., 2008;
Giussani, 2016). However, brain vasodilation does not ensure
normal brain development in growth-restricted fetuses, and the
neurodevelopmental outcomes will depend on the timing of
hypoxia, the severity of IUGR, and the gestational age at delivery
(Padilla et al., 2011; Baschat, 2014). Studies in animal models
have demonstrated that gestational chronic hypoxia reduces
the neuronal number and vascular and synaptic numbers in
the hippocampus, impairing memory function in adult rats
(Camm et al., 2021). In addition, IUGRmay compromise cerebral
vascular homeostasis by increased excitotoxicity, oxidative stress,
and neuroinflammation (Miller et al., 2016; Sweeney et al.,
2019). In structural terms, IUGR is associated with reduced
brain and cortical volume, showing a reduced number of cells,
and myelination shortages. These conditions are evidenced by
less efficient networks with decreased long-range connections
(Miller et al., 2016). Even more, some authors have proposed
an association of fetal hypoxia to later neurodegenerative and
neuropsychiatric disorders (Faa et al., 2014, 2016).

However, the principal factor of cerebrovascular diseases is the
BBB breakdown, characterized by blood component infiltration,
aberrant transport, and clearance of molecules into the central
nervous system (CNS) (Yang and Rosenberg, 2011; Zhao et al.,
2015). Structurally, the core of the BBB is a monolayer of brain
endothelial cells; nevertheless, these cells cannot form a barrier
on their own (Gastfriend et al., 2018). Indeed, the development
of integrity characteristics in the cerebrovascular tree requires
organized cells interactions from glial cells (i.e., astrocytes,
microglia), pericytes, and neurons. Such a complex relationship
implies the existence of a neurovascular unit (NVU) (Sweeney
et al., 2019). The NVU represents a structural and functional
multicellular interaction between cerebral parenchyma and brain
circulation (Iadecola, 2017), establishing a highly selective BBB
that favors cerebral homeostasis (Bell et al., 2020) (Figure 1).
The complexity of this unit opens a wide and interesting field in
the search for understanding the multiple processes that mediate
cerebrovascular health.

NEUROVASCULAR UNIT IN
INTRAUTERINE GROWTH RESTRICTION

The NVU plays various roles within the brain. This unit is
responsible for the homeostasis and regulation of the cerebral
blood flow in response to neuronal activity changes, known as
neurovascular coupling (NVC) (Iadecola, 2017; Hendrikx et al.,
2019). In addition, the same unit is in charge of protecting the
CNS from harmful blood-borne and toxic substances (Blanchette
and Daneman, 2015; Keaney and Campbell, 2015). From a
structural view, three layers determine the barrier function in
CNS, (i) the arachnoid barrier, (ii) the blood-cerebrospinal fluid

barrier (BCSFB), and (iii) the blood-brain barrier (Tietz and
Engelhardt, 2015). While the arachnoid barrier and the BCSFB
have moderate permeability in the fetal, neonatal, and adult
period, the BBB is the closest structure to the brain cells and
hence, is considered the most important barrier (Benz and
Liebner, 2020). The BBB is formed by endothelial cells that
separate the capillary blood from the brain interstitial fluid and
parenchyma, limiting transcellular and paracellular transport
mechanisms through a differential expression of tight junctions
(TJ), adherens junctions (AJ), and possibly gap junctions (GJ) in
the inter-endothelial cleft (Figure 1). Also, the BBB comprises
vascular smooth muscle cells, astrocytes, microglia, pericytes,
and oligodendrocytes. These cells contribute to the permeability
and integrity of the BBB through their intimate anatomical
relationship (Liebner et al., 2018). However, the cross-talk
between each cell type is partially understood, and our knowledge
of neonatal BBB development remains incomplete.

Every constituent cell of the NVU contributes to the
BBBs integrity, and any dysfunction might result in the
barrier breakdown, with dramatic consequences such as
neuroinflammation and neurodegeneration (Kempuraj et al.,
2016; Sweeney et al., 2019). Although there is little or no evidence
of the effects of IUGR on vascular permeability in human
neonates exposed to hypoxia, there is plenty of data obtained
from different animal models (Clancy et al., 2001, 2007; Kaur and
Ling, 2008; Disdier and Stonestreet, 2020). Thus, the neonatal
NVU increases the BBB’s permeability by structural changes
in the seal given by TJ, AJ, or GJ proteins. Brain endothelial
cells contain low fenestration and selective rates of transcytosis
mainly due to the high expression of the TJ proteins. TJ are a
combination of transmembrane proteins (claudins and occludin)
and cytoplasmic adapter proteins called zonula occludens (ZO)
that interact with cytoskeleton filaments (Gonzalez-Candia
et al., 2021). Decreases in TJ proteins expression have been
reported after hypoxic exposition in neonatal brains. Specifically,
hypoxia induces a decrease in claudin 5 and occludin protein
levels, which increases the paracellular diffusion of solutes and
ions across the BBB (Andersson et al., 2021). Furthermore,
claudins decrease in the long term is associated with BBB
breakdown and neurovascular disorders in humans (Tietz and
Engelhardt, 2015). BBB functions have mainly focused on TJs;
however, cadherin/catenin interaction, as AJ proteins, regulate
cell-cell adhesion between endothelial cells, contributing to
the overall junction arrangement and BBB integrity (Li et al.,
2018). Vascular endothelial (VE)-cadherin is responsible for
the assembly of AJ and is downregulated by BBB breakdown
signaling events (Daneman and Prat, 2015). For instance,
under neuroinflammatory conditions, PI3Kα triggers TNFα
signaling to cause VE-cadherin internalization, reducing the
protein levels at junctions and impairing endothelial barrier
function (Cain et al., 2010). Gestational or postnatal hypoxia
can induce an unbalanced oxidative tone, as described elsewhere
(Herrera et al., 2014; Villamor et al., 2019). The induction
of the NADPH oxidase (NOX) system by proinflammatory
mediators can generate BBB permeability by downregulation of
proteins involved in intercellular junctions such as VE-cadherin,
occludin, and claudin-5 (Rochfort et al., 2014). Another family
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FIGURE 1 | Schematic representation of the BBB permeability mechanisms. The NVU is the main anatomical unit of the blood-brain barrier (BBB), sheltering the brain

from systemic influences by limiting transcellular and paracellular transport. The Brain endothelial cells contain no fenestrae and undergo very low rates of transcytosis.

Tight junctions, adherens junctions, and gap junctions formed between adjacent endothelial cells underlie the physical barrier that impedes paracellular diffusion of

ions, macromolecules, and other solutes. Fetal chronic hypoxia may determine increased permeability in the BBB through pro-inflammatory and oxidative

mechanisms, inducing degradation and damage in the membrane’s integral proteins, leading to BBB breakdown. MMPs, metalloproteinases; NOx, NADPH oxidase;

NVU, neurovascular unit; ROS, reactive oxygen species; TNF-R, Tumor necrosis factor receptor; VEGF-R, vascular endothelial growth factor receptor; ZO, zonula

occludens.

of proteins involved in the permeability of the BBB is the GJ,
constituted by connexins. Connexin hemichannels have been
implicated in the propagation of injury by hypoxia (Kim et al.,
2017). Interestingly, neonatal hypoxia can negatively regulate the
expression of connexin 43 (Davidson et al., 2013). In addition,
the blockade of connexin 43 decreased oligodendrocyte death
and recovered oligodendrocyte maturation in preterm fetuses
exposed to perinatal asphyxia (Davidson et al., 2014).

Inflammatory mediators are critical for BBB disruption.
Microglia, neurons, astrocytes, and endothelial cells can release
proinflammatory cytokines and chemokines, modulating
adhesion molecules and transmigration of activated immune
cells into the brain parenchyma (Jickling et al., 2015; Huang et al.,
2016). In endothelial cells, proinflammatory molecules regulate
the expression of adhesion molecules such as intercellular
adhesion molecule 1 (ICAM-1) and vascular cell adhesion
protein 1 (VCAM-1), physiologically expressed at low levels in
the BBB. However, their expression is increased in response to
hypoxia, increasing the extravasation of molecules into the brain
parenchyma (Kong et al., 2018).

In addition, the increase in cellular levels of TNF-α
and IL-1β has been related to the decrease in occludin
expression and ZO-1 and 2 in the hypoxic brain (Rochfort
and Cummins, 2015; Abdullah et al., 2018). This causes an
increased paracellular permeability, modulation of transcytosis,
and endocytotic transport mechanisms, leading to changes in
transcellular transport and inflammatory damage in the brain
parenchyma (Sweeney et al., 2019). Besides, reactive glial cells,

members of the NVU, are likely to contribute to the permeability
of the BBB observed in cerebral hypoxia through downregulation
of paracellular proteins such as Claudin-5 (CLDN5), occludin,
and ZO-1 (Obermeier et al., 2013). On the other hand, hypoxia-
induced vascular endothelial growth factor (VEGF) type 2
receptor (VEGFR-2) pathway activation, increasing permeability
in the brain microvascular endothelium by decreasing junctional
proteins claudin-5, occludin, and ZO-1 (Castañeda-Cabral et al.,
2020). Besides, in postnatal cerebral ischemia, VEGF may
affect BBB damage by inducing metalloproteinases (MMP)-2
expression, increasing the BBB permeability by brain endothelial
dysfunction (Shen et al., 2018).

Oxidative stress has a critical role in BBB breakdown in
different neurological conditions (Olmec and Ozyurt, 2012).
Although the hypoxia generated in IUGR is sufficient to generate
a redox imbalance (Myatt and Cui, 2004; Herrera et al.,
2014), direct evidence in human or animal models of BBB
permeability is associated with IUGR remains to be elucidated.
CNS contains several sources of ROS, such as NOX, uncoupling
of the mitochondrial electron transport chain, xanthine oxidase
isoform, and uncoupled nitric oxide synthase (NOS) (Warner
et al., 2004). The NOX family seems to be a principal source of
oxidative stress in the hypoxic brain through the generation of
superoxide (O2•-) radicals (Yang et al., 2019). The predominant
isoform is the NOX2 in brain endothelial cells, and it has been
observed that the Nox2- knockout mice induce less MMP-
9 and diminished expression of occludin, a critical protein
of the BBB permeability (Liu et al., 2011). In addition, ROS
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generated by NOX can act as activators of MMPs (Li et al.,
2018), thus enhancing their proteolytic degradation to the BBB.
Among MMP family members, MMP-2 and 9 possess a substrate
specificity for fibronectin, laminin, collagen fibers, and TJ, all
of them structural components of the BBB. Interestingly, these
proteins can be induced by hypoxia (Rosenberg and Yang, 2007).

PERINATAL PROGRAMMING OF THE NVU:
POTENTIAL EPIGENETIC MECHANISMS

Adverse environmental conditions during development, such
as prenatal hypoxia, can increase the risk of diseases in
adulthood, such as vascular and parenchymal brain diseases
(Berson et al., 2018). Basic and translational studies have
demonstrated that epigenetic programming of gene patterns in
response to gestational stress have a critical function in the
fetal origins of neurological cells dysfunction (Ducsay et al.,
2018). In particular, during gestational hypoxia, the epigenetic
programming of genes determines the functional outcome of
the genome (Ducsay et al., 2018). Epigenetics as heritable
patterns in gene expression which are not associated with
DNA sequence alteration (Smith et al., 2016). The epigenetic
mechanisms include methylation and/or demethylation of DNA,
post-translational modifications of histones, and non-coding
RNAs such as microRNAs (Casanello et al., 2016; Ducsay
et al., 2018; Zeng and Chen, 2018). Epigenetic events respond
to endogenous and exogenous signals, having central roles in
regulating appropriate sets of gene expression (Zeng and Chen,
2018). Epigenetic modifications serve as remembrance in early
life stages, that can induce long-term changes in gene expression,
which may induce disease in later postnatal life (Ducsay et al.,
2018).

Hypoxic stress activates multiple epigenetic mechanisms
in the fetal brain that increase the vulnerability for
neurodevelopment disturbances in adult offspring (Ma et al.,
2014; Faa et al., 2016), such as increased vulnerability to ischemic
or hypoxic insults (Li et al., 2012; Gonzalez-Rodriguez et al.,
2014), disruption of the normal endocrine axis (Wood et al.,
2014), and increased risks for adult cardiovascular disease
(Ducsay et al., 2018). The mechanisms underlying the effects of
chronic fetal hypoxia and IUGR on epigenetic programming of
the fetal brain endothelial cells or NVU has not been studied.
However, the effects induced by hypoxia and oxidative stress in
the fetal brain suggest the involvement of epigenetic mechanisms
(Camm et al., 2021).

DNA methylation regulates the accessibility of DNA to the
transcription machinery modifying the chromatin state. This
DNA methylation is generated by a group of enzymes known
as DNA methyltransferases (DNMTs) (Ducsay et al., 2018);
composed by three principal isoforms: maintenance DNMTs
(DNMT1) and de novo DNMTs (DNMT3a and DNMT3b)
(Moore et al., 2013). However, no mechanisms have been
proposed to demonstrate the DNA methylation events during
gestational hypoxia, that may regulate the expression of BBB
structural proteins and permeability. In this sense, the effects
of hypoxia and IUGR can only be extrapolated in neonatal

studies or adult models of cerebral ischemia. In models of
cerebral hypoxia-ischemia, an increase of DNA methylation was
described as an increase in global DNA methylation in the
murine cerebral hemispheres, in the promoter of tissue inhibitors
of MMP-2 (TIMP2). Increased MMP-2 and MMP-9 expression
and activity can affect BBB permeability by proteolysis of
extracellular matrix and structural proteins in brain endothelial
cells, increasing the BBB breakdown (Figure 2) (Yang et al.,
2007; Wang et al., 2012). Late gestational maternal hypoxia in
rats induce hypomethylation in the fetal brain by a mechanism
dependent on HIF-1α expression (Li et al., 2016). This is relevant
as the HIF-related pathway is recognized as the primary sensor
and effector for hypoxic cellular adaptation in the fetus (Herrera
et al., 2014). Hypomethylation induced by maternal hypoxia
increased the vulnerability to subsequent postnatal hypoxia and
worsened neurobehavioral outcomes in rat pups (Chen et al.,
2008; Li et al., 2016). Interestingly, some authors have shown that
HIF-1 expression levels and its transcriptional activity are under
strong epigenetic regulation (Nguyen et al., 2013; Ma et al., 2014)
and others that HIF-1 itself controls the expression of several
epigenetic regulators (Bustelo et al., 2020). The role of HIF in BBB
functional programming during fetal hypoxia is still unknown
and needs further study.

Histone modification by acetylation and deacetylation plays a
central role in chromatin remodeling and epigenetic regulation.
In particular, histone deacetylases (HDAC) are potential
therapeutic targets in different neurological conditions (Gräff
and Tsai, 2013). In a recent study, the treatment with
a HDAC inhibitor in mice subjected to cerebral ischemia
leads to an enhanced expression of the TJ proteins ZO-1,
Occludin, and Claudin-5 in brain endothelial cells, further
decreasing the BBB permeability (Su et al., 2020). Conversely,
hypoxia and glucose deprivation in the brain promotes
HDAC9 expression in endothelial cells, which has been
associated to decreased expression of ZO-1, claudin-5, and
occludin (Shi et al., 2016). These findings demonstrate the
effect of hypoxia on the post-translational modifications
of histones in the regulation of proteins involved in the
maintenance of the BBB structure and that these mechanisms
may be determining the dysfunction of the BBB induced by
the hypoxia.

Another mechanism of epigenetic regulation is mediated by
microRNAs, which cause the degradation of genes involved in
the development and progression of BBB dysfunction (Figure 2)
(Ma et al., 2020). Currently, there are no data relating to
IUGR and microRNA regulating BBB structure and function;
however, evidence in adult pathophysiology may give some
clues about microRNAs and BBB disruption. Hypoxic-ischemic
models in adult animals have shown that microRNAs can
directly or indirectly degrade BBB proteins. In this sense, it has
been reported that miR-132 is negatively regulated by hypoxia,
which increases MMP-9 activity, which degrades TJ proteins
in brain endothelial cells or extracellular matrix components
in the NVU, favoring an increased permeability of the BBB
(Cichon et al., 2014). There are significant correlations between
microRNAs and TJs by hypoxia in adult models (Toyama
et al., 2017). For instance, miR-125-5p has a critical role in
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FIGURE 2 | Potential epigenetic mechanisms determining impairment of the BBB permeability by gestational hypoxia. Hypoxic and IUGR injury causes a series of

molecular events, including programming of BBB through genomic DNA methylation signature and an altered expression of microRNAs. These mechanisms

contribute to changes in the expression of molecules related to junctional complexes of the BBB, increasing BBB permeability and further brain damage. AJ, adherens

junction; BBB, blood-brain barrier; GJ, gap junction; MMPs: metalloproteinases; NVU, neurovascular unit; TJ, tight junction; ZO, zonula occludens.

the brain endothelial tightness during an inflammatory response
(Toyama et al., 2017). Part of this response involves specific
mRNA targets of miR-125-5p by down-regulating Claudin-
1 and Claudin-5, and disrupting adhesion molecules in BBB
(Toyama et al., 2017). Furthermore, cerebral endothelial miR-
144 downregulates claudin-5, Claudin-12, occludin, and ZO-1,
ZO-2, and ZO-3 in a model of BBB permeability associated
with a blood-tumor barrier (Cai et al., 2017). Cerebral ischemia
triggers an enhanced expression of miR126, which is considered
endothelial-specific. miR126 is one of the most studied
microRNAs that regulates vascular inflammation. miR126
downregulates the expression of the ICAM-1 and VCAM-
1 molecules and controls inflammatory cells extravasation
into the brain in BBB dysfunction models (Stamatovic et al.,
2016). These data suggest that epigenetic mechanisms define
and regulate the vascular responses to pathological stimuli
such as chronic hypoxia (Figure 2). However, evidence from
fetal exposure to hypoxia leading to epigenetic modifications
remains elusive.

CONCLUSION

Chronic deprivation of oxygen during gestation dramatically
impacts fetal brain development. Gestational hypoxia can
act through an altered epigenetic fashion to compromise

placental and vascular function (Gheorghe et al., 2010;
Herrera et al., 2014; Fajersztajn and Veras, 2017; Soares
et al., 2017). However, advances in understanding how
gestational hypoxia induces variations in the expression of
proteins involved in the integrity of the cerebrovascular network
remain widely unexplored. BBB permeability is a major factor
determining the cause, progression, outcome, and therapeutic
effectiveness of different neurological impairments in postnatal
life. Therefore, fetal programming of BBB permeability
by hypoxia and IUGR pose a unique challenge to the
scientific community in searching for involved mechanisms
and effective clinical treatment to prevent detrimental
postnatal outcomes.
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