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Nanotechnology is one of the methods that influenced human life in different ways and
is a substantial approach that assists to overcome the multiple limitations of various
diseases, particularly neurodegenerative disorders (NDs). Diverse nanostructures such
as polymer nanoparticles, lipid nanoparticles, nanoliposomes, nano-micelles, and
carbon nanotubes (CNTs); as well as different vehicle systems including poly lactic-
co-glycolic acid, lactoferrin, and polybutylcyanoacrylate could significantly increase
the effectiveness, reduce the side effects, enhance the stability, and improve the
pharmacokinetics of many drugs. NDs belong to a group of annoying and debilitating
diseases that involve millions of people worldwide. Previous studies revealed that several
nanoformulations from a number of natural products such as curcumin (Cur), quercetin
(QC), resveratrol (RSV), piperine (PIP), Ginkgo biloba, and Nigella sativa significantly
improved the condition of patients diagnosed with NDs. Drug delivery to the central
nervous system (CNS) has several limitations, in which the blood brain barrier (BBB) is
the main drawback for treatment of NDs. This review discusses the effects of herbal-
based nanoformulations, their advantages and disadvantages, to manage NDs. In
summary, we conclude that herbal-based nano systems have promising proficiency in
treatment of NDs, either alone or in combination with other drugs.

Keywords: herbal extracts, neurodegenerative disorders, nanoformulations, nanoparticles, Alzheimer’s disease,
Parkinson’s disease

INTRODUCTION

Neurodegenerative disorders (NDs) are defined as range of disruptions in function or structure of
the nervous system or neurons. Such lasting progressive damages may cause disability in thinking,
movement, cognition, and memory. Among various NDs, Alzheimer’s disease (AD) and other
types of dementias; Parkinson’s disease (PD) and PD related disorders; Multiple sclerosis (MS);
Huntington’s disease (HD); and Amyotrophic lateral sclerosis (ALS) are the most prevalent types.
Genetic susceptibility, aging, lifestyle, nutrition, chemicals, specific viruses, and exposure to some
environmental toxins (Przedborski et al., 2003; Hodjat et al., 2017) are supposed to be predominant
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risk factors of NDs. Nowadays, the global average of life
expectancy increased, hence; the prevalence of age-related NDs
is drastically rising. According to the World Health Organization
(WHO) report on the top 10 causes of global death, the rate
of mortality caused by dementia, and age related NDs has
raised more than twice from 2000 to 2016, also dementia was
the 5th cause of death in 2016 World Health Organization
(2018). Thereby, it is predicted that mental and emotional
defects will cause emotional, social, and financial burden on
the healthcare system in the future World Health Organization
(2006). Current treatments for NDs have considerable adverse
effects, thus, there is still demand to seek new strategies with
reduced harms (Durães et al., 2018). In this respect, natural
products sound propitious, although, their penetration through
the BBB is a major obstacle in their delivery to the nervous system
(Dwivedi et al., 2019). In this manner, nanotechnology and more
specifically, nanomedicine or pharmaceutical nanotechnology
provide superior drug delivery systems for NDs management
by means of improved monitoring, controlling, constructing,
repairing, and diagnosis at a molecular level (Ochekpe et al., 2009;
Maravajhala et al., 2012). Nanoformulations of these natural
substrates are effective tactics to overcome such problems and can
enhance their bioavailability (Ratheesh et al., 2017). This study
reviews the recent efforts in the application of nanotechnology in
formulation of natural drugs to improve NDs treatment.

NEURODEGENERATIVE DISORDERS
(NDS)

Previously, the CNS disorders were categorized as cognitive,
motor, or combined impairments, mainly on the basis of patient’s
symptoms. This classification faced several criticisms, since some
symptoms were common between the groups, also because many
symptoms did not fall into a specific category. Today, it has been
proven that abnormalities in particular proteins such as amyloid
precursor protein (APP), tau, and α-synuclein lead to NDs.
Currently, the CNS disorders are being reclassified on the basis
of the number of protein abnormalities (Rogan and Lippa, 2002).

Alzheimer’s Disease (AD)
Alzheimer’s Disease and associated dementia have been listed
as the 6th leading cause of death in the United States
population (Heron, 2018). According to data published by the
AD association in 2019, 5.8 million of American populations of
all ages are living with AD. Age-based population is suffering
from AD and related dementia shown in Figure 1 Alzheimer’s
and Dementia (2019). AD is a chronic incurable, progressive ND
with a long pre-symptomatic period. Generally, AD is associated
with cognitive impairments; behavioral, social and work related
dysfunctions; and ultimately leads to death (Bateman et al., 2012).
Aberrant accumulation of protein β-amyloid (β-amyloid plaques)
outside the neurons, and abnormal accumulation of protein tau
(tau tangles) inside the neurons are the major hallmarks of AD.
The β-amyloid induces neuronal cell death through disrupting
their communications at synapses, while tau tangles contribute
to neuronal cell death by blocking the entry of nutrients and

FIGURE 1 | The average age of people with AD.

other essential molecules into the neurons. Gradual increase of
β-amyloid plaques outside the neurons results in consequent
spreading of tau tangles throughout neurons (De Paula et al.,
2009; Penke et al., 2017; Momtaz et al., 2018).

Aberrant presence of toxic proteins activates the brain
immune cells, as well as microglia cells. Microglial cells
are specialized brain macrophages that are able to eliminate
abnormal aggregated proteins, and debris from dead or dying
neurons. Inflammation and atrophy are also associated with AD.
Inflammation occurs when microglial cells are not capable of
clearing all the things that are supposed to be eliminated, while
neuronal loss leads to atrophy.

With time, β-amyloid plaques and tau tangles spread in other
brain areas, which are not involved in cognitive functions (Price
et al., 1991). Progressive damages to the brain cells initiate
cognitive dysfunctions, and most importantly cause memory
impairments (2019). Often, the word ‘dementia’ is used with
AD, as the symptoms of dementia have coincided with the AD
symptoms. Dementia refers to a group of symptoms related
to cognitive, and memory decline. Furthermore, abnormal
precipitation of protein α-synuclein inside the cortical neurons,
and Lewy bodies results in dementia (Mckeith et al., 1996; Duda
et al., 2000; Rogan and Lippa, 2002).

Parkinson’s Disease (PD)
Parkinson’s Disease was reported in the early 18th by the
physician Dr. James Parkinson as “shaking palsy”. PD is a
chronic progressive ND that encompasses both motor- and non-
motor dysfunctions, with deteriorating effects on mobility and
muscle control (Demaagd and Philip, 2015). Current global
burden of the disease has been more than doubled over the
past 26 years, from 2.5 million patients in 1990 to 6.1 million
patients in 2016 (Rocca, 2018). The main risk factors of PD
include aging, environmental changes, chronic diseases, and
social difficulties (Schrag et al., 2015). Continuous loss of
dopaminergic neurons in the substantia nigra pars compacta
results in loss of dopaminergic function in PD patients. In
PD patients, progressive loss of dopamine in striatum leads
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to increased globus pallidus segment/reticulate portion of the
substantia nigra circuit’s activity. This activity, consequently,
leads to gamma aminobutyric acid (GABA) dysfunction, and
inhibition of thalamus and motor activities (Beaulieu and
Gainetdinov, 2011). Aberrant accumulation of Lewy bodies is also
reported in PD patients (Braak et al., 2003; Del Tredici and Braak,
2012). Mutation in α-synuclein gene was shown to form insoluble
fibrils in Lewy bodies (Yasuda and Mochizuki, 2010).

Multiple Sclerosis (MS)
Multiple sclerosis is a chronic neurological disorder, leading
to demyelination of the nerve cells in the brain and spinal
cord. Such demyelination disrupts interneurons communication,
persuading axonal loss in both white and gray matter of the
brain and spinal cord, although the loss is more prominent
in white matter (Kutzelnigg and Lassmann, 2014). MS is
also categorized as an autoimmune disorder, in which T cells
target the CNS self-antigen in genetically prone individuals.
Initial lesions are mostly formed in focal areas of demyelinated
white matter; these focal areas are called plaques. Pathological
symptoms of MS vary with the locations of the plaques, but
basically are associated with infiltration of immune T cells
across the BBB (Polman et al., 2011). Demyelination and loss of
trophic support in oligodendrocytes lead to axonal degeneration
(Fünfschilling et al., 2012; Lee et al., 2012). Pathological
aggregation of fibronectin was also observed in MS lesions.
It was documented that the aggregation of this glycoprotein
is likely associated with remyelination failure. In addition, tau
protein, amyloid-β and amyloid precursor proteins, which are
normally detected in AD and PD subjects, are also found in
plaques and lesions of MS patients (Stoffels et al., 2013; David
and Tayebi, 2014). MS subjects experience a series of relapsing-
remitting courses, in which, there is an acute episode of neural
impairments followed by normal baseline function. With time
(after 10–15 years), relapses shift into inevitable progressive
neurodegeneration, termed as secondary progressive MS (Scalfari
et al., 2014). However, approximately 10–15% of patients directly
enter the secondary neurodegenerative state, known as primary
progressive MS. The length of the relapsing-remitting state shows
considerable variations, however, the rate of neurodegeneration is
highly consistent, irrespective of the disease course and severity
(Friese et al., 2014).

Amyotrophic Lateral Sclerosis (ALS)
Amyotrophic lateral sclerosis includes two major forms; sporadic
and familial types. The sporadic form (prevalence of 90–
95%) has no hereditary history, while the familial type (5–
10%) has a genetically inherited component (Abhinav et al.,
2007; Zarei et al., 2015). ALS is a heterogeneous neurological
disorder; characterized by degeneration of both the upper
and lower motor neurons (Logroscino et al., 2008, 2010).
Besides cellular stress, it was suggested that the aggregation
of intraneuronal proteins i.e., TAR DNA-binding protein 43
(TDP-43), superoxide dismutase (SOD1), and fused in sarcoma
(FUS) disturb normal protein homeostasis, thereby inducing
ALS. These proteins are well identified in pathological studies
of patients with ALS and in animal models of the disease

(Morgan and Orrell, 2016). Common symptoms of ALS include
muscle tenderness, cramping, twitching, and muscle impairment
(Goetz, 2000). Later in the advance stage of the disease,
patients experience dysphagia (swallowing difficulty), dysarthria
(speech difficulty), and dyspnea (difficulty in breathing) (Kori
et al., 2016). Environmental pollutants and diet have also been
investigated for their association with ALS (Morozova et al., 2008;
Yu et al., 2014). Multidisciplinary approaches seem favorable
for ALS management.

Huntington’s Disease (HD)
Huntington’s disease is a monogenic autosomal dominant
neurological disease. Due to its autosomal dominant
inheritance pattern, progressiveness and the combination
of motor/cognitive/and behavioral impairments, the disease
condition is traumatic to patients and their relatives (Bates
et al., 2015). Pathologically, HD is the result of an expanded
trinucleotide repeat of CAG sequence in the gene HTT5
on chromosome 4, encoding the abnormal pathogenic
multifunctional protein named Huntingtin. Mutant protein
holds an unusual polyglutamine sequence, corresponding to the
expanded CAG repeat, which is known to be toxic in nature,
and results in neuronal cell death or dysfunction. Neurons
of the striatum region are particularly prone to this mutant
protein; however, HD has been documented as a disorder of
whole the brain and body. Abnormality of huntingtin protein
leads to neuronal death through several mechanisms including
direct effect of the mutant protein exon 1; and tendency of the
mutant protein to form aggregates with direct effect on axonal
transport, protein homeostasis, and mitochondrial function
(Kay et al., 2014; Ross et al., 2014). Losses of the brain-derived
neurotrophic factors, glutamate excitotoxicity, and toxic effects of
repeat associated non-ATG translation are the other hypothesis
involved in neural damage of HD (Bates et al., 2015).

CLINICAL STRATEGIES, MANAGEMENT,
CHALLENGES AND LIMITATIONS
VERSUS NDS

Recent couple of decades have witnessed exceptional researches
that propelled our knowledge about NDs. Advances in genetic
sciences enormously helped to target such diseases with novel
technologies (Chen and Pan, 2014). A set of allopathic medicine
such as dopaminergic medications for PD and related motor
disorders (Mizuno, 2014); cholinesterase inhibitors for treating
cognitive disorders (Doody et al., 2009); analgesic drugs for
pain (Chaudhuri and Schapira, 2009); anti-inflammatory (Tizabi
et al., 2014) and antipsychotic drugs for dementia and other
behavioral dysfunctions (Desai and Grossberg, 2005) are used
to stop the tremor and refractory movement disorders (Okun,
2014). Active and passive immunotherapies are new hopes for
AD treatment, though, the adverse effects of these antibodies are
the biggest concern of immune related drugs (Chen and Pan,
2014). Integrative medicine, including Western and traditional
medicine, is also effective option in improving NDs (Pan
and Zhou, 2014). For example, in PD patients, utilization of
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“Traditional Chinese Medicine” (TCM) and allopathic medicine
helped to improve sleeping and associated non-motor disorders
(Pan et al., 2011a,b). Ayurveda also has a history of PD treatment
with lower side effects (Lloret et al., 2013). Moreover, TCM was
shown to improve the symptoms of cognitive and behavioral
impairments in AD subjects (Pan et al., 2014). Medicinal
plants used in traditional Persian medicine have also shown
notable advantages for NDs treatment (Farzaei et al., 2018b). In
another study, a balanced based exercise regimen was shown to
improve the postural stability in PD patients (Li et al., 2012).
It is believed that combination of integrative medicine and
modern science will gradually help to treat degenerative diseases.
Despite considerable progressions in NDs management, certain
limitations and challenges are yet to be addressed.

It is thought that NDs might be treatable by predicting
pathological conditions prior to the onset of the disease, i.e., the
biomarkers of human immunodeficiency viruses (HIV) (CD4 cell
count or viral load). This idea is supported by the well-definition
of pathological and clinical phenomena. In sporadic PD, the
severity of the disease is measured by nonspecific markers. For
instance, the majority of individuals with constipation will never
get PD. Therefore, sorting of individuals to well defined risk
groups is still a need that has to be fulfilled. Definition of decent
outcomes and efficient biomarkers are necessary to show whether
a participant is responding in preclinical and clinical trials.

Systemic delivery of drugs to the CNS is a significant challenge,
mainly due to their poor access to the brain, extensive first-
pass metabolism, limited half-life, and possible side effects when
reaching non-target peripheral tissues (Tonda-Turo et al., 2018).
The BBB and other barriers inside the CNS such as the meninges,
blood cerebrospinal fluid barrier, choroid plexus within each
brain ventricle, and circumventricular organs are the obstacles
of drug delivery to the CNS. Hence, development of systemic
delivery systems with increased efficacy is essential for the CNS
pharmacotherapy.

Medicinal Plants and Their
Phytochemicals for NDs Treatment
Numerous studies tried to characterize phytochemicals with
positive effects on the neural system from medicinal, and even
dietary plants (Kim et al., 2014; Naoi et al., 2017, 2019). Beneficial
effects of neuroprotective phytochemicals are mainly attributed
to their antioxidant, and anti-inflammatory properties (Kim
et al., 2010). The bioavailability of herbal bioactive components
in body is a key point in their bioefficacy, and might be restricted
by factors such as fast metabolism, trivial permeability, and the
lack of stability within the CNS (Pandareesh et al., 2015). Herein,
we list the main chemical groups involved in neuroprotection.

Polyphenols
Polyphenols are the largest group of plant secondary metabolites,
and their structures vary from hydroxyl groups attached to the
aromatic ring in the simple phenols to highly complex polymeric
compounds in tannins and lignins. Respecting their structures,
polyphenols are strong antioxidant, and anti-inflammatory
compounds with broad contribution to manage various diseases.
To date, several clinical trials were proceeded to investigate

the potency of polyphenols on different NDs (Goetz, 2000;
Logroscino et al., 2010; Kori et al., 2016; Morgan and Orrell,
2016; Davatgaran-Taghipour et al., 2017). Flavonoids are the
major bioactive group of polyphenols with more than 6000
members (Figure 2). Flavones (i.e., apigenin and luteolin) (Patil
et al., 2014), flavanol (i.e., epigallocatechin-3-gallate-EGCG)
(Singh et al., 2016), flavonols (i.e., QC and kaempferol) (Lagoa
et al., 2009; Barreca et al., 2016), isoflavones (i.e., daidzein and
genistein) (Qian et al., 2012; Aras et al., 2015), flavanones (i.e.,
naringenin and hesperetin) (Cirmi et al., 2016), and anthocyanins
(i.e., cyanidin and delphinidin) (Strathearn et al., 2014) are the
best known flavonoids with considerable medicinal and dietary
values, particularly neuroprotective properties.

Curcumin (diarylheptanoid) (Hu et al., 2015), RSV
(stilbenoid) (Gomes et al., 2018), catalpol (iridoid glycoside)
(Jiang B. et al., 2015), lycopene (carotenoid) (Prema et al.,
2015), and smilagenin (saponin) (He et al., 2019) are some of
the non-flavonoid polyphenols with significant neuroprotective
effects. Phenolic acids containing cinnamic acid derivatives
(i.e., p-coumaric acid, caffeic acid, ferulic acid), and the benzoic
acid derivatives (i.e., gallic acid, vanillic acid, protocatechuic
acid) have been reported to improve neurological dysfunctions
through direct effect on neural, and glial cells (Nabavi et al.,
2015; Szwajgier et al., 2017; Figure 3). Scavenging of reactive
oxygen and nitrogen species, activation of redox-responsible
transcription factors, regulation of gene expression, inhibition of
β-amyloid generation and aggregation, as well as regulation of
mitochondrial apoptosis system have been introduced as some
of the mechanisms involved in the neuroprotective functions of
polyphenols. Furthermore, it is suggested that polyphenols can
bind to specific receptors on cell surface and trigger different
antioxidant signaling pathways (Rehman et al., 2019).

Alkaloids
Alkaloids are organic natural compounds containing nitrogen
in their structures. There are various classifications of alkaloids
based on their chemical structures, biochemical precursors, and
pharmacokinetics. Heterocyclic alkaloids (typical alkaloids)
with nitrogen in their cyclic ring are more common.
Berberine (Berberis vulgaris) (Jiang W. et al., 2015), montanine
(Rhodophiala bifida) (Pagliosa et al., 2010), morphine (Papaver
somniferum) (Wang et al., 2018), salsoline (Salsola oppositifolia),
and galantamine (Galanthus nivalis) (Pagliosa et al., 2010) belong
to isoquinoline alkaloids, and proven to have positive effects
on NDs. In addition, PIP (a piperidine alkaloid from Piper
nigrum) (Chonpathompikunlert et al., 2010), geissospermine
(Vital et al., 2015) (an indole alkaloid from Geissospermum
vellosii), nicotine (Quik et al., 2012) (a pyridine alkaloid from
Nicotiana tobaccum), caffeine (a methylxanthine derivative
from Coffea arabica) (Tellone et al., 2017), and harmine (an
indole β-carboline from Peganum harmala) (Biradar et al.,
2013) were also shown to possess neuroprotective effects.
These species majorly belong to Amaryllidaceae, Papaveraceae,
Solanaceae, and Ranunculaceae families of plant kingdom.
Figure 4 represents the chemical structures of heterocyclic
alkaloids. Alkaloids affect NDs through different mechanisms
including modulation of neurotransmitter systems, inhibition
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FIGURE 2 | Flavonoids.

FIGURE 3 | Phenolic acids.

of anti-amyloid and monoamine oxidase (MAO), inhibition
of acetylcholinesterase and butyrylcholinesterase, inhibition
of α-synuclein aggregation, and by anti-inflammatory and

antioxidant activities. They also might act as dopaminergic and
nicotine agonists or N-methyl-D-aspartate (NMDA) antagonist
(Hussain et al., 2018).
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FIGURE 4 | Heterocyclic alkaloids.

Terpenoids
Terpenoids are unsaturated organic compounds composed of
isoprene units. It was shown that G. biloba has positive effects
on NDs and contains flavonoid glycosides, organic acids and
terpenoids such as ginkgolides A, B, C and bilobalide (Shi et al.,
2010). Thymoquinone (TQ), the major component of Nigella
sativa is a monoterpene that has been suggested to be responsible
for the neuroprotective property of the plant (Khazdair, 2015).
Thymol is another neuroprotective monoterpene isolated from
Thymus vulgaris (Deng et al., 2015). GABA mediated inhibition
of synaptic transmission is the probable mechanism for the
thymol neuroprotective effect (Marin et al., 2011).

Advantages of Nanoparticles for
Treatment of NDs
The presence of BBB is the main obstacle for NDs treatment
strategies. So far, great efforts have been conducted to dispel this
problem with help of various nano methods (Bhaskar et al., 2010).
Among the drug delivery carriers that have been engineered,
polymeric nanoparticles (PNPs) received particular interests,
due to their high drug loading capacity, long circulation half-
life, and high capacity to protect the drug against debasement,
which offers broad surface handling possibilities for ligands to

pass the BBB (Roney et al., 2005). Nowadays, there are claims
that NP-based drug delivery systems effectively boost up the
passage of drugs through the BBB and even raise the drug
absorption in the brain. Biodegradability and reduced toxicity
to peripheral organs are reported as the main advantages of
nanomaterials for such therapeutic purposes (Caruso et al., 2011).
Nanomaterials pass the BBB through non-invasive, and invasive
mechanisms. In invasive manner, physical methods, the BBB
is ruptured and nanomaterials are transported across the BBB
through paracellular pathways such as intracerebroventricular or
intracerebral injection, i.e., intranasal delivery strategy, receptor-
mediated BBB crossing strategy, cell-mediated BBB crossing
strategy, shuttle peptide-mediated BBB crossing strategy and cell-
penetrating peptide (CPP). In contrast, non-invasive strategies
preserve the basic structure of BBB during the drug delivery
process and do not harm the BBB (Xie et al., 2019). Encapsulation
inside the nanocarriers simplifies the drug entry into the brain
through a non-invasive manner (Poovaiah et al., 2018). It is
believed that nanocarriers can be engineered desirably without
affecting or altering the medication’s properties.

In neural cells, in addition to the BBB, nanomaterials
target free radicals production/activity and the oxidative
related pathways (Win-Shwe and Fujimaki, 2011); regulate the
inflammatory events (i.e., suppression and/or overexpression
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of pro- or inflammatory cytokines and chemokines); possess
autophagy modulating (Zheng et al., 2016) and neuronal tissue
regeneration effects (Re et al., 2012); also can suppress neural
apoptosis or toxicity (Ali et al., 2017); and modulate the
transcription, transduction, and intracellular signaling pathways
(Kim et al., 2017). In AD subjects, nanostructures display high
affinity for Aβ to reduce its toxic effects, while in PD case, nano-
based approaches facilitate dopamine delivery and release to the
brain (Re et al., 2012).

Treatment of NDs with NPs may have significant
consequences such as proper biocompatibility and
biodegradability, improvement of the drug pharmacokinetic and
therapeutic efficacy, and reduction of the drug adverse effects
(Ratheesh et al., 2017). It was reported that herbal Ginsenoside-
NPs possessed neuroprotective effect, mainly through crossing
the BBB (Aalinkeel et al., 2018). Poly Lactic-co-Glycolic Acid
(PLGA)-functionalized QC (PLGA@QC)-NPs shown negligible
cell toxicity, inhibited the Aβ42 fibrillation, and reduced the
Aβ42-induced toxicity in human neuroblastoma SH-SY5Y cells
in vitro. Novel Object Recognition and Morris Water Maze tests
showed that PLGA@QC)-NPs treatment improved learning and
memory impairments in AD mice (Sun et al., 2016). Bacoside (a
loaded PLGA-NP) (Jose et al., 2014), Cholin-NPs (Li et al., 2011),
Lectin-NPs conjugated with Solanum tuberosum lectin (Zhang
C. et al., 2014), were also shown beneficial for AD management.

In summary, NPs loaded herbal extracts showed consequential
effects on NDs by improving the drug biodegradability
and biocompatibility, amelioration of the therapeutic efficacy,
removing pharmacokinetics restrictions, reducing side effects,
controlling the release, and by in site targeting. Furthermore,
some of nanoparticle materials have the extra potential for
enhancing the cure efficacy, such as decreasing ROS level,
significant antioxidant properties, and even inhibiting the
aggregation of Aβ. Although, nanocarriers are powerful tools
for delivering specific compounds to the brain and can cross
through the BBB in an easier manner, variant problems remained
to be resolved. Smaller size may cause route dislocation, induce
blood clots and hemolysis, thereby, creating platelet aggregation
(Ramanathan et al., 2018; Niu et al., 2019). Imbalanced
distribution of NPs in the brain may cause undeniable potential
risks. Inorganic part of nanostructures such as gold, silica,
iron, and cerium oxide particles make the metabolism of these
NPs obscures.

Accumulation of these compounds in the brain can induce
neurotoxicity through their impact on the mitochondrial activity
and interference with autophagy, apoptosis, and neuronal
inflammation (Niu et al., 2019).

HERBAL MEDICINES AND NATURAL
COMPOUNDS NANOFORMULATIONS

Polymeric Nanoparticles (PNPs),
Nanocapsules, and Nanospheres
Polymeric nanoparticles have high drug loading capacities,
enabling the system to protect and support the incorporated drug

against degradation. Therefore, there is an increasing chance of
drug penetration and access to the brain. Due to their stable
structures and unique features, they can evade macrophages,
thus, facilitating the drug delivery to the CNS. Nanospheres are
dense polymeric matrices that are prepared via micro-emulsion
polymerization, while nanocapsules are developed by a thin
polymeric envelope surrounding an oil-filled cavity (Modi et al.,
2009, 2010; Ganesan et al., 2015).

Polymeric Nanogels and
Nanosuspensions
Nanogels are described as highly crosslinked nano-sized hydrogel
systems that are either non-ionic- or ionic- monomers or
copolymerized. The size of the nanogels varies from 20 to
200 nanometers. This system has a 40–60% capacity for drug
loading. Previous studies suggested that nanogel structures could
enhance the brain uptake and decrease the liver and spleen
uptake of oligonucleotides. Drug loaded nanosuspensions are
crystalline drug particles that have been stabilized by mixtures of
lipids or nonionic surfactants. Nanosuspensions have significant
advantages such as their simplicity to use, and their notable
capacity for drug loading and delivery (Modi et al., 2010;
Jain et al., 2019).

Carbon Nanotubes (CNTs) and
Nanofibers
Inorganic nano-drug delivery systems such as mesoporous
silica nanoparticles, CNTs, layered double hydroxides,
superparamagnetic iron oxide nanoparticles, and calcium
phosphate nanoparticles emerged therapeutic applications in
various diseases, particularly NDs. Inorganic nano-carbon
systems are able to pass prolonged systemic circulation; while
enhancing the drug accumulation, permeability, retention
effect, stability, and availability to desire sites. In addition, these
nanostructures could modulate the drug release, and facilitate
drug imaging, and monitoring its function. Besides, being flexible
to various stimuli (i.e., temperature, pH, chemicals, pressure, and
magnetic and electric fields) makes the CNTs a great catch for
nanopharmacology (Naz et al., 2019).

Utilization of carbon-based nanostructures, like CNTs, is one
of the most noteworthy strategies for neurological applications.
CNTs are allotropes of carbon with a cylindrical nanostructure.
CNTs are being extensively explored to ameliorate their electrical
stimulation. One of the effective options for treatment of different
psychiatric and neurologic disorders, especially PD, is Deep
Brain Stimulation. In some cases, the immune system reacts to
the presence of these stimulating electrodes, arising problems
for the utilization of such fibers. Fabrication of nanofibers
is safer than CNTs, and the risk of air pollution is lower.
Interestingly, nanofibers are used to design and produce neural
prosthetics. Other nano methods may not be able to accomplish
the same applications in comparison with the electrospun
nanofibers (Modi et al., 2009, 2010; Ganesan et al., 2015).
Considering their electronic properties, structural attributes,
and suitable biological effects on the growth and viability of
cells; CNTs can be applied as scaffolds alone or blending with
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other biodegradable biomaterials to promote neuro-engineering,
for purposes like neuroprotection, neuronal differentiation,
regeneration, interface, and stimulation (Xiang et al., 2019).

Polymeric Nanomicelles
Polymeric micelles are among the most promising delivery
systems in nanomedicine. This system has a core-shell structure
with a lipophilic core, and a shell composed of hydrophilic
polymer blocks. The main advantage of this system is the
presence of hydrophobic active ingredients. The size of the
polymeric micelles varies from 10 to 100 nanometers (Modi et al.,
2009, 2010; Ganesan et al., 2015).

Polymeric Nanoliposomes
Nanoliposomes are phospholipids with two hydrophobic tails
and a hydrophilic head. Their sizes differ from 30 nanometers
to few microns. A significant amount of drugs can be
incorporated into the lipid bilayers or within the liposome
aqueous compartments. Nanoliposomes with modified surfaces

can decrease the drug opsonization in plasma, reduce the liver
chance to eliminate such as liposomes, and increase their systemic
circulation times. In vitro studies proven their efficiency for
targeted CNS drug delivery, and confirmed their remarkable
abilities to transfer a wide range of drugs from the BBB (Modi
et al., 2009, 2010; Ganesan et al., 2015). Figure 5 represents the
nanoformulations that are used to improve the effectiveness of
natural compounds.

Exosomes: New Promising Nanocarriers
Exosomes are lipid bilayer enclosed extracellular vesicles
with nanometer-size ranging from 30 nm to 150 nm and are
constructed in the endosomal compartment of the majority
of eukaryotic cells such as B and T cells, dendritic cells,
and macrophages. Exosomes have several special features
that make them extraordinary and distinct from other
nanocarriers. High biocompatibility; nanoscopic size; ability to
communicate between cells, both systemically and locally; light
immunogenicity; having remarkable potential to prevail over

FIGURE 5 | Nanoformulations used to improve the effectiveness of natural compounds.
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biological barriers; considerable potential for tissue targeting;
encapsulation and carrying of various categories of unstable
therapeutic molecules such as lipids, hormones, proteins, and
genes; have enumerated the exosomes as suitable promising
transporters for improving the drug delivery for treatment of
multiple disorders such as NDs, cardiomyopathies and cancers
(Aryani and Denecke, 2016; Sarko and Mckinney, 2017; Niu
et al., 2019; Zhang et al., 2019).

Considering NDs, exosomes can play dual roles by either
assisting in spreading the risky proteins such as prions,
α-synuclein and tau, thereby, accelerating the progression of
the disease; or due to their function in transporting cellular
entities through the BBB, they can facilitate drug delivery to
the brain and reduce the probability of NDs. In addition to
the surface localizations of specific proteins, the presence of
specific molecules that are known as risk factors for NDs and
protecting their contents from degradation, make exosomes
proper diagnostic candidates for NDs (Jan et al., 2017).

NANOFORMULATION OF NATURAL
PRODUCTS FOR NDS TREATMENT

Curcumin (Cur)
Curcumin is one of the most popular and important natural
polyphenols derived from Curcuma longa L. Cur has a distinctive
chemical structure, making it susceptible to significant effects.
Cur affects many biological and pharmacological targets, such
as transcription factors, growth factors, genes and cytokines
(Bengmark and Nutrition, 2006; Shao-Ling et al., 2009; Guo
et al., 2017; Taghipour et al., 2019). Cur can modulate the
inflammation process through suppression of several pro- and/or
anti-inflammatory mediators such as tumor necrosis factor alpha
(TNF-α), cyclooxygenase-2 (COX-2), and interleukin 8 (IL-8).
Moreover, it has been reported that Cur is effective on Aβ and
other protein aggregation, making it favorable to improve NDs,
primarily AD (Zhang et al., 2010; Hajialyani et al., 2018; Del
Prado-Audelo et al., 2019). Despite its impressive therapeutic
properties, Cur showed inappropriate pharmacokinetics, in
terms of limited absorption, negligible bioavailability, and
fast elimination from the body. To overcome such defects,
various NPs, nanocapsules, nanomicelles and nanoliposomes
were developed to improve the pharmacokinetics and the
bioavailability of Cur (Bollimpelli et al., 2016).

In vitro Studies
Curcumin loaded lactoferrin NPs were developed to protect SK-
N-SH dopaminergic cells from rotenone-induced neurotoxicity,
a model that mimics symptoms similar to PD. Besides sustained
retention, the intracellular uptake, and the concentration of
Cur increased, thereby, enhancing its neuroprotective effects
(Bollimpelli et al., 2016). In vitro, a lipid- polyethyleneglycol-
polylactide (PEG)-Cur derivative significantly reduced the Aβ

aggregation. It was reported that Cur-derivative liposomes and
Cur-derivative anti-transferrin antibody liposomes improved
the brain penetration of the drug in post-mortem samples of
AD patients (Mourtas et al., 2014). In vitro, nanoliposomes

of Cur or Cur derivatives were able to control or decrease
the Aβ oligomers or the fibril formation (Taylor et al., 2011).
A double-functionalized nanoliposomes of a Cur derivative
in modified HIV Trans-activating Transcriptional Activator
(TAT) peptide (TATCur-NL) could cross the BBB in vitro and
illustrated high affinity for Aβ peptides (Sancini et al., 2013). In
another in vitro study, apolipoprotein E3 mediated poly(butyl)
cyanoacrylate NPs containing Cur (ApoE3-C-PBCA), enhanced
the photostability and the cellular uptake of Cur due to a
sustained drug release (Mulik et al., 2010). PLGA coated-
Cur NPs conjugated with Tet-1 peptide found suitable for
treating AD, due to their inhibitory effects on Aβ formation
and the consequent prevention of oxidation and production of
free radicals (Mathew et al., 2012). In addition, Cur-decorated
nanoliposomes displayed extremely high affinity for Aβ1−42
fibrils (Mourtas et al., 2011). Cur conjugated to a zwitterionic
polymer (carboxybetaine methacrylate)-NPs, more effectively
inhibited the fibrillation of Aβ42 fibrils than free Cur (Zhao et al.,
2018). In another study, Cur-PLGA-NPs induced neurogenesis
in neural stem cells through up-regulation of the expression of
genes involved in neuronal differentiation and cell proliferation
(Tiwari et al., 2013).

In vivo Interventions
Curcumin encapsulated solid lipid nanoparticles (CSLNs)
improved 3-nitropropionic acid (3-NP)-induced HD in rats.
CSLNs treated animals showed significant enhancement of the
antioxidant enzyme’s activities (i.e., SOD and glutathione), while
there was a significant decrease in mitochondrial swelling,
ROS, protein carbonyls, and lipid peroxidation (Sandhir et al.,
2014). Cur-selenium-PLGA nanospheres were shown more
efficient in AD mice in comparison with only treated selenium-
NPs animals (Huo et al., 2019). In another study, a dual
drug-loaded lipid-based nanoformulation (Cur and PIP) found
effective on PD. This effect was linked to the suppression of
α-synuclein aggregation, enhancement of Cur bioavailability,
alleviation of oxidative stress, more efficient removal of defective
proteins, and acceleration of anti-apoptotic events compared
with non-formulated drugs (Kundu et al., 2016). In another
study, Cur NPs designed as vectors. These Cur-vectors showed
considerable affinities toward Aβ1−42 fibrils and exhibited
proper stability/integrity for in vivo applications (Mourtas et al.,
2011). In mouse Tg2576 AD model, encapsulated PEG-PLA-
Cur improved memory cue compared with control samples,
also working memory was more improved in PEG-PLA-Cur
treated mice than the ordinary Cur treated group (Cheng
et al., 2013). In addition, solid lipid nanoparticles of Cur (Cur-
SLNs) exhibited neuroprotective effects in aluminum-induced
behavioral, biochemical and histopathological alterations in
the mice brain (Kakkar and Kaur, 2011). Cur-loaded lipid-
core nanocapsules (Cur-LNC) improved neuroinflammation,
behavioral impairments and reduced the hyperphosphorylation
of tau and Aβ in AD subjects, compared with free Cur treated
animals (Hoppe et al., 2013). The safety and efficacy of a
micelle nano-Cur system was reported in patients with ALS.
The system increased the probability of survival in patients with
ALS as an additional treatment, particularly in those with bulbar
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symptoms (Ahmadi et al., 2018). Encapsulated Cur in chitosan-
alginate-sodium tripolyphosphate nanoparticles (CS-ALGSTPP
NPs) augmented the bioavailability and the half-life of Cur in
animal model of MS. Cur-loaded NPs reduced the inflammation,
glial activation, and the extent of demyelination areas (Naeimi
et al., 2018). In animal model of MS, dendrosome NPs of
Cur ameliorated the score of the disease and demyelination,
whereas the remyelination was improved, resulting in reduced
inflammation and oxidative stress (Mohajeri et al., 2015).
Another liposomal mucoadhesive drug delivery system has been
shown effective on Cur delivery via nasal route. The system
enhanced the drug bioavailability, distribution and stability, also
controlled the release characteristics compared with the drug
solution alone (Samudre et al., 2015).

In another study, Cur loaded to a low-density lipoprotein
(LDL)-mimic nanostructured lipid carrier (Lf-mNLC) that was
amended with lactoferrin. Administration of Lf-mNLC to AD
animals enhanced the concentration of Cur in the brain and
significantly increased its bioavailability, indicating that Lf-
mNLC remarkably controlled the AD progression and symptoms
(Meng et al., 2015). It was reported that a type of nano-Cur
showed beneficial effects in restoring the expression patterns of
dysregulated miRNAs in MS patients (Dolati et al., 2018a). In MS
subjects, this system repressed the expression levels of T-helper
17 (Th17) cells, IL-17, and Retinoic acid-related orphan receptor
gamma t (RORγt), demonstrating that this nano-Cur structure
can prompt the regulation of dysregulated Th17 cells in MS
patients (Dolati et al., 2018a). In another study, the effect of a
nano-Cur system on regulatory T-cells frequency and function
were investigated in 50 patients with relapsing-remitting MS. The
system diminished the expression of forkhead box P3 (FOXP3)
and the levels of IL-10, and transforming growth factor beta
(TGF-β). In addition, the proportions of peripheral Treg cells
were frequency declined, proposing that such nano-system is
a competent agent to restore the frequency and function of
Treg cells, which play an important role in MS patients (Dolati
et al., 2019). Similarly, the very same nano-Cur decreased the
expression levels of inflammatory miRNAs, signal transducer
and the activator of transcription 1 (STAT1), nuclear factor-
κB (NF-κB), and activator protein 1 (AP-1), while enhancing
the expression of STAT5 mRNA (Dolati et al., 2018b). In vivo
aggregation of Aβ1−16 was diminished using a gold nanoparticle–
polyvinylpyrrolidone–Cur conjugate (Brahmkhatri et al., 2018).
A Cur-loaded polysorbate 80 (PS80)-modified cerasome NPs
caused longer circulation lifetime, and significantly improved
the pharmacokinetic properties of the drug than free Cur
in PD model (Nisi Zhang et al., 2018). A summary of Cur
nanoformulations is provided in Table 1.

Quercetin (QC)
Quercetin is a bioflavonoid found in diverse fruits, vegetables,
and a number of herbal origin oils with well-known
neuroprotective, and anti-inflammatory effects. Besides, QC
has considerable potency to scavenge ROS. Despite its beneficial
effects, poor solubility and low bioavailability hindered its clinical
applications. Accordingly, to control such limitations, alternative
QC formulations such as nanocapsules, nanogels, liposomes,

nanosuspensions, and microsphere have been recommended, in
which QC-nanocapsulation was shown to be the most proper
form (Chakraborty et al., 2012; Nathiya et al., 2014; Ghaffari
et al., 2018). In a study, QC-loaded nano lipidic carriers (NLCs)
improved the QC bioavailability and delivery to the brain, while
enhanced its antioxidant activity (Kumar et al., 2016).

In PD-like rats, the bioavailability and the efficacy of
QC nanocrystals were greater than QC alone. A significant
enhancement of the antioxidant enzyme activities and total
glutathione level, as well as decline in malondialdehyde level
were evident in hippocampal area (Ghaffari et al., 2018).
Nanoencapsulated QC improved the ischemia reperfusion
induced neuronal damage in vivo, probably in association with
enhanced neuronal count and elevated antioxidant activity
(Ghosh et al., 2013). In vitro, QC-SLNs significantly ameliorated
aluminum induced neurotoxicity. In addition, this system
caused meaningful improvement in behavioral and memory
retention in animal models of dementia and AD (Dhawan
et al., 2011). An ApoE-QC-RA-PA liposome structure (QC-
and RA-loaded liposome with conjugated phosphatidic acid and
grafted apolipoprotein E) was shown to cross the BBB and
to recover the neurotoxicity of Aβ1−42 in AD model. In vivo
AD model, the same system reduced the lipid peroxidation
level, acetylcholinesterase activity and the formation of Aβ

plaques (Kuo et al., 2018). Nasal administration of QC liposomes
decreased the degeneration and destruction of cholinergic
neurons in the hippocampus of AD animal model through
reduction of oxidative stress (Phachonpai et al., 2010). In another
study, a nanoformulation of QC (nano encapsulated QC) was
designed and examined on neuronal model of oxidative stress
injury. The neuroprotective activity of encapsulated QC was
more explicit in comparison with free QC treated animals
(Aluani et al., 2017).

The mitochondria delivery of QC increased by QC loaded in
PLGA nanocapsules containing dodecyl triphenylphosphonium
bromide (TPP+) as one of the matrix portions (N1QC) structure
in the cerebral ischemia reperfusion induced model. N1QC
showed higher brain uptake, and significant bioavailability and
mitochondrial localization after cerebral ischemia-reperfusion
(Ghosh et al., 2017).

Resveratrol (RSV)
Resveratrol (3,5,4′-trihydroxy-stilbene) is a natural phytoalexin
polyphenolic agent from the stilbene-class of compounds. Rapid
metabolism, poor water solubility and low bioavailability are the
main drawbacks of RSV (Farzaei et al., 2018a; Min et al., 2018).
In PD mouse model, RSV loaded on PS80-coated poly(lactide)
NPs increased the neuroprotective properties of the drug against
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
behavioral and neurochemical variation (Da Rocha Lindner
et al., 2015). An optimized RSV-loaded lipid-core NPs (RSV-
LNC) modulated the Aβ-triggered neuroinflammation in vitro
(Frozza et al., 2013a). Furthermore, RSV-LNC restored the
destructive effects of Aβ1−42 in rats (Frozza et al., 2013b). In
another study, RSV loaded mesoporous nano-selenium (MSe-
Res/Fc-β-CD/Bor) delivery system inhibited the Aβ aggregation,
decreased oxidative stress, and improved memory impairments
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TABLE 1 | Summary of Cur nanoformulations and their beneficial effects.

Nano vehicle/method Disease Results References

Lactoferrin nanoparticles Brain targeting, neuroprotection
activity

Increase of intracellular drug uptake and higher
neuroprotection properties

Bollimpelli et al., 2016

Multifunctional liposomes AD Decrease of Aβ1−42 aggregation and improve of
pharmacokinetics of Cur

Mourtas et al., 2014

Liposomes AD Decrease of Aβ fibrils formation Taylor et al., 2011

TAT AD High affinity for Aβ peptide and increase of Cur
bioavailability

Sancini et al., 2013

Apolipoprotein E3 mediated poly(butyl)
cyanoacrylate

AD Increase of Cur bioavailability and photostability Mulik et al., 2010

Se-PLGA nanospheres AD Reduction of amyloid-β aggregation Huo et al., 2019

PLGA-based NPs AD Increase of Cur bioavailability and efficacy Mathew et al., 2012

Nanoliposomes AD High affinity for Aβ1−42 fibrils Mourtas et al., 2011

Poly(carboxybetaine methacrylate)
(pCB)

AD Improve of pharmacokinetics of Cur. Inhibition of Aβ42

fibrillation
Zhao et al., 2018

Lipid-based NPs PD Increase of bioavailability and reduce the aggregation of
alpha-synuclein fibrils

Kundu et al., 2016

Liposomes AD Increase of affinity for Aβ1−42 fibrils and improve of
pharmacokinetics quality

Mourtas et al., 2011

Polyethyleneglycol-polylactide
(PEG-PLA)

AD Increase of Cur bioavailability Cheng et al., 2013

CSLNs HD Reduction of mitochondrial swelling, ROS, lipid peroxidation
and protein carbonyls

Sandhir et al., 2014

SLNs AD Recuperation the noxious neurodegenerative effects of
aluminum chloride

Kakkar and Kaur, 2011

Lipid-core nanocapsules AD Increase of Cur bioavailability Hoppe et al., 2013

Micelle ALS Improve of probability of survival Ahmadi et al., 2018

CS-ALGSTPP NPs MS Increase of Cur bioavailability, circulation and durability,
inhibition of demyelination Preserve myelinated axons
through amelioration

Naeimi et al., 2018

Dendrosome nanoparticles MS Improve of remyelination, decrease of inflammation and
oxidative stress

Mohajeri et al., 2015

Mucoadhesive Liposome AD Good stability, controlled release, higher drug distribution
and bioavailability

Samudre et al., 2015

Lactoferrin AD Improve the bioavailability and increase of brain penetration Meng et al., 2015

Nano-micelle MS Restore the expression pattern of dysregulated miRNAs Dolati et al., 2018a

Nano-micelle MS Decrease in Th17 Dolati et al., 2018a

Nano-micelle MS Suppression of Treg cell, IL-10, TGF-β, and FoxP3
expression

Dolati et al., 2019

Nano-micelle MS Suppression of inflammatory miRNAs, STAT1, NF-κB, and
AP-1; increase the expression of STAT5 mRNA.

Dolati et al., 2018b

Gold nanoparticle–PVP AD Inhibit the Aβ1−16 aggregation and dissolve the formed
aggregates

Brahmkhatri et al., 2018

PS80 modified cerasome PD Improve of pharmacokinetic profile Nisi Zhang et al., 2018

PLGA AD Improve neuronal cell proliferation and differentiation,
recuperation memory and learning disability

Tiwari et al., 2013

(Sun et al., 2019). Similarly, RSV-loaded polymeric micelles
inhibited the Aβ-induced damages via reducing oxidative stress
and apoptosis in vitro (Lu et al., 2009). Vitamin E loaded RSV
nanoemulsion showed notable positive effects in PD animal
model and a higher concentration of RSV was detected in the
brain in comparison with free drug treated group (Pangeni et al.,
2014). In another study, RSV-loaded SLNs functionalized with
apolipoprotein E, enhanced the bioavailability, concentration
and the penetration of the drug in the brain (Neves et al.,
2016). Chitosan-coated PLGA NPs of RSV reduced the level

of inflammatory cytokines, elevated the IL-10 level, improved
neuroprotection and enhanced the functional recuperation,
following spinal cord damage in rats (Wang et al., 2019).

Piperine (PIP)
Piperine (1-piperoylpiperidine) is a pungent alkaloid existing
in the fruits of piper species. Bulk of evidence confirmed the
effectiveness of PIP on the CNS, which is mainly implicated
with the special consequences of PIP on acetylcholine. The
log P-value of PIP is 2.25, making this compound very
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lipophilic, with slight aqueous solubility. In addition, PIP has
insufficient oral bioavailability (Elnaggar et al., 2015b; Etman
et al., 2018). A research group designed a Tween-modified
monoolein cubosomes (T-cubs) loaded by PIP. In AD model,
PIP-loaded cubs demonstrated higher efficacy over free drug
and were able to restore the cognitive function in studied
animals (Elnaggar et al., 2015b). Likewise, PIP microemulsion
displayed higher efficacy, better therapeutic outcomes and
increased the delivery of PIP to the brain compared with
free drug in AD subjects (Etman et al., 2018). Intranasal PIP-
loaded chitosan nanoparticles showed more efficacy with lower
piperine dosage than piperine alone in AD model (Elnaggar
et al., 2015a). In another study, nanoformulations of EGCG
alone or in combination with PIP, improved cognitive behavior
and reduced the brain acetylcholinesterase level in scopolamine-
induced amnesia animals (Dahiya et al., 2018). PIP-SLNs
formulated via emulsification solvent diffusion method coated
with PS80, diminished the SOD1 level and immobility, while
increasing the acetylcholinesterase level. Furthermore, reduced
plaques and tangles in histopathological evaluation was evident
(Yusuf et al., 2013).

Gallic Acid (GA) and
Epigallocatechin-3-Gallate (EGCG)
Gallic acid is a natural phenolic antioxidant synthesized from
3-dehydroshikimate. GA is suggested to play a protective role
against α-synuclein and β-amyloid aggregations, both in vitro
and in vivo (Nagpal et al., 2013; Jayamani and Shanmugam,
2014; Mohammad-Beigi et al., 2016). EGCG, is an ester of GA
and epigallocatechin, the predominant catechin in tea. Regarding
their antioxidant potencies, these compounds may have beneficial
effects on NDs by their interactions with important proteins like
α-synuclein, Aβ, huntingtin and transthyretin. GA loaded onto
polyethyleneimine-coated human serum albumin nanoparticles
(PEI-HSA-GA NPs) was shown to inhibit α-synuclein fibrillation
in a PD model (Mohammad-Beigi et al., 2016). In another
study, GA-loaded chitosan nanoparticles (GANP) recuperated
scopolamine-induced amnesia in vivo. This effect was mainly
ascribed to GA cholinergic function and its antioxidant
properties. Furthermore, GANP coated with Tween 80 (cGANP)
reinforced the above-mentioned effects of GA (Nagpal et al.,
2013). Nanolipidic EGCG improved the bioavailability and
neuronal α-secretase activity of EGCG in AD and HIV-associated
dementia mouse models (Smith et al., 2010). To decrease the
cytotoxicity of EGCG at high doses, EGCG was coupled on to
the surface of selenium NPs coated with Tet-1 peptide (Tet-
1-EGCG@Se). This system inhibited the Aβ fibrillation and
disaggregated the Aβ fibrils into the non-toxic compounds
(Zhang J. et al., 2014).

Ferulic Acid (FA)
Ferulic acid is a cinnamic acid derivative with strong antioxidant
activity. The compound can reduce the Aβ fibrils formation,
thus may affect AD (Picone et al., 2009; Mhillaj et al.,
2018). The pharmacokinetics and bioavailability of FA were
found to be insufficient, thereby, restricting its therapeutic

applications (Trombino et al., 2013). It was shown that the
pharmacokinetic and delivery profile of FA was enhanced by
SLNs system. In rat brain microsomes, FA-SLNs recovered
cell viability and mitochondrial membrane potential, inhibited
Aβ-induced cell death, decreased ROS production, and reduced
the activation of the apoptosis pathway. Two formulations
of FA, SLNs-SA-FA (stearic acid) and SLNs-SF-FA (stearyl
ferulate) based solid lipid NPs, were developed with more
lipophilic properties than free FA. In addition to bioavailability,
the antioxidant effect of FA in the rat brain was increased
(Trombino et al., 2013). FA was also entrapped into multiple
SLNs, and nanostructured lipid carriers (NLCs). In vitro AD
model, ROS production decreased in human neuroblastoma
LAN−5 cells treated with FA-loaded SLN, representative of
higher protective activity of FA-nanoformulation in neurons than
free FA (Bondi et al., 2009). In another investigation, FA-NLCs
improved the pharmacological properties of FA via activation of
phosphoinositide 3-kinases (PI3Ks) pathway in ischemic neural
injuries model (Hassanzadeh et al., 2018).

Plant-Mediated Nano Systems
Trimethylated chitosan-conjugated PLGA NPs (TMC/PLGA–
NP) loaded with 6-coumarin and coenzyme Q10 improved
memory impairment and reduced the senile plaques in
transgenic mice. Moreover, it was shown that 6-coumarin loaded
TMC/PLGA–NPs were highly accumulated in different parts
of the brain in CD-1 mice, following intravenous injection
(Wang et al., 2010). Intranasal delivery of Huperzine A (HupA)-
loaded PLGA NPs (their surfaces were modified with lactoferrin-
conjugated N-trimethylated chitosan) showed that Lf-TMC NPs
facilitated the distribution of HupA in the brain. Furthermore,
cellular uptake experiments demonstrated that accumulation
of Lf-TMC NPs was higher than nontargeted analogs in
SH-SY5Y and 16HBE cells. HupA-PLGA-NPs improved the
bioavailability and targeting ability of the drug (Meng et al.,
2018). In AD rat model, berberine (BRB)-loaded multiwalled
carbon nanotubes (MWCNTs) coated with phospholipid and
polysorbate, remanded the memory impairment and reduced
the β-amyloid induced-AD compared with its free form (Lohan
et al., 2017). In AD animals, hesperetin nanocrystal retrieved
memory consolidation by upregulation of the antioxidant
enzymes and glutathione levels (Kheradmand et al., 2018).
PEG-based nanospheres encapsulated with vitamin E increased
the antioxidant efficacy of vitamin E against Aβ-induced
ROS (Shea et al., 2005). Retinoic acid-loaded polymeric NPs
exhibited neuroprotective effects on dopaminergic neurons in
mouse model of PD. This formulation significantly reduced
dopaminergic neuron loss in the substantia nigra, while the
expressions of transcription factors Pitx3 and Nurr1 were
increased (Esteves et al., 2015). In Aβ25−35 induced oxidative
stress in rat hippocampal region, chrysin loaded SLNs showed
potent free radical scavenging effect, decreased neuronal damage
and improved oral bioavailability; also slight memory retention in
behavioral tasks was observed (Vedagiri and Thangarajan, 2016).

Sialic acid (SA)-modified selenium NPs coated with peptide-
B6 (B6-SA-SeNPs) enhanced the penetration of the drug
across the BBB, effectively disaggregated the Aβ fibrils and
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TABLE 2 | Natural-based nanoformulations and their implications for NDs.

Component Nano vehicle / method Disease model Results References

Coenzyme Q10 6-coumarin Trimethylated
chitosan-conjugated PLGA
nanoparticle

AD ↓ Senile plaques ↓ Memory
impairment, ↑ bioavailability

Wang et al., 2010

HupA lactoferrin-conjugated
N-trimethylated chitosan
nanoparticles (Lf-TMC NPs)

AD Appropriate sustained-release, ↑
bioavailability, ↑ targeting ability

Meng et al., 2018

Berberine MWCNTs coated with
phospholipid and polysorbate

AD Remanded the memory impairment
and quelled AChEI activity

Lohan et al., 2017

Hesperetin Nanocrystal AD Improve derecognition of memory
consolidation ↑ Activity of
antioxidant enzymes

Kheradmand et al., 2018

Vitamin E PEG-based nanospheres AD ↑ Antioxidant efficacy of vitamin E Shea et al., 2005

Retinoic acid (RA) PNPs PD Significant neuroprotective effect on
dopaminergic neurons

Esteves et al., 2015

Chrysin SLNs AD ↑ Oral bioavailability, ↑free radical
scavenging, ↓ neuronal damage

Vedagiri and Thangarajan,
2016

Sialic acid and peptide-B6 Selenium nanoparticles AD Disaggregated the Aβ fibrils and
inhibited the Aβ aggregation

Yin et al., 2015

Cysteine Selenium nanoparticles AD ↓ ROS, prevented Aβ aggregation Zhou et al., 2015

Nattokinase enzyme (NK) PNPs AD Downregulate amyloid aggregation Lohan et al., 2017

inhibited its aggregation (Yin et al., 2015). Cysteine-modified
SeNPs (D/LSeNPs) diminished ROS level and prevented metal-
induced Aβ aggregation. Furthermore, D/SeNPs showed a
higher inhibitory effect on fibrils formation than L/SeNPs
in vitro (Zhou et al., 2015). In the same way, (PLGA)-
encapsulated nattokinase conjugated with Tet1 peptide
exhibited antifibrinolytic activity and downregulated the
amyloid aggregation (Lohan et al., 2017) (Table 2).

GREEN-EXTRACT NANOPARTICLES

Ginkgo biloba
Ginkgo biloba (Ginkgoaceae) is an ancient Chinese tree,
extensively cultivated for traditional and medical purposes.
G. biloba extract contains flavonol glycosides, bilobalide, terpene
trilactones, and varied forms of ginkgolides, and ginkgolic
acid (Müller et al., 2012; Yang et al., 2018). In Europe, the
standardized form of G. biloba extract is broadly used to improve
the therapeutic condition of patients with various forms of
dementia (Maurer et al., 1997; Luo, 2001). It was reported that
niosome formulation of G. biloba extract was able to extend
the release duration of flavonoid glycosides with improved oral
bioavailability and pharmacokinetic properties, making it an
appropriate delivery system for G. biloba extract to the brain (Jin
et al., 2013). Nanosized particles of G. biloba extract promoted the
release of acetylcholine neurotransmitter from certain parts of the
brain compared with control group animals. Nanosized particles
of G. biloba extract showed improved bioavailability and a better
absorption character (Shinji et al., 2011).

Pomegranate Seed Oil
Pomegranate (Punica granatum) is a sacred fruit containing
punicic acid (PA), and significant amounts of polyphenolic

compounds (Kıralan et al., 2009; Vroegrijk et al., 2011;
Boroushaki et al., 2016). In 2013, a nanodroplet formulation of
pomegranate seed oil improved the Creutzfeldt Jacob disease
(CJD). The results of the study exhibited that accumulation
of scrapie isoform of the prion protein (PrPSc) did not
show significant changes but neuronal loss and lipid oxidation
relatively decreased, an indicative of neuroprotective function
of pomegranate seed oil (Mizrahi et al., 2014). In mouse
model of MS, nanodroplet formulation of pomegranate seed oil
reduced the disease burden more than free pomegranate seed oil
(Binyamin et al., 2015).

Thymoquinone (TQ)
The major active component of Nigella Sativa (Ranunculaceae)
seed is TQ. TQ a lipophilic compound with diverse
pharmacological qualities in immunomodulation,
neurodegeneration and cognitive deficits (Alam et al., 2012).
Nonetheless, the brain delivery of TQ is a challenge (Xiao
et al., 2016). In high-fat cholesterol diet rats, nanoemulsion
of TQ rich fraction (TQRF) and TQ improved memory
deficits and enhanced the total antioxidant status, whereas
significantly decreased the Aβ expression (Ismail et al.,
2017b). In a similar condition, TQRF nanoemulsion and
TQ nanoemulsion modulated the activity of γ- and β-secretase
enzymes, which consequently increasd the Aβ degradation
and its elimination from the brain (Ismail et al., 2017a).
Co-encapsulation of N. sativa oil (NSO) and plasmid DNA
demonstrated that NSO could be used as a suitable gene delivery
carrier for NDs treatment, especially in AD subjects (Doolaanea
et al., 2016). In a study, TQ encapsulated chitosan NPs were
tested for the nose to brain targeting method. Nose to brain
targeting is a way to reduce the systemic adverse effect of
TQ. The outcomes of the study confirmed the effectiveness
of TQ, comparing with previous methods (Alam et al., 2012).
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CONCLUSION

In parallel with global improvement of lifespan, the prevalence
of NDs is rising up, thereby, requiring novel treatment strategies
to improve both the symptomatic and the quality of life in
patients suffering from such disease. As known, the CNS is
tightly preserved with various barriers. Thus, a proper drug
essentially has to pass the BBB to reach the CNS. Nevertheless,
numerous drug delivery systems designed and developed,
however, phytochemical-based nanocarriers have distinguished
advantages such as being safe, ecofriendly, less toxic, inexpensive,
easy to scale up, and providing particles with controlled size
and morphology. In sum, plant mediated nano systems can
improve the pharmacokinetic profile and bioavailability of
phyto-therapeutic compounds to the CNS, increase the brain
penetration of these drugs, and enhance the disaggregation or
prevent the aggregates formation in the brain. Although, there are

many studies reporting the restorative effect of NPs in preclinical
models of neurological disorders, further research is requisite to
address the safety issues related to these systems. In addition,
clinical efficacy of NPs in the area of neurological medicine needs
long term assessments. Design of nanoformulations with more
specificity for different brain cells and for each type of NDs should
also be noticed.
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