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ABSTRACT The reproductive tract metagenome plays a significant role in the various
reproductive system functions, including reproductive cycles, health, and fertility. One of
the major challenges in bovine vaginal metagenome studies is host DNA contamination,
which limits the sequencing capacity for metagenomic content and reduces the accuracy
of untargeted shotgun metagenomic profiling. This is the first study comparing the effec-
tiveness of different host depletion and DNA extraction methods for bovine vaginal meta-
genomic samples. The host depletion methods evaluated were slow centrifugation (Soft-
spin), NEBNext Microbiome DNA Enrichment kit (NEBNext), and propidium monoazide
(PMA) treatment, while the extraction methods were DNeasy Blood and Tissue extraction
(DNeasy) and QIAamp DNA Microbiome extraction (QIAamp). Soft-spin and QIAamp were
the most effective host depletion method and extraction methods, respectively, in reduc-
ing the number of cattle genomic content in bovine vaginal samples. The reduced host-
to-microbe ratio in the extracted DNA increased the sequencing depth for microbial reads
in untargeted shotgun sequencing. Bovine vaginal samples extracted with QIAamp pre-
sented taxonomical profiles which closely resembled the mock microbial composition,
especially for the recovery of Gram-positive bacteria. Additionally, samples extracted with
QIAamp presented extensive functional profiles with deep coverage. Overall, a combina-
tion of Soft-spin and QIAamp provided the most robust representation of the vaginal mi-
crobial community in cattle while minimizing host DNA contamination.

IMPORTANCE In addition to the host tissue collected during the sampling process, bovine
vaginal samples are saturated with large amounts of extracellular DNA and secreted
proteins that are essential for physiological purposes, including the reproductive cycle
and immune defense. Due to the high host-to-microbe genome ratio, which hampers
the sequencing efficacy for metagenome samples and the recovery of the actual metage-
nomic profiles, bovine vaginal samples cannot benefit from the full potential of shotgun
sequencing. This is the first investigation on the most effective host depletion and extrac-
tion methods for bovine vaginal metagenomic samples. This study demonstrated an effec-
tive combination of host depletion and extraction methods, which harvested higher percen-
tages of 16S rRNA genes and microbial reads, which subsequently led to a taxonomical
profile that resembled the actual community and a functional profile with deeper coverage.
A representative metagenomic profile is essential for investigating the role of the bovine
vaginal metagenome for both reproductive function and susceptibility to infections.

KEYWORDS cattle, metagenomics, microbiome, shotgun, vagina, veterinary
microbiology

The term metagenome refers to the genomes and genes of the microorganisms present
in a defined environment (1). Metagenomic studies can bring forth a breakthrough to

microbial discovery and ecology studies. For instance, the discovery of nonculturable and
new microbial species has been challenging with traditional culture-based and molecular
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approaches and is now commonly reported by various metagenomic sequencing projects
(2, 3). The entire microbial community can be accessed without extensive labor and a stringent
need to customize a suitable growth environment or specific markers for each microbial spe-
cies (4, 5). Profiling the microbial community in host systems has revealed a greater coverage
of microbial inhabitation in host systems, including those which were long presumed to be
sterile, for example, urine (6), milk (7), fetal fluid (8), and uterus (9). The microbiome was dem-
onstrated to play a vital role in host physiology (10, 11), nutrition (12, 13), and health (14, 15).
A balanced microbiome is beneficial to healthy biological processes such as digestion,
immune system maturation, toxin degradation, and pathogen defense (16). However,
imbalanced microbiomes have been associated with disease development, such as urinary
tract infection (17) and reproductive diseases (18). In addition to the interrogation of the
microbial community profile, diversity, and abundances, the untargeted shotgun metage-
nomic approach also provides insights into the functional characteristics of the micro-
biome in the complex host-microbial relationships under different circumstances (19–21).

Increasing research efforts have been directed to bovine reproductive tract metage-
nomic studies in the past 10 years. Metagenomes of bovine reproductive tracts have
been associated with bovine reproductive functions, including reproductive cycle (22),
gestation (23), and reproduction health (24, 25). Microbial infiltration may occur during
calving or mating and lead to undesirable shifts of the metagenome in the bovine
reproductive tract (26–28). Disturbed commensal microflora have been associated with
the development of reproductive diseases, including metritis and endometritis (29, 30).

One of the challenges in host-derived metagenomic studies is host DNA contamination,
which has been commonly observed in most host-derived microbiome studies (31–34). In
addition to the vaginal epithelial tissue collected during the sampling process, metagenome
samples from the bovine reproductive tract are saturated with large amounts of extracellular
DNA and secreted proteins essential for various physiological purposes, including reproduc-
tive cycle and host defense (35, 36). The vast amount of host genetic content in the metage-
nome sample dominates the sequencing capacity, and, in turn, reduces the sequencing
depth for the metagenomic content (37). Additionally, the host genome is larger than the
average microbial genome. Hence, host genomic information could easily dominate the
sequencing capacity even with a small number of host cells (38). For instance, the cattle ge-
nome is 2.7 Gb, approximately 750 times larger than the average bacterial genome (;3.6 Mb)
(39, 40). Importantly, the ratio of host-to-microbe cells varies at different sampling sites. For
example, fecal samples typically yield much less host genomic material than saliva, mucus,
skin, and vaginal swabs. Additionally, metagenome samples constitute a mixture of microor-
ganisms, including bacteria, fungi, archaea, viruses, and protists, which represent different cell
structures. It is challenging to efficiently extract a mixture of microbial DNA using one extrac-
tion method (37, 38). While increasing sequencing depth can recover representative metage-
nomic profiles from metagenome samples with a large amount of host genomic materi-
als (34), this increases the costs and requires extensive computational effort. Therefore,
host depletion is pivotal for cost-effective metagenomic studies of host-derived metage-
nome samples.

In most of the bovine vaginal metagenomic studies, DNeasy Blood and Tissue extraction
kit (DNeasy) was incorporated for metagenome DNA extraction (41). However, the benefits
of effective host depletion for metagenomic studies were reported, primarily for human clin-
ical samples (42–45). In general, these methods manipulate the differences between mam-
malian cells and microbial cells, for example, cell size, cell wall structures, and DNA methyla-
tion pattern, to achieve the separation either before or after DNA extraction. Nonetheless,
the different complexity and chemistry matrix of the host-derived samples pose different
degrees of impact on the performances of the host depletion and extraction methods (38,
46). Therefore, we conducted the first study to evaluate the efficacies and potential bias of
the different host depletion and extraction methods on bovine vaginal samples intended
for metagenomic studies. In total, three host depletion methods and two extraction meth-
ods were evaluated from different aspects, including the percentage of 16S ribosomal (r)
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RNA genes in the extracted samples, the percentage of microbial reads, the coverage and
accuracy of the metagenomic profiles.

RESULTS
Spiked suspension. The total amount of spiked bacteria in each of the vaginal swabs,

14 mock samples, and 14 positive-control samples was 2.3� 107 CFU/mL (Table 1). According
to culture plate counting, Pseudomonas aeruginosa constituted the highest percentage
(43.01%), followed by Campylobacter fetus subsp. venerealis (19.73%) and Aliarcobacter
cryaerophilus (19.73%), Enterococcus. faecalis (9.63%), and Staphylococcus aureus (7.89%).

Sample preparation and extraction. In total, 42 samples were prepared, including
14 vaginal swabs, 14 mock samples, and 14 positive-control samples (Fig. 1).

Shotgun sequencing. Samples processed using the combination of NEBNext and
QIAamp extraction were eliminated from downstream analyses because the DNA quantities
were too low and were not eligible for shotgun sequencing. Whole-metagenome shotgun
sequencing of the samples (n = 36) returned an average of 6.47 Gbp of data and an average
of 51,956,238 raw paired-end reads per sample. An average of 48,965,875 paired-end reads
per sample remained after trimming (Text S1).

TABLE 1 Details of the bacteria used to assess the effectiveness of the depletion and DNA extraction methods

Bacterial species Strain Gram stain Aerotolerance
Median
GC (%)

Genome
size (Mb)

Spiked concentration
(CFU/mL× 106)

Aliarcobacter cryaerophilus CCUG17804 Gram-negative Aerobic 27.4 2.09 4.55
Campylobacter fetus subsp. venerealis ATCC 19438 Gram-negative Microaerophilic 33.1 1.82 4.55
Enterococcus faecalis BR1200 Gram-positive Facultative anaerobe 37.4 2.97 2.22
Pseudomonas aeruginosa ATCC 27853 Gram-negative Aerobic 66.2 6.6 9.91
Staphylococcus aureus ATCC 29213 Gram-positive Anaerobic 32.7 2.84 1.82

FIG 1 Experimental design. Three sample types were used to examine the efficacies of depletion and extraction methods. Vaginal swabs were vaginal
swabs without spiked bacteria. The mock sample contained vaginal samples and five bacterial suspensions. Positive-control samples contained only the five
bacterial suspensions. The samples were treated with different depletion and extraction methods to obtain the nucleic acids for shotgun sequencing and
subsequent metagenomic analysis.
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Metagenome assembly. The paired-end reads were assembled into contigs, and
the accuracy of contig-based metagenomic profiles was investigated. The number of contigs
ranged from 335 to 19,711 and the average contig length ranged from 484 to 48,911 (Text
S1). The contig coverage was examined by realigning the reads back to the contigs, and the
mapped percentage ranged from 15.03 to 99.80% (Text S1). The mapped percentage of the
assembled contigs evaluated using MetaQUAST ranged from 24.06 to 99.88% (Text S1).

Relationship between the percentage of 16S rRNA genes and the percentage of
microbial reads in the samples. To analyze the impacts of host DNA depletion in the bo-
vine vaginal samples, the relationship between the percentage of the 16S rRNA genes and
the percentage of microbial reads identified in the samples (n =36) was investigated (Fig. 2).
The result indicated the proportion of microbial reads sequenced by shotgun sequencing
was exponentially proportional (P , 0.001) to the percentage of 16S rRNA genes in the bo-
vine vaginal samples. The impacts of depletion and extraction methods on the proportion
of 16S rRNA genes and microbial reads were not significantly different. However, Soft-spin
and QIAamp recovered the highest percentages of 16S rRNA genes (mean = 53.3% and
65.5%) and microbial reads (mean = 40.4% and 46.4%), respectively.

Impacts on the taxonomic profile. Alpha diversity of each sample (n = 36) was exam-
ined using the Shannon index. In general, there was a higher alpha diversity in the vag-
inal swab (mean = 3.45) followed by a mock sample (mean = 2.21) and positive-control
(mean = 1.67). However, the alpha diversities between samples treated with different
depletion methods (ANOVA, P = 0.77 and 0.99) and different extraction methods (t
test, P = 0.93) were not significantly different (Fig. 3A). The Bray-Curtis dissimilarity
demonstrated that the dissimilarity caused by depletion methods was not significant
(permutational multivariate analysis of variance [PERMANOVA], P = 0.58) while the dissimilar-
ity resulting from the extraction methods was significant (PERMANOVA, P = 0.005) (Fig. 3B).

The abundances of the bacteria spiked into the mock sample and positive-control were
examined to assess the impacts of depletion and extraction methods on the recovery of taxo-
nomic profile. The abundances of the spiked bacteria in the negative controls (vaginal swab)
samples were less than 2% (Fig. 4). The impacts of depletion methods on the abundances of
the spiked bacteria were not significantly different from each other (Table 2). Contrarily,
the impacts of the extraction method were insignificant on the abundances of A. cryaero-
philus, C. fetus, and P. aeruginosa but were significant for E. faecalis (ANOVA, P , 0.001)
and S. aureus (ANOVA, P = 0.003). Enterococcus faecalis and S. aureus were detected at
lower abundances (mean = 0.404% and 0.34%) in samples treated with DNeasy compared
to QIAamp (mean = 8.47% and 1.96%). Enterococcus faecalis and S. aureus constituted 9.63%

FIG 2 The relationship between the percentage of 16S rRNA genes and the percentage of microbial
reads identified in the bovine vaginal samples. The markers represent all the samples involved in this
study (n = 36), including vaginal swabs, mock samples, and positive-controls. Samples were treated with
different depletion methods, including None (circle), NEBNext (triangle), PMA (square), and Soft-spin (cross).
Red represents samples extracted using DNeasy and blue represents samples extracted using QIAamp.
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and 7.89% in the spiked suspension (Table 1). Hence, QIAamp was demonstrated to recover
percentages of bacteria that were closer to the spiked proportion.

Impacts on functional classification. To study the impacts of host depletion and
extraction methods on the contig-based functional classification of shotgun metage-
nomic data, the total functional annotations were reported by eight databases, including
Enzyme, Gene Orthology, KEGG Orthology, KEGG pathways, Metabolic-hmm, MetaCyc path-
ways, Pfam, and Tigrfam. The results indicated that the extraction methods contributed signifi-
cant impacts on the number of functional annotations reported (P, 0.001) (Fig. 5).

DISCUSSION

This is the first study that has evaluated multiple host depletion and metagenome
extraction methods on bovine vaginal metagenome samples. The exponential relation-
ship between the percentage of 16S rRNA genes and microbial reads depicted in this
study suggested the importance of host depletion for efficient metagenome sequenc-
ing. Host DNA contamination reduced the sequencing depth for metagenome content
and subsequently led to reduced sensitivity of metagenomic studies performed with
untargeted shotgun sequencing (47). The results indicated that Soft-spin and QIAamp

FIG 3 Alpha (A) and Beta (B) diversity of the samples involved in this study (n = 36), including vaginal swab, mock sample, and
positive-control. Samples were treated with different depletion methods, including None (circle), NEBNext (triangle), PMA (square),
and Soft-spin (cross). Red represents samples extracted using DNeasy and blue represents samples extracted using QIAamp. ANOVA test was
applied to examine the significance of differences between the alpha diversity of samples treated with different depletion methods while the
t test was applied to examine the significance of differences between the alpha diversity of samples processed with different extraction
methods. Beta diversity was represented by principal coordinate analysis ordination of the Bray-Curtis dissimilarity matrix.
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outperformed the other host depletion and extraction methods, including the commonly
used extraction method “DNeasy only,” in removing the cattle DNA from bovine vaginal
samples. Consequently, samples extracted with QIAamp resulted in taxonomic profiles that
more resembled the spiked community and functional profiles with deeper coverage.

The efficacy of PMA treatment was dependent on the microbial content in the metage-
nome samples. Propidium monoazide unbiasedly digests the exposed DNA. Hence, the selec-
tive impacts of PMA-based host depletion treatments depend greatly on the lysis methods
and the permeability of microbial cell membrane (38, 48, 49). Potentially, the integrity of the
microbial cells in vaginal swab samples was not preserved in vaginal mucus during the sample

FIG 4 Abundances of spiked bacteria, including Aliarcobacter cryaerophilus, Campylobacter fetus, Enterococcus faecalis, Pseudomonas aeruginosa,
and Staphylococcus aureus, in the samples involved in this study (n = 36), including vaginal swabs, mock samples, and positive-controls.

TABLE 2 Significance of different, calculated using ANOVA test, between the abundances of
spiked bacteria in the samples (n = 36) processed with different depletion and extraction
methods

ANOVA, P value

Species Depletion Extraction
Aliarcobacter cryaerophilus 0.991 0.32
Campylobacter fetus 0.444 0.065
Enterococcus faecalis 0.195 0.000156
Pseudomonas aeruginosa 0.861 0.189
Staphylococcus aureus 0.27 0.003
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collection and transfer. Hence, the exposed microbial DNA content was digested together
with the cattle genomic materials before extraction. Metagenome samples treated with
NEBNext recovered fewer 16S rRNA genes and microbial sequences than samples extracted
without a host depletion step, indicating the low efficacy of NEBNext in depleting cattle
genomic materials from vaginal samples. This is potentially due to the low molecular
weight genomic DNA extracted using DNeasy and QIAamp. NEBNext is a postextraction
method that requires .15 kb high-molecular-weight DNA, which is typically achieved by
conventional extraction methods for effective capture and subsequent host removal (37).
The low throughput of conventional extraction methods renders them less ideal for
quantitative metagenomic studies with multiple samples (50, 51). Extraction methods
used in this study were all based on the vigorous lysis required for bacterial cells, which
is likely to shear the long fragment DNA in most cases, making the NEBNext protocol
unsuitable for this use. Of the tested host depletion methods (Soft-spin, PMA treatment,
and NEBNext), Soft-spin was the most efficient and consistent at depleting the cattle
DNA from the bovine vaginal samples. It was demonstrated that Soft-spin resulted in
higher percentages of 16S rRNA genes and microbial sequences. Soft-spin effectively

FIG 5 Number of functional annotations identified by the different functional and pathway databases. A t test was applied to examine the significance of
differences between the number of functional annotations in samples processed with different extraction methods.

Metagenome Extraction for Bovine Vaginal Samples Microbiology Spectrum

March/April 2022 Volume 10 Issue 2 10.1128/spectrum.00412-21 7

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00412-21


separated the cattle tissues in the bovine vaginal samples and allowed a higher percent-
age of microbial DNA to be extracted.

DNeasy has been commonly incorporated in bovine reproductive tract metagenome
studies (52–57), while QIAamp is relatively less common (29). However, our results indicated
that QIAamp was more effective than DNeasy in maximizing the 16S rRNA genes and micro-
bial sequences in both the actual and mock bovine vaginal samples. Unlike DNeasy, which
relied solely on chemical lysis for nucleic acid extraction, QIAamp implemented two separate
lysis steps. The first step was the host enzymatic lysis and degradation with benzonase. The
efficacy of benzonase in nucleic acid hydrolyzation is well documented and has been widely
used in biopharmaceutical production (46, 58, 59). The second step was the bead-beating
mechanical lysis and proteinase K lysis of microbial cell walls. Therefore, metagenome sam-
ples extracted with QIAamp extraction recovered a higher percentage of microbial DNA and
sequences, particularly E. faecalis and S. aureus, which were significantly less captured by the
DNeasy extraction. Gram-positive bacteria like E. faecalis and S. aureus possess a thick outer
cell wall made up of peptidoglycan, allowing Gram-positive bacteria to be more resistant to
heat and chemical stresses (60, 61). Bead-beading mechanical lysis helps to break the thick
microbial cell walls and release the encapsulated nucleic acid, consequently improving the
yield and quality of microbial DNA (62, 63). The effectiveness of QIAamp in increasing the
microbial DNA and the subsequent effects on the metagenomic profiles were also reported
in other host-derived metagenomic studies, which investigated fluid collected from infected
respiratory tract and biopsy specimen samples from diabetic foot infections (64, 65).

The vaginal samples used in this study were collected from acyclic heifers, which were of-
ten the control group for comparative bovine reproductive tract metagenomic studies (66–
69). The mock sample simulated the bovine vaginal samples collected from mated cows or
cows that develop reproductive diseases, which often have richer microbial content (70).
Vaginal swabs are one of the most challenging sample types for metagenomic investigation
due to the high (.90%) host DNA content (38, 47). Our findings demonstrated that Soft-spin
and QIAamp were effective in extracting the metagenomic content from bovine vaginal sam-
ples, either with low or enriched microbial contents and subsequently increased the sequenc-
ing efficiency and recovered metagenome profiles with higher accuracy and coverage. This
study provides a beneficial reference for other host-derived metagenomic studies, especially
samples with a similar chemistry matrix and lowmicrobial content as bovine vaginal swabs.

One of the greatest advantages of sequencing the metagenome samples with untargeted
shotgun methods is the functional profiling of the metagenome. The assembled contigs can
be mapped to the protein and pathway databases for functional annotations to investigate
the functional focus of the metagenome under different conditions (21, 71). Our results dem-
onstrated that there was a significantly higher recovery rate of the functional annotations in
the samples extracted using QIAamp. The increased number of functional annotations identi-
fied, and the relative coverage of each annotation essentially improved the functional profiles
of metagenome samples by QIAamp. An extensive functional profile with deep coverage pro-
vides information regarding the metagenome's functional capacity, including the virulence
factors, antibiotic resistance, and metabolic pathways (72). Nonetheless, the accuracy of the
functional profile identified by QIAamp was not explored in this study.

Because samples in this study were collected from healthy heifers, the impacts of
infected host tissues and the influx of inflammatory host cells on the extracted metage-
nomic content remain unexplored. Further studies shall investigate the host-to-microbe ratio
in samples collected from cattle diagnosed with reproductive diseases and its impacts on
the sequencing efficiency and recovery of metagenomic profiles. There were only 2 repli-
cates used in the method tested for each sample, this potentially undermined the credibility
of the result. Additionally, the proportion of each spiked bacteria in the extracted DNA shall
be verified using an individual quantification test.

Our results demonstrated that Soft-spin was more efficient than NEBNext and PMA
in reducing the host-to-microbe ratio in bovine reproductive tract metagenome samples.
The relationship between 16S rRNA genes and microbial reads detected signified that the
shotgun metagenomic sequencing was increasingly more efficient as the percentage of 16S
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rRNA genes in the metagenome samples increased. QIAamp extraction outperformed DNeasy
by improving the microbe-to-host DNA ratio, providing more accurate taxonomic profiles, and
increasing the sensitivity in deciphering the functional profiles of bovine reproductive tract
metagenome samples. This study provides optimal metagenomic conditions for the applica-
tion in future bovine vaginal reproductive microbiome research.

MATERIALS ANDMETHODS
Sample collection and transportation. Samples were collected from 30 Droughtmaster heifers

from a cattle farm in Northern Queensland under UQ Animal Ethics Approval AE30009. An experienced
veterinarian conducted cattle health assessments and sample collection. The heifers were between 12
and 18 months old during sample collection. Using transrectal ultrasound, the heifers were defined as
not pregnant and without the presence of a corpus luteum, but with the presence of either small or
large follicles. The heifers were defined as being acyclic, likely in the late prepubertal period. The heifers'
average live weight, hip height, and body score were 316.5 6 30.7 kg, 193 6 43 cm, and 2.8 6 0.25
(scale 0 to 5), respectively. Vaginal samples from the heifers were collected using the Tricamper (DAF
Queensland, Australia) sampling tool following the manufacturer’s protocol. Briefly, the Tricamper was
inserted into the cow’s vagina with the leading edge in contact with the dorsal wall of the vagina. The
Tricamper was moved back and forth in the vagina to collect the swab. Upon removing the Tricamper
from the vagina, the other end of the Tricamper was blocked to prevent spillage. The swab sample was im-
mediately preserved in a 10 mL tube preloaded with 5 mL phosphate-buffered saline (PBS) by excising the
head of the Tricamper device. The samples were kept on ice during delivery and were processed within 6
h upon arrival to the laboratory. Each sample was first vortexed for 15 s and followed by an additional 15 s
of vortex after the Tricamper head was removed from the tube. The vaginal mucus samples were then
transferred into a new sterile tube.

Spiked bacteria and mock bacterial community. To monitor the recovery of the metagenomic
profiles, five bacteria were used for spiking, Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aur-
eus (ATCC 29213), Campylobacter fetus subsp. venerealis (ATCC 19438), Aliarcobacter previously
Arcobacter cryaerophilus (312), and Enterococcus faecalis (BR1200). Aliarcobacter cryaerophilus and C. fetus
subsp. venerealis are pathogens associated with abortion and infertility in cattle (73, 74). Enterococcus
faecalis, P. aeruginosa, and S. aureus are commonly isolated from bovine reproductive tract samples but
are regarded as normal flora or environmental organisms (75–77). Additionally, these bacteria formed a
range of characteristics in terms of genome sizes, Gram stain, GC content, and aerotolerance, which
were hypothesized to affect the efficiencies of host depletion methods and DNA extraction methods dif-
ferently. Aliarcobacter cryaerophilus, E. faecalis, P. aeruginosa, and S. aureus were cultured on the BBL
Brucella agar (Becton, Dickinson) under aerobic conditions at 37°C for 24 h. Campylobacter fetus subsp.
venerealis were cultured on the tryptone soya agar (TSA) supplemented with 5% defibrinated sheep
blood (Oxoid) under microaerophilic conditions at 37°C for 48 h. Colonies of each bacterial isolate were
resuspended in sterile PBS to reach an optical density measured at wavelength 600 nm (OD600) for yield-
ing colony count of approximately 1 � 108 CFU/mL.

The mock bacterial community in heifer vaginal swab samples. The 30 vaginal swab samples
were combined and homogenized in a sterile bottle. Five milliliters of the homogenized vaginal swab
samples were then redistributed into 28 new sterile tubes. The vaginal swab with no spiked bacteria was
labeled as “vaginal swab”. The “mock samples” were prepared by adding 0.1 mL of each bacterial sus-
pension into 5 mL homogenized vaginal swab samples. “Positive controls” were prepared by adding
0.1 mL of each bacterial suspension to 5 mL of sterile water. All samples were prepared in duplicates.

The bacterial load was monitored by the plate count method. Serial dilutions were made from the
bacterial suspensions, and 0.1 mL of each dilution was plated onto TSA supplemented with 5% defibri-
nated sheep blood. For P. aeruginosa, S. aureus, and E. faecalis, the number of colonies was counted after
24 h. For A. cryaerophilus and C. fetus subsp. venerealis, the number of colonies was counted after 48 h.

Host depletion and extraction methods. Two of each sample type, including vaginal swabs, mock
samples, and positive-controls, were processed with one of the depletion methods, including “None,”
“NEBNext,” “Soft-spin” and “PMA”. After being treated with the depletion method, the samples were
extracted with either “DNeasy” or “QIAamp”.

Slow and short centrifugation (Soft-spin). Slow and short centrifugation (Soft-spin) was performed
for respective samples before extraction. The samples were centrifuged at 1000 � g for 1 min at 4°C.
Without disturbing the pellet, the supernatant was collected into a new tube for DNA extraction.

NEBNext Microbiome DNA Enrichment kit (NEBNext). NEBNext is a postextraction host depletion
method. Extracted DNA was processed with the NEBNext Microbiome DNA Enrichment kit (NEBNext)
according to the manufacturer’s protocol. Briefly, one microgram of the extracted DNA was mixed with
magnetic beads bound to the methyl-CpG binding domain (MBD) to capture the methylated host DNA.
A magnetic rack was used to separate the captured host DNA. The supernatant, which contained the mi-
crobial DNA was precipitated and diluted in TE buffer (10 mM Tris/0.1 mM EDTA, pH 8).

Osmosis and propidium monoazide treatment (PMA). PMA is a preextraction host depletion
method. Samples were processed according to a published protocol (38). Briefly, vaginal samples were
centrifuged at 4000 � g for 10 min to obtain the cell pellet. The pellet was resuspended in 0.2 mL of ster-
ile water by pipetting and brief vortexing. The suspension was left at room temperature for 5 min to
allow mammalian cell lysis by osmosis. A 10mL aliquot of 0.2 mM PMA dye (Biotium) solution was added
to each of the samples. The mixtures were briefly vortexed to ensure thorough mixing and were then
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incubated in the dark for 5 min at room temperature. Subsequently, the samples were placed on ice
within 25 cm of a light source for 25 min to allow light activation of the PMA molecule. The samples
were briefly vortexed at 5-min intervals with light exposure.

Qiagen DNeasy blood and tissue kit (DNeasy). The sample was centrifuged at 4000 � g for 15 min
to obtain a cell pellet. The supernatant was discarded, and DNA was extracted from the cell pellet
according to the manufacturer’s instructions for Gram-positive bacteria. Briefly, the pellet was treated
with enzymatic lysis buffer and proteinase K digestion before column precipitation. Precipitated DNA
was washed and eluted in 60mL of TE buffer.

Qiagen QIAamp DNA Microbiome kit (QIAamp). DNA was extracted according to the manufac-
turer’s instructions. First, the sample was centrifuged at 4000 � g for 15 min to obtain the cell pellet.
Briefly, the pellet was subjected to lysis buffer, benzonase enzyme, bead beating, and pathogen lysis
buffer before column precipitation. The precipitated DNA was eluted in 60mL of TE buffer.

Quantitative PCR (qPCR) assay and cycling conditions. To quantify the bacterial copy number,
qPCR was performed on the extracted DNA with PowerUp SYBR Green Master Mix (Applied Biosystems)
using 16S rRNA gene-specific primers, 764F and 907R, for bacteria (78). Primers encompassing the beta2-micro-
globulin (B2M) gene were utilized for estimating the cattle copy number (79) (Table 3). Thermal cycling was ini-
tiated with the activation of Uracil-DNA Glycosylase at 50°C for 2 min followed by incubation of the DNA poly-
merase at 95°C for 2 min and 40 cycles of denaturing and annealing steps, which were 95°C for 15 s and
primer-pair specific annealing temperature for 15 s, respectively. The qPCR was finished with an extension at
72°C for 1 min. Serial dilutions of cattle blood DNA and cultured bacterial samples were amplified alongside to
generate the standard curves. All qPCR assays, including the nontemplate controls, were performed in dupli-
cates. Results were generated using a CFX96 real-time PCR detection system (Bio-Rad) and data were analyzed
using CFX Maestro software (Bio-Rad) with the Cq thresholds determined by the software.

The amount of amplicon was calculated from the standard curves generated with known concentra-
tions of 16S rRNA genes and cattle blood DNA. The estimated copy number of cattle and bacteria was
calculated as previously described (80). Briefly, the amount of amplicon (SQ) was calculated from the
standard curves generated with known concentrations of bacterial DNA and cattle blood DNA. The esti-
mated copy number of cattle and bacteria were derived from the ratio of SQ in gram multiplied by the
Avogadro's number NA (6.0221 � 1023 mol21) and length of amplicon multiplied by the mean molar
mass of a base pair MBp (660 g mol21). The estimated copy number of cattle and bacteria were deter-
mined to compute the percentage of 16S rRNA genes.

Shotgun sequencing, quality filtering, and contamination read removal. The quantity of extracted
DNA was measured using Qubit 4 fluorometer (Invitrogen) with either Qubit dsDNA Broad Range assay kit
(Invitrogen) or Qubit 1� dsDNA High Sensitivity kit (Invitrogen). Extracted DNA was sent for shotgun sequenc-
ing to the Australian Centre of Ecogenomics (ACE, University of Queensland). Sequencing was performed on
the NextSeq500 platform using NextSeq 500/550 High Output v2 2x150bp paired-end chemistry with 5 Gbp
sequencing coverage to yield at least 50 million paired-end reads per metagenome sample.

The quality of the reads was assessed using FastQC 0.11.4 (81). The paired-end reads were trimmed
with Trimmomatic 0.39.1 using the paired-end mode to remove the Nextera adapters, leading and trailing N
bases, leading and trailing bases below quality score 15, bases with an average quality score below 15 in every
4-base wide sliding window and reads below 35 bases in length (82). The quality paired-end reads were
mapped to the ARS-UCD1.2 Bos taurus genome (GCA_002263795.2) (39) using Bowtie2 2.3.4.3 (83) to deter-
mine the number of cattle reads in each sample. SAMtools 1.3 (84) were applied to retrieve the alignments
and BEDTools 2.25.0 (85) were used to extract paired-end reads of noncattle sequences. The microbial read
percentage was calculated by getting the percentage of noncattle sequences in the total reads generated. The
statistical details of the alignments were retrieved from the Binary Alignment Mapping (BAM) output files using
SAMtools (84). The same procedure was used to remove human-read contamination by replacing the ARS-
UCD1.2 Bos taurus genome with the GRCh38 Homo sapiens genome (GCA_000001405.15). The number of mi-
crobial and bovine reads was determined from the BAM output to compute the percentage of microbial reads.

Read-based taxonomic classifications. After quality was filtered and cleaned, the metagenomic
reads were annotated taxonomically with Kraken2 (86). Kraken2 examined the k-mers information in the meta-
genomic reads and query the k-mers information against the database. The abundances, at the species level.
of the organisms identified in the metagenomic samples, were computed using the Bayesian Reestimation of
Abundance with KrakEN (Bracken) (87). Bioinformatic analysis and visualization were conducted on R studio
(88) with R packages, including vegan 2.5.7 (89), phyloseq 1.34.0 (90), dplyr (91), and ggplot2 (92).

Metagenomic assembly. The quality paired-end reads of each sample were assembled into contigs
using MEGAHIT 1.2.9 (93, 94), which incorporated mercy-kmers function to recover species with low
abundances and were sequenced in low depth in a metagenome sample. The minimum contig length
was limited to 200 bp. Additionally, the paired-end reads from all the samples were pooled to perform a
coassembly using MEGAHIT 1.2.9. The reads were aligned back to the contigs using BBMap 38.84 (95) to
determine the quality of the assemblies. The quality of the assembled contigs was also evaluated with
MetaQUAST 5.0.2 (96). The coassembly was first analyzed using MetaQUAST against the SILVA 16S rRNA

TABLE 3 List of primers used in quantitative PCR for bacterial and cattle DNA quantification

Target gene Primer ID Primer sequence Amplicon size Annealing temp Reference
B2M B2M-F ACCTGAACTGCTATGTGTATGG 134 bp 58°C (79)

BRM-R GTGGGACAGCAGGTAGAAAG
16S rRNA 764-F CAAACAGGATTAGATACCC 143 bp 54°C (110, 111)
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database (97) to identify the overall genome content of the metagenome samples. The identified genomes
were downloaded from the NCBI database (98) to serve as the reference metagenome when evaluating the in-
dependent assemblies on MetaQUAST.

Contig-based taxonomical and functional classifications. The assembled contigs were annotated
using an integrated pipeline MetaErg 1.2.0 (99). MetaErg performed HMMs profile similarity searches against
several databases, including Pfam-A (100), TIGRFAM (101), FOAM (102), metabolic-hmms (103), and casge-
nes.hmm (104). MetaErg also performed DIAMOND (double index alignment of next-generation sequencing
data) searches against Swiss-Prot (105) and the MetaErg in-built database GenomeDB. Mapping files generated
from searches against Swiss-Prot, FOAM, and TIGRFAMs databases were incorporated in MinPath (106) to infer
to KEGG (107) and MetaCyc (108) metabolic pathways. To weigh the relative abundances of the taxonomic,
functional, and pathway compositions of the metagenome samples, individual BAM files were generated using
BBMap (95) by aligning the metagenome reads of each sample to the coassembled contigs. A depth file was
constructed with the jgi_summarize_bam_contig_depths script in MetaBat 2 (109) using the BAM files.

Data availability. The datasets generated during the current study are available in the NCBI
sequence read archive (SRA) database under BioProject PRJNA786360 and BioSamples SRR17146641 to
SRR17146676.
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