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Severe traumatic brain injury (TBI) is a leading cause of death and disability worldwide,

especially in low- and middle-income countries, and in austere, rural, and remote

settings. The purpose of this Perspective is to challenge the notion that accurate and

actionable diagnosis of the most severe brain injuries should be limited to physicians

and other highly-trained specialists located at hospitals. Further, we aim to demonstrate

that the great opportunity to improve severe TBI care is in the prehospital setting.

Here, we discuss potential applications of prehospital diagnostics, including ultrasound

and near-infrared spectroscopy (NIRS) for detection of life-threatening subdural and

epidural hemorrhage, as well as monitoring of cerebral hemodynamics following severe

TBI. Ultrasound-based methods for assessment of cerebrovascular hemodynamics,

vasospasm, and intracranial pressure have substantial promise, but have been mainly

used in hospital settings; substantial development will be required for prehospital

optimization. Compared to ultrasound, NIRS is better suited to assess certain aspects

of intracranial pathology and has a smaller form factor. Thus, NIRS is potentially

closer to becoming a reliable method for non-invasive intracranial assessment and

cerebral monitoring in the prehospital setting. While one current continuous wave

NIRS-based device has been FDA-approved for detection of subdural and epidural

hemorrhage, NIRS methods using frequency domain technology have greater potential

to improve diagnosis and monitoring in the prehospital setting. In addition to better

technology, advances in large animal models, provider training, and implementation

science represent opportunities to accelerate progress in prehospital care for severe TBI

in austere, rural, and remote areas.
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INTRODUCTION

Severe traumatic brain injury (TBI) is a leading cause of
death and disability worldwide (1). In low- and middle-income
countries, the incidence of severe TBI has risen with the use of
motorized transport, while shifting demographics have resulted
in more fall-related injuries in the aging population (2). In
military personnel, exposure to blast is associated with unique
pathological changes frequently accompanied by blunt force or
penetrating trauma (3, 4). In the event of armed conflict with an
advanced peer or near-peer adversary, severe injuries of all types
are expected to bemore common than in recent wars and casualty
care complicated by delayed medical evacuation (5). Although
severe injuries represent a small percentage of all TBI, they are
associated with the highest levels of morbidity and mortality.
Among survivors, there is a reduced life expectancy compared
to the general population (6).

Severe TBI occurring in austere, rural, or remote settings
presents special challenges above and beyond those of the injury
itself. Those living in rural areas have a higher annualized
incidence of TBI, and both total and prehospital mortality are
higher when the injury occurs in a rural setting (7, 8). The
fact that many rural hospitals in the U.S. are downsizing or
closing exacerbates this problem. Nearly 47 million American’s
live more than 1 h away from trauma care (9), which is of
particular relevance to severe TBI for which rapid diagnostics
and treatments are required. Level I trauma facilities are even
more dispersed, and sub-specialists such as neurosurgeons are
concentrated in urban areas. Areas without ready access to
high acuity intensive care have been referred to as “trauma
deserts” (10). In the military, expectations that future operational
environments will require far-forward troops to delay medical
evacuation and treat injured personnel onsite for extended
periods has led to the concept of prolonged field care (11).

The purpose of this Perspective is to challenge the notion that
accurate and actionable diagnosis of severe brain injuries should
be limited to physicians and other highly-trained specialists
located at hospitals. In order to meet the needs of citizens living
in rural areas throughout the world, as well as military personnel
deployed in remote and resource-limited locations, the capability
to recognize life-threatening intracranial pathologies after TBI
must be placed firmly into the hands of prehospital providers.
Advanced technologies and unconventional approaches are
needed to manage patients for hours in rural environments and
possibly days in wilderness medicine or military prolonged field
care settings.

UNMET NEEDS

Diagnosis of Intracranial Bleeding and
Other Intracranial Pathologies
Intracranial extra-axial bleeding, including subdural (SDH) and
epidural hemorrhage (EDH), is a risk factor for increased
mortality following severe TBI (12, 13). When diagnosis and
treatment are delayed, mortality may be as high as 90%,
the worst of any subgroup of patients with severe TBI
(14–16). Additionally, the clinical course of patients with

delayed traumatic hematomas is often unpredictable, with some
deteriorating rapidly and others exhibiting no clinical change
(17). In a hospital setting, detection of intracranial bleeding
approaches 100% accuracy with CT. Outside of hospital settings
equipped with CT and MRI, there are no approaches to reliably
detect or assess these pathologies, and accurate detection of
intracranial bleeding remains a critical barrier to reducing
mortality in the absence of conventional neuroimaging. Thus,
there is a great need for the ability to detect life-threatening
intracranial bleeding in the prehospital setting. Moreover,
monitoring intracranial pressure (ICP), cerebral autoregulation,
and vasospasm may play a role in predicting outcome from
severe TBI and can help drive interventions to stabilize
patients awaiting transport to higher level facilities. Here we
discuss potential applications of ultrasound and near-infrared
spectroscopy (NIRS) for detecting life-threatening hemorrhage
and monitoring cerebral hemodynamics (Table 1). Emphasis
is placed on modalities that lend themselves to prehospital
application in a remote or austere environment.

Ultrasound
Ultrasound is a widely-used tool in emergency medicine and is a
relatively low-cost and portable option for non-invasive imaging
in a field setting. However, ultrasound has poor bone penetration
and low resolution, thus limiting its application to acute
intracranial insults. Nonetheless, developments in technology
continue to broaden the spectrum of utility for transcranial
ultrasound, including real-time evaluation of intracranial blood
flow dynamics, detection of vasospasm, and monitoring of ICP
(18, 19).

Cerebral autoregulation, the ability to regulate and maintain
blood flow following changes in cerebral perfusion pressure
(CPP), is frequently impaired following TBI (47). Identification
of impaired autoregulation may help identify patients likely to
benefit from targeted therapies such as aggressive blood pressure
management. Cerebral autoregulation is typically measured via
the pressure reactivity index, and some studies indicate that
continuous monitoring during the acute phase of TBI may lead
to improved prognosis (48, 49). Previous work has established
that transcranial Doppler (TCD) ultrasound-derived indices
can be used to non-invasively assess cerebral autoregulation
(20, 21). Despite poor bone penetration, TCD exploits thinner
skull regions to assess cerebral blood flow, and some studies
have extended these methods to severe TBI. For instance,
TCD measurement of blood flow velocity correlated with either
CPP or arterial pressure has been used to establish indices
that distinguish normal from impaired cerebral autoregulation.
Using this method, Sorrentino et al. established critical values
of TCD-derived autoregulation to demonstrate a relationship
with mortality and poor outcome (22). Subsequently, Budohoski
et al. used TCD to examine systolic, mean, and diastolic flow
velocity in 300 patients with TBI and found that systolic indices
demonstrated the strongest association with outcome (23).

Traumatic vasospasm is prevalent in civilian and military
TBI and is predictive of worse neurological outcome (24,
50). Frequently seen in conjunction with SDH, traumatic
subarachnoid hemorrhage, and contusion, vasospasm typically
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TABLE 1 | Intracranial pathologies seen in severe TBI and potential diagnostic methods for the prehospital setting.

Intracranial

pathology

Potential diagnostic methods Pro Con

Cerebral autoregulation TCD-derived indices (18–23) Non-invasive

Portable

Operator dependent

Non-continuous

Not validated

Limited by poor bone penetration

Large learning curve

Influenced by many different factors

Time intensive

Traumatic vasospasm TCD-derived pulsatility index (24–28) Non-invasive

Portable

Operator dependent

Non-continuous

Limited by poor bone penetration

Large learning curve

Influenced by many different factors

Time Intensive

Intracranial pressure Ultrasonography of ONSD (29–34) Fast

Non-invasive

Portable

Easy to acquire with minimal training (33)

Cannot be used with trauma to the globe

Optimal cut-offs not established

Lack of data on how long ICP is elevated

before change in ONSD

TCD—derived indices (35–40) Non-invasive

Portable

Operator dependent

Significant training required with steep

learning curve

Limited by poor bone windows in

some patients

Intracranial hematoma Continuous wave NIRS (41–46) Non-invasive

Portable form factor

Currently FDA approved and marketed

Bilateral reference scan needed

Sub-optimal specificity, especially in the

setting of scalp hematoma

Frequency domain NIRS Non-invasive

Single scan is sufficient (in contrast to CW

NIRS, which needs bilateral

reference scan)

Portable form factor does not currently

exist

Higher cost compared to CW NIRS

TCD, transcranial Doppler; ONSD, optical nerve sheath diameter; NIRS, near infrared spectroscopy; CW, continuous wave; FD, frequency domain.

occurs within 2 days of injury and is a predictor of delayed
cerebral ischemia (50). Some authors have proposed that serial
monitoring may identify patients at the greatest risk for ischemic
injury and thus intensive treatment (25). Lee et al. demonstrated
that TCD alone could detect vasospasm that predicts worse
outcome (26). Following wartime TBI, daily TCD was used to
monitor cerebral hemodynamic changes including vasospasm
and intracranial hypertension in military service members with
combat-related injuries. Mild, moderate, and severe levels of
vasospasmwere detected in 37, 22, and 12% of patients (27). TCD
has also been used to screen for intracranial hypertension and
abnormal CPP. Specifically, the TCD-derived pulsatility index is
thought to correlate with both ICP and CPP (28, 35, 36), although
other reports question this method (37). In children with severe
TBI, TCD predicts intracranial hypertension and abnormal CPP
(38), although its utility for detecting changes in ICP may be
limited to the first 24 h after injury (39). In adults with severe
TBI, mean blood flow and pulsatility index of the middle cerebral
artery were shown to correlate with ICP and CPP and predicted
6 months outcome (40).

In addition to early detection of altered cerebral
hemodynamics, ICP can be inferred from ultrasonography
of the optical nerve sheath diameter (ONSD), which increases
as a direct result of increasing ICP (29, 30). In one study

of 63 patients with subarachnoid or primary intracerebral
hemorrhage, an ONSD of 5.2mm was determined the optimum
cutoff to predict an ICP > 20 mmHg with 93.1% sensitivity
and 74% specificity; furthermore, a rapid change in the ONSD
was observed following CSF drainage (31). Additionally, the
multitude of studies have shown improved specificity and
sensitivity as the ONSD increases above the cut-off values; a
meta-analysis of six studies including 231 patients found cross
study sensitivity of 90% and specificity of 85% for detection of
raised ICP (32). The technique can be effectively taught in a
4-h training session, even to novice users (33). However, some
studies have questioned the reliability of the ONSD method
(34), and TCD-based approaches have shown greater diagnostic
accuracy in some studies (51, 52).

While these studies demonstrate the potential utility of
ultrasound in TBI applications, nearly all were conducted in
hospital settings where ultrasound was used as an adjunct to
traditional monitoring techniques. Rarely has ultrasound been
used as a stand-alone diagnostic or to guide treatment, although
a preliminary report suggests that ultrasound can be used in
the prehospital setting to detect impaired cerebral perfusion
(53), and a portable, ruggedized ultrasound system is currently
being developed under a U.S. military contract (54). To date,
there are no widely-accepted or validated criteria for ultrasound
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assessment of vasospasm, cerebral autoregulation, or ICP. At
present, no ultrasound-based device is likely to be effective for
detection of intracranial hemorrhage, and it has not yet been
demonstrated that key hardware components for through-skull
imaging can be made into a hand-held form factor suitable
for field use. To deploy ultrasound successfully as a prehospital
diagnostic for severe TBI, future prospective studies are needed to
refine operational parameters, determine appropriate thresholds
for intervention, and explore novel approaches that remain
largely untested in TBI, including contrast-enhanced (55) and
shear-wave ultrasound (56, 57), along with fusing ultrasound
data with other sensor modalities and clinical data to maximize
its utility.

Near-Infrared Spectroscopy
Unlike ultrasound, NIRS has the potential to directly penetrate
bone and several centimeters into underlying tissue. Compared
to ultrasound, NIRS is better suited to a small form factor and
thus is potentially closer to becoming a reliable method for non-
invasive cerebral monitoring in the prehospital setting. Previous
reviews have covered the physics of NIRS and applications in TBI
(58). Here, we will focus on the differences in continuous wave
(CW) and frequency domain (FD) NIRS for detection of space
occupying intracranial hematomas.

To detect intracranial hematomas, NIRS relies on the principle
that light is readily absorbed by extravascular blood due to the
concentration of hemoglobin. Of the NIRS detection schemes,
the CW mode is the simplest to implement and measures
the attenuation of light through tissue. Because no absolute
measurements are provided, a reference value—typically from
the contralateral side after a bilateral scan—is required to
determine the presence of extravascular blood. Most diffuse
optics research and technology, including the vast majority of
functional brain imaging systems, has focused on CW NIRS
measurements (59).

Designed to detect hematomas >3.5 cc in volume <2.5 cm
from the brain surface, early studies with the CW-based
InfrascannerTM demonstrated sensitivities of 88–90% and
specificities of 81–91% (41, 42). Subsequent studies with newer
models demonstrated similar or better accuracy (43–46), and a
recent meta-analysis found a cross-study sensitivity of 92.5 and
93% and specificity of 82.9 and 86.5% in adults and children,
respectively (60). However, a 2017 meta-analysis of 8 studies
using the InfrascannerTM found a cross-study sensitivity of
78%, a specificity of 90%, a positive predictive value of 77%,
and a negative predictive value of 90% (61). A recent far-
forward military user evaluation also reported concerns about
the operational efficacy and suitability of CW NIRS devices (62).
Nevertheless, CW-based diagnostic devices have seen adoption
among military units, ambulance services, and in hospitals as a
bedside diagnostic tool.

A limitation of CW systems is that they can only be used to
make a differential measurement (i.e., determine that something
has changed over time or space), which limits their utility to
localized injuries. Typically, bilateral measurements over the four
lobes of the brain are made, and a difference in optical density
between sides indicates the presence of hematoma. Although less

common that unilateral hematomas, bilateral hematomas are an
important subset of severe TBI and can bemissed with CW-based
diagnostics if the hematomas are both bilateral and symmetrical,
due to equal absorption of light at each site. In an early study
with a prototype CW NIRS device, bilateral hematomas were
not detected in two patients because there was no change in
optical density between readings (63). However, this represented
a very small percentage of the 191 hematoma-positive patients in
that study.

In contrast, FD systems allow for an absolute measurement of
the optical properties of the sample under study by measuring
information related to the time of flight of the photons
through the sample. This is a major potential advantage
over existing technologies. When tomographic reconstruction
algorithms are coupled with FD measurements made using light
sources and detectors at multiple positions across the sample,
a 3D reconstruction of the target’s optical properties can be
generated to enable spatial localization of the pathology with
centimeter resolution. This type of information derived from
FD-diffuse optical tomography (FD-DOT) systems has shown
great potential as a diagnostic tool for breast tumor imaging
and other diagnostics (64, 65). These systems have demonstrated
the ability of DOT to detect even small changes in oxy- and
deoxyhemoglobin concentrations non-invasively at up to 2 cm
depth from the surface of the head (59). Therefore, DOT
appears to meet important criteria for solving the problem
of accurately detecting both the presence and spatial location
of intracranial hematoma. This capability can lead to more
aggressive management at the point of injury, and spatial
localization of intracranial hematoma may ultimately lead to
the development of prehospital surgical intervention in the
near future.

Thus, far, intracranial hematoma detection has not been
an active area of investigation for FD NIRS systems, and
thus any potential advantages remain theoretical. Furthermore,
FD systems are not without limitations. Given the additional
system complexity necessitated by FD compared to CW systems,
current state-of-the-art FD systems are generally large and
require external sources of power, which would limit their
utility in austere, remote, or rural operational environments.
However, recent results from development and testing of
key FD systems components for portable systems have been
presented, which could lead to a smaller form factor in the
future (66, 67). Compared to CW systems, they are also
more costly, potentially limiting their use in low- and middle-
income countries where the number of severe TBIs is on
the rise.

An unresolved problem for using NIRS to detect intracranial
hematoma is navigating complex pathologies such as intracranial
hematoma coexistent with subgaleal hematoma, soft tissue
swelling, and scalp laceration. The ability to “see through”
a superficial hematoma has not yet been solved, and thus
superficial bleeding raises concerns for false positives. In certain
operational environments, such as on the battlefield or in
wilderness medicine situations involving inclement weather, false
positives may trigger unnecessary medical evacuation, placing
personnel at risk (68).
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Preclinical Models
The technologies for non-invasive cerebral monitoring and
diagnosis discussed herein will require a substantial amount of
additional investigation, including foundational work in animal
models. Animal studies are frequently an important step on
the path to translation of investigational devices. However, the
inability to translate findings from animal studies to clinical
trial methodology is frequently cited as a reason for the more
than 30 late-phase failed clinical trials in TBI (69–71). While the
majority of preclinical research has been conducted in rodents,
the behavioral and physiological outcomes most relevant to
severe TBI are best measured in large animals with gyrencephalic
brains, including pigs and sheep. Large animal models of life-
threatening severe TBI, such as the SDH models in pigs (72, 73),
will be critical for assessing physiological parameters relevant
to severe TBI. A number of translational studies in pigs have
demonstrated the importance of physiological monitoring and
functional assessment in predicting outcome following severe
TBI (74–76). The sheep may be an especially promising model
for developing ultrasound and NIRS-based technologies for non-
invasive diagnosis, as the skull thickness, porosity, and curvature
is closer to that of humans than other large animals, including
pigs (77).

Training Prehospital Providers
While material solutions and emerging technologies offer hope
for enhanced diagnosis and monitoring of severe TBI in remote
settings, it is critical that investments in technology are balanced
with those applied to training of prehospital providers. Indeed,
many of the life-saving advances in prehospital care over the
previous decades have been made not in material development,
but in improved training and trauma systems development.
Simulation-based training in particular incorporates real-life
scenarios with real-life time constraints and will be critical for
evaluating new technologies designed for the field. Simulation
training improves crisis management skills (78), and both
technical and non-technical skills needed to manage severely
injured patients can be reliably assessed by independent
observers (79). Trauma simulation training has been shown to
improve confidence in performing life-saving procedures in the
prehospital setting (80).

Training prehospital providers to use novel medical
technologies in the field must be balanced with the more
traditional role of providing basic life support while ensuring
swift transport to higher-level facilities when available. Current
data do not universally support the notion that providing
advanced care or diagnosis at the scene of the injury improves
outcomes (81), although rural environments would presumably
see greater benefits. For instance, in moderate to severe TBI,
prehospital intubation has been associated with increased
mortality in some studies (82, 83), and this has been attributed
to the skill and experience level of the paramedics performing
the intubation (84). Nevertheless, even fully-resourced settings,
such as tertiary care centers, will benefit from more rapid
diagnosis, triage, and management. The ability to deploy new
technology efficiently will depend on intensive initial training
and the maintenance of skillsets through repeat usage or

recurrent training and simulation. Paradoxically, highly-trained
prehospital providers frequently work in urban environments
where the volume of cases allows frequent practice of skills;
providers with only basic training are more likely to work in
rural environments, where the stakes are often higher due to the
geographic separation from specialized care (85). The relatively
low volume of cases in rural areas will make the maintenance of
skills a real issue.

Ultimately, deploying new medical devices in the prehospital
setting must balance the perceived safety and efficacy of the
new technology with a realistic appraisal of the social, legal,
and organizational context in which they will be deployed (86).
Resistance to implementing potentially life-saving technologies,
including both idiosyncratic alterations of the intended use and
deliberate non-use, has been observed following the introduction
of new prehospital technologies (86). Thus, introduction of
new technologies should be seen as an ongoing process with
involvement from stakeholders at all levels. Knowing when not
to deploy a new technology may be as important as knowing
when they are useful. For instance, until appropriate therapeutics
are available, the care of some severely injured patients en
route to high level care facilities may not change based on
the results of a diagnostic scan (43). Computational modeling
can help determine the appropriate geographic parameters for
implementing advanced care or diagnostics at the injury scene
vs. engaging in swift transport to higher level facilities (87).
Similarly, identifying the presence and size of a hematoma can
better inform triage decisions. For example, one recent study
reported that larger hematomas over 15mm in thickness are
associated with higher mortality (88). There may be some cases
that are judged to be so severe that urgent evacuation or in
situ aggressive management may be considered futile. Thus,
implementation science and appropriate patient management
skills may be just as important as technology development for
improving prehospital care for severe TBI in austere, rural, and
remote areas.

DISCUSSION

There has been little improvement in mortality associated
with severe TBI in the past 30 years (89). Nearly 40% of
patients with severe TBI die from their injury. Although
robust data on preventable deaths is not widely available,
a significant number of preventable deaths likely occur in
the prehospital setting (90). Improvement in mortality rates
and patient outcomes following severe TBI in rural and
remote settings will require a multidisciplinary approach that
involves developing new technologies and leveraging existing
ones. There is a great need for simple-to-use, portable, and
easy-to-maintain devices capable of detecting life-threatening
hemorrhage and other intracranial pathologies. Although not
discussed here, blood-based biomarkers have been an area
of intense investigation in recent years and may be useful
for detection of life-threatening post-injury complications
including intracranial hypertension (91) or evolving intracranial
lesions (92).
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The choice to deploy point-of-care diagnostics in the
prehospital setting will depend on a number of factors. First,
the operational environment will dictate, to a certain extent,
which diagnostics or technologies are feasible. While ultrasound-
based technologies may be appropriate to implement in a
rural ambulance service, they are less likely to be used
by far-forward military personnel, who will favor handheld
devices or technologies that can be readily integrated into
existing medical kits. Second, the lack of empirical data from
controlled studies remains a critical barrier to implementing
potentially life-saving technologies in the prehospital setting.
Successfully implementing these technologies in the prehospital
setting will require extensive development and validation in
the laboratory, assessment in clinically-relevant animal models,
and rigorous and ongoing training for the ultimate end-users.
End-user feedback from real-world operational environments
will remain an indispensable component of technology adoption
and should occur early and often (62). The sensitivity and
specificity of each diagnostic should be evaluated rigorously in
prospective studies. Randomized controlled trials will remain
the gold standard for determining success or failure of new

technologies, and a commitment to publishing results—both
positive and negative—will lead to improved understanding of
the fundamental pros and cons of each technology.
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